1
|
Roalsø MTT, Alexeeva M, Oanæs C, Watson M, Lea D, Zaharia C, Hagland HR, Søreide K. Patient-derived organoids from pancreatic cancer after pancreatectomy: Feasibility and organoid take rate in treatment-naïve periampullary tumors. Pancreatology 2024:S1424-3903(24)00846-9. [PMID: 39734118 DOI: 10.1016/j.pan.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND/OBJECTIVE Patient-derived organoids (PDOs) have emerged as essential for ex vivo modelling for pancreatic cancer (PDAC) but reports on efficacy and organoid take rate are scarce. This study aimed to assess the feasibility of establishing PDOs from resected specimens in periampullary tumors. METHODS Patients undergoing surgery for suspected periampullary cancer were included. PDO protocol amendments were tested, with organoid take rate as outcome measure. Samples from resected specimens were processed and expanded per protocol. Pooled estimate of take rates of PDOs in PDAC was derived from literature search. RESULTS 23 specimens were available for PDO, of which 10 were PDAC. In 15 patients other histopathology was found: neuroendocrine tumors (NET; n = 2), neuroendocrine carcinoma (NEC; n = 1), intraductal papillary mucinous neoplasm (IPMN; n = 4), distal cholangiocarcinoma (dCCA; n = 1), ampullary carcinoma (n = 1), duodenal carcinoma (n = 1), intra-ampullary papillary tubular neoplasm (IAPN; n = 1), indeterminate PDAC/ampullary carcinoma(n = 1), and one patient with chronic inflammation/fibrosis. Organoid cultures were grown from 7 of 10 (70 %) PDAC, 1 dCCA, 1 NEC, 1 duodenal carcinoma, 1 indeterminate tumor type and 1 ampullary carcinoma (i.e. 12/18; 66.7 % across periampullary cancers). Overall take rate of PDOs was 12 of 23 (52.2 %) for all tumors. A pooled mean estimate PDO take rate of 62.3 % (95 % CI:54.8-69.3 %) was reported across available studies in the literature. CONCLUSION In the current study, we found that PDOs could be established from resected pancreatic tumors in over half of resected periampullary tumors, and highest in PDACs. As such, generating a pancreatic cancer PDO biobank for translational research was feasible after cryopreservation.
Collapse
Affiliation(s)
- Marcus T T Roalsø
- Department of Quality and Health Technology, University of Stavanger, Stavanger, Norway; Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway
| | - Marina Alexeeva
- Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway
| | - Celine Oanæs
- Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway
| | - Martin Watson
- Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway
| | - Dordi Lea
- Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway; Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Claudia Zaharia
- Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway; Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Hanne R Hagland
- Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Kjetil Søreide
- Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Deben C, Cardenas De La Hoz E, Rodrigues Fortes F, Le Compte M, Seghers S, Vanlanduit S, Vercammen H, Van Den Bogert B, Dusetti N, Lin A, Roeyen G, Peeters M, Prenen H, Lardon F, Smits E. Development and validation of the Normalized Organoid Growth Rate (NOGR) metric in brightfield imaging-based assays. Commun Biol 2024; 7:1612. [PMID: 39627437 PMCID: PMC11615385 DOI: 10.1038/s42003-024-07329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
This study focuses on refining growth-rate-based drug response metrics for patient-derived tumor organoid screening using brightfield live-cell imaging. Traditional metrics like Normalized Growth Rate Inhibition (GR) and Normalized Drug Response (NDR) have been used to assess organoid responses to anticancer treatments but face limitations in accurately quantifying cytostatic and cytotoxic effects across varying growth rates. Here, we introduce the Normalized Organoid Growth Rate (NOGR) metric, specifically developed for brightfield imaging-based assays. A label-free image analysis model was applied to segment organoids precisely, track their growth rates over time, and classify viable and dead organoids. Testing eleven phenotypically distinct pancreatic cancer organoid models with five chemotherapeutics demonstrates that the NOGR metric more effectively captures cytostatic and cytotoxic drug effects compared to existing methods. This approach enhances the biological relevance of drug sensitivity assessments on organoids and offers a valuable tool for advancing personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.
| | | | - Felicia Rodrigues Fortes
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Maxim Le Compte
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Sofie Seghers
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | | | - Hendrik Vercammen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Bert Van Den Bogert
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France
| | - Abraham Lin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
- Plasma Lab for Applications in Sustainability and Medicine ANTwerp (PLASMANT), University of Antwerp, Wilrijk, Belgium
| | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
- Department of Hepatobiliary Transplantation and Endocrine Surgery, University Hospital Antwerp (UZA), Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
3
|
Teske C, Liedel K, Hirle A, Baenke F, Stange DE, Weitz J, Preusse G, Steiner G. Molecular Spectroscopy for the Biochemical Composition Analysis of Patient-Derived Pancreatic Cancer Organoids. Cancer Med 2024; 13:e70457. [PMID: 39632477 PMCID: PMC11617587 DOI: 10.1002/cam4.70457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) continues to pose profound challenges within the field of oncology due to its notorious resistance to existing therapies and constant high mortality rates. The recent emergence of three-dimensional patient-derived organoid (PDO) models marks a significant advancement, opening new avenues for exploring cancer biology and assessing therapeutic approaches. AIMS The aim of this study focuses on the innovative use of Fourier-transform infrared (FT-IR) spectroscopy to analyze PDAC organoids, thus illuminating their biochemical intricacies. MATERIALS AND METHODS In this study, PDAC organoids, cultivated from specimens sourced from cancer patients, were subjected to FT-IR spectroscopic imaging. By examining the spectral data within the critical fingerprint region (950-1800 cm-1), and employing principal component analysis (PCA), biochemical disparities were detected and analyzed. RESULTS The results revealed distinct spectral profiles corresponding to different sample preparation techniques, which in turn highlighted variations in protein content and structure. PCA revealed a high homogeneity within classes and minimal passage number influence on spectral profiles, with variations in lipid content and protein profiles. Significantly, the biochemical fingerprint of these PDOs closely mirrored that of the original human tissue samples. CONCLUSION This investigation underscores the efficacy of molecular spectroscopy as a non-invasive method for profound characterization of PDAC organoids, enhancing our comprehension of tumor biochemistry. The capacity for swift and precise biochemical profiling of PDOs via molecular spectroscopy heralds a promising future for this technique in the realms of cancer diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Christian Teske
- Department of Visceral, Thoracic and Vascular SurgeryUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz‐Zentrum Dresden – Rossendorf (HZDR)DresdenGermany
| | - Katja Liedel
- Department of Visceral, Thoracic and Vascular SurgeryUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz‐Zentrum Dresden – Rossendorf (HZDR)DresdenGermany
| | - Alexander Hirle
- Department of Visceral, Thoracic and Vascular SurgeryUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz‐Zentrum Dresden – Rossendorf (HZDR)DresdenGermany
| | - Franziska Baenke
- Department of Visceral, Thoracic and Vascular SurgeryUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz‐Zentrum Dresden – Rossendorf (HZDR)DresdenGermany
| | - Daniel E. Stange
- Department of Visceral, Thoracic and Vascular SurgeryUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz‐Zentrum Dresden – Rossendorf (HZDR)DresdenGermany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular SurgeryUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz‐Zentrum Dresden – Rossendorf (HZDR)DresdenGermany
| | - Grit Preusse
- Department of Anesthesia and Intensive Care, Clinical Sensoring and Monitoring, University Hospital and Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Gerald Steiner
- Department of Anesthesia and Intensive Care, Clinical Sensoring and Monitoring, University Hospital and Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| |
Collapse
|
4
|
Tong L, Cui W, Zhang B, Fonseca P, Zhao Q, Zhang P, Xu B, Zhang Q, Li Z, Seashore-Ludlow B, Yang Y, Si L, Lundqvist A. Patient-derived organoids in precision cancer medicine. MED 2024; 5:1351-1377. [PMID: 39341206 DOI: 10.1016/j.medj.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Organoids are three-dimensional (3D) cultures, normally derived from stem cells, that replicate the complex structure and function of human tissues. They offer a physiologically relevant model to address important questions in cancer research. The generation of patient-derived organoids (PDOs) from various human cancers allows for deeper insights into tumor heterogeneity and spatial organization. Additionally, interrogating non-tumor stromal cells increases the relevance in studying the tumor microenvironment, thereby enhancing the relevance of PDOs in personalized medicine. PDOs mark a significant advancement in cancer research and patient care, signifying a shift toward more innovative and patient-centric approaches. This review covers aspects of PDO cultures to address the modeling of the tumor microenvironment, including extracellular matrices, air-liquid interface and microfluidic cultures, and organ-on-chip. Specifically, the role of PDOs as preclinical models in gene editing, molecular profiling, drug testing, and biomarker discovery and their potential for guiding personalized treatment in clinical practice are discussed.
Collapse
Affiliation(s)
- Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Weiyingqi Cui
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Boya Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Pedro Fonseca
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Qian Zhao
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Ping Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Beibei Xu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qisi Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Zeng G, Yu Y, Wang M, Liu J, He G, Yu S, Yan H, Yang L, Li H, Peng X. Advancing cancer research through organoid technology. J Transl Med 2024; 22:1007. [PMID: 39516934 PMCID: PMC11545094 DOI: 10.1186/s12967-024-05824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The complexity of tumors and the challenges associated with treatment often stem from the limitations of existing models in accurately replicating authentic tumors. Recently, organoid technology has emerged as an innovative platform for tumor research. This bioengineering approach enables researchers to simulate, in vitro, the interactions between tumors and their microenvironment, thereby enhancing the intricate interplay between tumor cells and their surroundings. Organoids also integrate multidimensional data, providing a novel paradigm for understanding tumor development and progression while facilitating precision therapy. Furthermore, advancements in imaging and genetic editing techniques have significantly augmented the potential of organoids in tumor research. This review explores the application of organoid technology for more precise tumor simulations and its specific contributions to cancer research advancements. Additionally, we discuss the challenges and evolving trends in developing comprehensive tumor models utilizing organoid technology.
Collapse
Affiliation(s)
- Guolong Zeng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yifan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Meiting Wang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Sixuan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Huining Yan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| |
Collapse
|
6
|
He YG, Zhang LY, Li J, Wang Z, Zhao CY, Zheng L, Huang XB. Conversion therapy in advanced perihilar cholangiocarcinoma based on patient-derived organoids: A case report. World J Gastrointest Oncol 2024; 16:4274-4280. [DOI: 10.4251/wjgo.v16.i10.4274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Patient-derived organoids (PDOs) have been demonstrated to predict the response to drugs in multiple cancer types. However, it remains unclear about its application in cholangiocarcinoma.
CASE SUMMARY A 59-year-old woman was admitted to the hospital due to upper abdominal pain for over 8 months. According to relevant examinations, she was diagnosed as perihilar cholangiocarcinoma (pCCA) with intrahepatic metastasis and perihilar lymphatic metastasis. After multidisciplinary team discussion, percutaneous transhepatic cholangiodrainage was performed to relieve biliary obstruction, and puncture biopsy was conducted to confirm the pathological diagnosis. Transarterial chemoembolization with nab-paclitaxel was used in combination with toripalimab and lenvatinib, but the levels of tumor markers including alpha fetal protein, carcinoembryonic antigen, carbohydrate antigen 15-3 and cancer antigen 125 were still raised. The PDO for drug screening showed sensitive to gemcitabine and cisplatin. Accordingly, the chemotherapy regimen was adjusted to gemcitabine and cisplatin in combination with toripalimab and lenvatinib. After 4 cycles of treatment, the tumor was assessed resectable, and radical surgical resection was performed successfully. One year after surgery, the patient was still alive, and no recurrence or occurred.
CONCLUSION PDOs for drug sensitivity contribute to screening effective chemotherapy drugs for advanced pCCA, promoting conversion therapy and improving the prognosis.
Collapse
Affiliation(s)
- Yong-Gang He
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Ling-Yu Zhang
- School of Clinical Oncology, Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, Fujian Province, China
| | - Jing Li
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Zheng Wang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Chong-Yu Zhao
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Lu Zheng
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Xiao-Bing Huang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| |
Collapse
|
7
|
Al Shihabi A, Tebon PJ, Nguyen HTL, Chantharasamee J, Sartini S, Davarifar A, Jensen AY, Diaz-Infante M, Cox H, Gonzalez AE, Norris S, Sperry J, Nakashima J, Tavanaie N, Winata H, Fitz-Gibbon ST, Yamaguchi TN, Jeong JH, Dry S, Singh AS, Chmielowski B, Crompton JG, Kalbasi AK, Eilber FC, Hornicek F, Bernthal NM, Nelson SD, Boutros PC, Federman NC, Yanagawa J, Soragni A. The landscape of drug sensitivity and resistance in sarcoma. Cell Stem Cell 2024; 31:1524-1542.e4. [PMID: 39305899 DOI: 10.1016/j.stem.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Sarcomas are rare malignancies with over 100 distinct histological subtypes. Their rarity and heterogeneity pose significant challenges to identifying effective therapies, and approved regimens show varied responses. Novel, personalized approaches to therapy are needed to improve patient outcomes. Patient-derived tumor organoids (PDTOs) model tumor behavior across an array of malignancies. We leverage PDTOs to characterize the landscape of drug resistance and sensitivity in sarcoma, collecting 194 specimens from 126 patients spanning 24 distinct sarcoma subtypes. Our high-throughput organoid screening pipeline tested single agents and combinations, with results available within a week from surgery. Drug sensitivity correlated with clinical features such as tumor subtype, treatment history, and disease trajectory. PDTO screening can facilitate optimal drug selection and mirror patient outcomes in sarcoma. We could identify at least one FDA-approved or NCCN-recommended effective regimen for 59% of the specimens, demonstrating the potential of our pipeline to provide actionable treatment information.
Collapse
Affiliation(s)
- Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyton J Tebon
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jomjit Chantharasamee
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sara Sartini
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ardalan Davarifar
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexandra Y Jensen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miranda Diaz-Infante
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hannah Cox
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Summer Norris
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Nasrin Tavanaie
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Helena Winata
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sorel T Fitz-Gibbon
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jae H Jeong
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Dry
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arun S Singh
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bartosz Chmielowski
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph G Crompton
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Division of Surgical Oncology David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anusha K Kalbasi
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fritz C Eilber
- Division of Surgical Oncology David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francis Hornicek
- Department of Orthopedic Surgery, University of Miami, Miami, FL, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah C Federman
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane Yanagawa
- Department of Surgery, Division of Thoracic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Grützmeier SE, Sodal HMM, Kovacevic B, Vilmann P, Karstensen JG, Klausen P. EUS-guided biopsies versus surgical specimens for establishing patient-derived pancreatic cancer organoids: a systematic review and meta-analysis. Gastrointest Endosc 2024; 100:750-755. [PMID: 38593932 DOI: 10.1016/j.gie.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND AND AIMS Patient-derived tumor organoids (PDTOs) are a promising new disease model in pancreatic cancer for use in personalized medicine. However, the overall success rate (SR) of establishing these cultures from EUS-guided biopsies is unknown. METHODS We searched relevant database publications reporting SRs of PDTO establishment from pancreatic cancer. The primary outcome was SR stratified on tissue acquisition method (EUS-guided biopsies, percutaneous biopsies, and surgical specimens). RESULTS Twenty-four studies were identified that included 1053 attempts at establishing PDTOs. Overall SR was 63% (95% confidence interval [CI], 54%-72%). Pooled SRs of PDTO establishment from EUS-guided biopsies, percutaneous biopsies, and surgical specimens were 60% (95% CI, 43%-76%), 36% (95% CI, 14%-61%), and 62% (95% CI, 48%-75%), respectively, and did not differ significantly (P = .1975). CONCLUSION The SR of PDTO establishment from EUS-guided biopsies is comparable to that from surgical specimens. Both techniques are suitable for tissue acquisition for PDTOs in clinical and research settings. (PROSPERO registration number: CRD42023425121.).
Collapse
Affiliation(s)
- Simon Ezban Grützmeier
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark.
| | - Hafsa Mahad Mahamud Sodal
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Bojan Kovacevic
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark; Department of Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter Vilmann
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - John Gásdal Karstensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Pancreatitis Centre East, Gastro Unit, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Pia Klausen
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark; Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
9
|
Shimonosono M, Morimoto M, Hirose W, Tomita Y, Matsuura N, Flashner S, Ebadi MS, Okayasu EH, Lee CY, Britton WR, Martin C, Wuertz BR, Parikh AS, Sachdeva UM, Ondrey FG, Atigadda VR, Elmets CA, Abrams JA, Muir AB, Klein-Szanto AJ, Weinberg KI, Momen-Heravi F, Nakagawa H. Modeling Epithelial Homeostasis and Perturbation in Three-Dimensional Human Esophageal Organoids. Biomolecules 2024; 14:1126. [PMID: 39334892 PMCID: PMC11430971 DOI: 10.3390/biom14091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. Methods: We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids. To optimize the ADF-based medium, we evaluated the requirement of exogenous epidermal growth factor (EGF) and inhibition of transforming growth factor-(TGF)-β receptor-mediated signaling, both key regulators of the proliferation of human esophageal keratinocytes. We have modeled human esophageal epithelial pathology by stimulating esophageal 3D organoids with interleukin (IL)-13, an inflammatory cytokine, or UAB30, a novel pharmacological activator of retinoic acid signaling. Results: The formation of normal human esophageal 3D organoids was limited by excessive EGF and intrinsic TGFβ-receptor-mediated signaling. Optimized HOME0 improved normal human esophageal organoid formation. In the HOME0-grown organoids, IL-13 and UAB30 induced epithelial changes reminiscent of basal cell hyperplasia, a common histopathologic feature in broad esophageal disease conditions including eosinophilic esophagitis. Conclusions: HOME0 allows modeling of the homeostatic differentiation gradient and perturbation of the human esophageal epithelium while permitting a comparison of organoids from mice and other organs grown in ADF-based media.
Collapse
Affiliation(s)
- Masataka Shimonosono
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Masaki Morimoto
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Wataru Hirose
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Yasuto Tomita
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Norihiro Matsuura
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Mesra S. Ebadi
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Emilea H. Okayasu
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Christian Y. Lee
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - William R. Britton
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Cecilia Martin
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Organoid & Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, New York, NY 10032, USA
| | - Beverly R. Wuertz
- Department of Otolaryngology, Head and Neck Surgery, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (B.R.W.); (F.G.O.)
| | - Anuraag S. Parikh
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Department of Otolaryngology, Head and Neck Surgery, Columbia University, New York, NY 10032, USA
| | - Uma M. Sachdeva
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Frank G. Ondrey
- Department of Otolaryngology, Head and Neck Surgery, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (B.R.W.); (F.G.O.)
| | - Venkatram R. Atigadda
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA; (V.R.A.); (C.A.E.)
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA; (V.R.A.); (C.A.E.)
| | - Julian A. Abrams
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | | | - Kenneth I. Weinberg
- Department of Pediatrics, Maternal & Child Health Research Institute, Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA;
| | - Fatemeh Momen-Heravi
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Organoid & Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
10
|
Kim H, Jang J, Choi JH, Song JH, Lee SH, Park J, Ryoo SK, Lee EM, Jeong HO, Kim S, Lee SH, Lee KH, Lee KT, Kim KM, Jang KT, Lee H, Lee S, Lee JK, Park JK. Establishment of a patient-specific avatar organoid model derived from EUS-guided fine-needle biopsy for timely clinical application in pancreatic ductal adenocarcinoma (with video). Gastrointest Endosc 2024; 100:85-96.e9. [PMID: 38447660 DOI: 10.1016/j.gie.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND AIMS Pancreatic ductal adenocarcinoma (PDAC) has the worst survival rate among tumors. At the time of diagnosis, more than 80% of PDACs are considered to be surgically unresectable, and there is an unmet need for treatment options in these inoperable PDACs. This study aimed to establish a patient-derived organoid (PDO) platform from EUS-guided fine-needle biopsy (EUS-FNB) collected at diagnosis and to determine its clinical applicability for the timely treatment of unresectable PDAC. METHODS Patients with suspected PDAC were prospectively enrolled at the Samsung Medical Center from 2015 to 2019. PDAC tissues were acquired by means of EUS-FNB to establish PDAC PDOs, which were comprehensively analyzed for histology, genomic sequencing, and high-throughput screening (HTS) drug sensitivity test. RESULTS PDAC PDOs were established with a success rate of 83.2% (94/113). It took approximately 3 weeks from acquiring minimal EUS-FNB specimens to generating sufficient PDAC PDOs for the simultaneous HTS drug sensitivity test and genomic sequencing. The high concordance between PDAC tissues and matched PDOs was confirmed, and whole-exome sequencing revealed the increased detection of genetic alterations in PDOs compared with EUS-FNB tissues. The HTS drug sensitivity test showed clinical correlation between the ex vivo PDO response and the actual chemotherapeutic response of the study patients in the real world (13 out of 15 cases). In addition, whole-transcriptome sequencing identified candidate genes associated with nab-paclitaxel resistance, such as ITGB7, ANPEP, and ST3GAL1. CONCLUSIONS This PDAC PDO platform allows several therapeutic drugs to be tested within a short time window and opens the possibility for timely personalized medicine as a "patient avatar model" in clinical practice.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinho Jang
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jin Ho Choi
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Hye Song
- Department of Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Su Hyun Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Jiho Park
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Si Kyong Ryoo
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Mi Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyoung-Oh Jeong
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Seunghoon Kim
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Se-Hoon Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Kwang Hyuck Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu Taek Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyunsook Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Semin Lee
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jong Kyun Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Matsumoto K, Fujimori N, Ichihara K, Takeno A, Murakami M, Ohno A, Kakehashi S, Teramatsu K, Ueda K, Nakata K, Sugahara O, Yamamoto T, Matsumoto A, Nakayama KI, Oda Y, Nakamura M, Ogawa Y. Patient-derived organoids of pancreatic ductal adenocarcinoma for subtype determination and clinical outcome prediction. J Gastroenterol 2024; 59:629-640. [PMID: 38684511 PMCID: PMC11217054 DOI: 10.1007/s00535-024-02103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Recently, two molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) have been proposed: the "Classical" and "Basal-like" subtypes, with the former showing better clinical outcomes than the latter. However, the "molecular" classification has not been applied in real-world clinical practice. This study aimed to establish patient-derived organoids (PDOs) for PDAC and evaluate their application in subtype classification and clinical outcome prediction. METHODS We utilized tumor samples acquired through endoscopic ultrasound-guided fine-needle biopsy and established a PDO library for subsequent use in morphological assessments, RNA-seq analyses, and in vitro drug response assays. We also conducted a prospective clinical study to evaluate whether analysis using PDOs can predict treatment response and prognosis. RESULTS PDOs of PDAC were established at a high efficiency (> 70%) with at least 100,000 live cells. Morphologically, PDOs were classified as gland-like structures (GL type) and densely proliferating inside (DP type) less than 2 weeks after tissue sampling. RNA-seq analysis revealed that the "morphological" subtype (GL vs. DP) corresponded to the "molecular" subtype ("Classical" vs. "Basal-like"). The "morphological" classification predicted the clinical treatment response and prognosis; the median overall survival of patients with GL type was significantly longer than that with DP type (P < 0.005). The GL type showed a better response to gemcitabine than the DP type in vitro, whereas the drug response of the DP type was improved by the combination of ERK inhibitor and chloroquine. CONCLUSIONS PDAC PDOs help in subtype determination and clinical outcome prediction, thereby facilitating the bench-to-bedside precision medicine for PDAC.
Collapse
Affiliation(s)
- Kazuhide Matsumoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kazuya Ichihara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ayumu Takeno
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masatoshi Murakami
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akihisa Ohno
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shotaro Kakehashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuhito Teramatsu
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keijiro Ueda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Sugahara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
12
|
Cortiana V, Abbas RH, Chorya H, Gambill J, Mahendru D, Park CH, Leyfman Y. Personalized Medicine in Pancreatic Cancer: The Promise of Biomarkers and Molecular Targeting with Dr. Michael J. Pishvaian. Cancers (Basel) 2024; 16:2329. [PMID: 39001391 PMCID: PMC11240738 DOI: 10.3390/cancers16132329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic cancer, with its alarming rising incidence, is predicted to become the second deadliest type of solid tumor by 2040, highlighting the urgent need for improved diagnostic and treatment strategies. Despite medical advancements, the five-year survival rate for pancreatic cancer remains about 14%, dropping further when metastasized. This review explores the promise of biomarkers for early detection, personalized treatment, and disease monitoring. Molecular classification of pancreatic cancer into subtypes based on genetic mutations, gene expression, and protein markers guides treatment decisions, potentially improving outcomes. A plethora of clinical trials investigating different strategies are currently ongoing. Targeted therapies, among which those against CLAUDIN 18.2 and inhibitors of Claudin 18.1, have shown promise. Next-generation sequencing (NGS) has emerged as a powerful tool for the comprehensive genomic analysis of pancreatic tumors, revealing unique genetic alterations that drive cancer progression. This allows oncologists to tailor therapies to target specific molecular abnormalities. However, challenges remain, including limited awareness and uptake of biomarker-guided therapies. Continued research into the molecular mechanisms of pancreatic cancer is essential for developing more effective treatments and improving patient survival rates.
Collapse
Affiliation(s)
- Viviana Cortiana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | | | | | | | - Diksha Mahendru
- Global Remote Research Scholars Program, St. Paul, MN 55101, USA
| | | | - Yan Leyfman
- Icahn School of Medicine at Mount Sinai South Nassau, Oceanside, NY 11572, USA
| |
Collapse
|
13
|
Boilève A, Cartry J, Goudarzi N, Bedja S, Mathieu JRR, Bani MA, Nicolle R, Mouawia A, Bouyakoub R, Nicotra C, Ngo-Camus M, Job B, Lipson K, Boige V, Valéry M, Tarabay A, Dartigues P, Tselikas L, de Baere T, Italiano A, Cosconea S, Gelli M, Fernandez-de-Sevilla E, Annereau M, Malka D, Smolenschi C, Ducreux M, Hollebecque A, Jaulin F. Organoids for Functional Precision Medicine in Advanced Pancreatic Cancer. Gastroenterology 2024:S0016-5085(24)05027-3. [PMID: 38866343 DOI: 10.1053/j.gastro.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND & AIMS Patient-derived organoids (PDOs) are promising tumor avatars that could enable ex vivo drug tests to personalize patients' treatments in the frame of functional precision oncology. However, clinical evidence remains scarce. This study aims to evaluate whether PDOs can be implemented in clinical practice to benefit patients with advanced refractory pancreatic ductal adenocarcinoma (PDAC). METHODS During 2021 to 2022, 87 patients were prospectively enrolled in an institutional review board-approved protocol. Inclusion criteria were histologically confirmed PDAC with the tumor site accessible. A panel of 25 approved antitumor therapies (chemogram) was tested and compared to patient responses to assess PDO predictive values and map the drug sensitivity landscape in PDAC. RESULTS Fifty-four PDOs were generated from 87 pretreated patients (take-on rate, 62%). The main PDO mutations were KRAS (96%), TP53 (88%), and CDKN2A/B (22%), with a 91% concordance rate with their tumor of origin. The mean turnaround time to chemogram was 6.8 weeks. In 91% of cases, ≥1 hit was identified (gemcitabine (n = 20 of 54), docetaxel (n = 18 of 54), and vinorelbine (n = 17 of 54), with a median of 3 hits/patient (range, 0-12). Our cohort included 34 evaluable patients with full clinical follow-up. We report a chemogram sensitivity of 83.3% and specificity of 92.9%. The overall response rate and progression-free survival were higher when patients received a hit treatment as compared to patients who received a nonhit drug (as part of routine management). Finally, we leveraged our PDO collection as a platform for drug validation and combo identification. We tested anti-KRASG12D (MRTX1133), alone or combined, and identified a specific synergy with anti-EGFR therapies in KRASG12D variants. CONCLUSIONS We report the largest prospective study aiming at implementing PDO-based functional precision oncology and identify very robust predictive values in this clinical setting. In a clinically relevant turnaround time, we identify putative hits for 91% of patients, providing unexpected potential survival benefits in this very aggressive indication. Although this remains to be confirmed in interventional precision oncology trials, PDO collection already provides powerful opportunities for drugs and combinatorial treatment development.
Collapse
Affiliation(s)
- Alice Boilève
- INSERM U1279, Gustave Roussy, Villejuif, France; Université Paris Saclay, Orsay, France; Gustave Roussy, Département de Médecine, Villejuif, France.
| | - Jérôme Cartry
- INSERM U1279, Gustave Roussy, Villejuif, France; Université Paris Saclay, Orsay, France
| | - Negaar Goudarzi
- INSERM U1279, Gustave Roussy, Villejuif, France; Gustave Roussy, Plateforme Organoïdes, Villejuif, France
| | - Sabrina Bedja
- INSERM U1279, Gustave Roussy, Villejuif, France; Université Paris Saclay, Orsay, France
| | - Jacques R R Mathieu
- INSERM U1279, Gustave Roussy, Villejuif, France; Université Paris Saclay, Orsay, France
| | - Mohamed-Amine Bani
- Gustave Roussy, Département de Pathologie Morphologique, Villejuif, France
| | - Rémy Nicolle
- Centre de Recherche sur l'Inflammation, INSERM Unité 1149, Centre National de la Recherche Scientifique (CNRS), Equipe de Recherche Labellisée (ERL) 8252, Université Paris Cité, Paris, France
| | - Ali Mouawia
- INSERM U1279, Gustave Roussy, Villejuif, France
| | - Ryme Bouyakoub
- Gustave Roussy, Plateforme Organoïdes, Villejuif, France
| | - Claudio Nicotra
- Gustave Roussy, Département d'Innovations Thérapeutiques et d'Essais Précoces (DITEP), Villejuif, France
| | - Maud Ngo-Camus
- Gustave Roussy, Département d'Innovations Thérapeutiques et d'Essais Précoces (DITEP), Villejuif, France
| | - Bastien Job
- Gustave Roussy, Département de Bioinformatique, Villejuif, France
| | - Karélia Lipson
- Gustave Roussy, Plateforme Organoïdes, Villejuif, France
| | - Valérie Boige
- Gustave Roussy, Département de Médecine, Villejuif, France
| | - Marine Valéry
- Gustave Roussy, Département de Médecine, Villejuif, France
| | | | - Peggy Dartigues
- Gustave Roussy, Département de Pathologie Morphologique, Villejuif, France
| | - Lambros Tselikas
- Gustave Roussy, Département de Radiologie Interventionnelle, Villejuif, France
| | - Thierry de Baere
- Gustave Roussy, Département de Radiologie Interventionnelle, Villejuif, France
| | - Antoine Italiano
- Gustave Roussy, Département d'Innovations Thérapeutiques et d'Essais Précoces (DITEP), Villejuif, France
| | | | | | | | | | - David Malka
- INSERM U1279, Gustave Roussy, Villejuif, France; Gustave Roussy, Département de Médecine, Villejuif, France; Institut mutualiste Montsouris, Département d'Oncologie Médicale, Paris, France
| | - Cristina Smolenschi
- Gustave Roussy, Département de Médecine, Villejuif, France; Gustave Roussy, Département d'Innovations Thérapeutiques et d'Essais Précoces (DITEP), Villejuif, France
| | - Michel Ducreux
- INSERM U1279, Gustave Roussy, Villejuif, France; Université Paris Saclay, Orsay, France; Gustave Roussy, Département de Médecine, Villejuif, France
| | - Antoine Hollebecque
- Gustave Roussy, Département de Médecine, Villejuif, France; Gustave Roussy, Département d'Innovations Thérapeutiques et d'Essais Précoces (DITEP), Villejuif, France
| | - Fanny Jaulin
- INSERM U1279, Gustave Roussy, Villejuif, France; Université Paris Saclay, Orsay, France; Gustave Roussy, Département de Recherche, Villejuif, France.
| |
Collapse
|
14
|
Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00960-8. [PMID: 38806997 DOI: 10.1007/s13402-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.
Collapse
Affiliation(s)
- Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Xiang D, He A, Zhou R, Wang Y, Xiao X, Gong T, Kang W, Lin X, Wang X, Liu L, Chen YG, Gao S, Liu Y. Building consensus on the application of organoid-based drug sensitivity testing in cancer precision medicine and drug development. Theranostics 2024; 14:3300-3316. [PMID: 38855182 PMCID: PMC11155402 DOI: 10.7150/thno.96027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Patient-derived organoids (PDOs) have emerged as a promising platform for clinical and translational studies. A strong correlation exists between clinical outcomes and the use of PDOs to predict the efficacy of chemotherapy and/or radiotherapy. To standardize interpretation and enhance scientific communication in the field of cancer precision medicine, we revisit the concept of PDO-based drug sensitivity testing (DST). We present an expert consensus-driven approach for medication selection aimed at predicting patient responses. To further standardize PDO-based DST, we propose guidelines for clarification and characterization. Additionally, we identify several major challenges in clinical prediction when utilizing PDOs.
Collapse
Affiliation(s)
- Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200125, PRC
- National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, PRC
| | - Yonggang Wang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Ting Gong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin 300052, PRC
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, PRC
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Boao Research Hospital), Hainan 571434, PRC
| | - Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, PRC
| | | | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, PRC
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui 230001, PRC
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100190, PRC
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, PRC
- Frontier Science Center for Stem Cell Research, Tongji University, 1239 Siping Road, Shanghai 200092, PRC
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PRC
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| |
Collapse
|
16
|
Gu A, Li J, Qiu S, Hao S, Yue ZY, Zhai S, Li MY, Liu Y. Pancreatic cancer environment: from patient-derived models to single-cell omics. Mol Omics 2024; 20:220-233. [PMID: 38414408 DOI: 10.1039/d3mo00250k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Pancreatic cancer (PC) is a highly malignant cancer characterized by poor prognosis, high heterogeneity, and intricate heterocellular systems. Selecting an appropriate experimental model for studying its progression and treatment is crucial. Patient-derived models provide a more accurate representation of tumor heterogeneity and complexity compared to cell line-derived models. This review initially presents relevant patient-derived models, including patient-derived xenografts (PDXs), patient-derived organoids (PDOs), and patient-derived explants (PDEs), which are essential for studying cell communication and pancreatic cancer progression. We have emphasized the utilization of these models in comprehending intricate intercellular communication, drug responsiveness, mechanisms underlying tumor growth, expediting drug discovery, and enabling personalized medical approaches. Additionally, we have comprehensively summarized single-cell analyses of these models to enhance comprehension of intercellular communication among tumor cells, drug response mechanisms, and individual patient sensitivities.
Collapse
Affiliation(s)
- Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Shimei Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shenglin Hao
- Department of Functional Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| |
Collapse
|
17
|
Guinn S, Kinny-Köster B, Tandurella JA, Mitchell JT, Sidiropoulos DN, Loth M, Lyman MR, Pucsek AB, Zabransky DJ, Lee JW, Kartalia E, Ramani M, Seppälä TT, Cherry C, Suri R, Zlomke H, Patel J, He J, Wolfgang CL, Yu J, Zheng L, Ryan DP, Ting DT, Kimmelman A, Gupta A, Danilova L, Elisseeff JH, Wood LD, Stein-O’Brien G, Kagohara LT, Jaffee EM, Burkhart RA, Fertig EJ, Zimmerman JW. Transfer Learning Reveals Cancer-Associated Fibroblasts Are Associated with Epithelial-Mesenchymal Transition and Inflammation in Cancer Cells in Pancreatic Ductal Adenocarcinoma. Cancer Res 2024; 84:1517-1533. [PMID: 38587552 PMCID: PMC11065624 DOI: 10.1158/0008-5472.can-23-1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 04/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by an immunosuppressive tumor microenvironment enriched with cancer-associated fibroblasts (CAF). This study used a convergence approach to identify tumor cell and CAF interactions through the integration of single-cell data from human tumors with human organoid coculture experiments. Analysis of a comprehensive atlas of PDAC single-cell RNA sequencing data indicated that CAF density is associated with increased inflammation and epithelial-mesenchymal transition (EMT) in epithelial cells. Transfer learning using transcriptional data from patient-derived organoid and CAF cocultures provided in silico validation of CAF induction of inflammatory and EMT epithelial cell states. Further experimental validation in cocultures demonstrated integrin beta 1 (ITGB1) and vascular endothelial factor A (VEGFA) interactions with neuropilin-1 mediating CAF-epithelial cell cross-talk. Together, this study introduces transfer learning from human single-cell data to organoid coculture analyses for experimental validation of discoveries of cell-cell cross-talk and identifies fibroblast-mediated regulation of EMT and inflammation. SIGNIFICANCE Adaptation of transfer learning to relate human single-cell RNA sequencing data to organoid-CAF cocultures facilitates discovery of human pancreatic cancer intercellular interactions and uncovers cross-talk between CAFs and tumor cells through VEGFA and ITGB1.
Collapse
Affiliation(s)
- Samantha Guinn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Benedict Kinny-Köster
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, New York University Grossman School of Medicine, New York, NY
| | - Joseph A. Tandurella
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jacob T. Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Dimitrios N. Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Melanie Loth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Melissa R. Lyman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexandra B. Pucsek
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel J. Zabransky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jae W. Lee
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Emma Kartalia
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mili Ramani
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Toni T. Seppälä
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital
| | - Christopher Cherry
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD
| | - Reecha Suri
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Haley Zlomke
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jignasha Patel
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Jun Yu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - David P. Ryan
- The Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - David T. Ting
- The Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alec Kimmelman
- Department of Radiation Oncology at New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Anuj Gupta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ludmila Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jennifer H. Elisseeff
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - Laura D. Wood
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Genevieve Stein-O’Brien
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A. Burkhart
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Jacquelyn W. Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
18
|
Wehrli M, Guinn S, Birocchi F, Kuo A, Sun Y, Larson RC, Almazan AJ, Scarfò I, Bouffard AA, Bailey SR, Anekal PV, Llopis PM, Nieman LT, Song Y, Xu KH, Berger TR, Kann MC, Leick MB, Silva H, Salas-Benito D, Kienka T, Grauwet K, Armstrong TD, Zhang R, Zhu Q, Fu J, Schmidts A, Korell F, Jan M, Choi BD, Liss AS, Boland GM, Ting DT, Burkhart RA, Jenkins RW, Zheng L, Jaffee EM, Zimmerman JW, Maus MV. Mesothelin CAR T Cells Secreting Anti-FAP/Anti-CD3 Molecules Efficiently Target Pancreatic Adenocarcinoma and its Stroma. Clin Cancer Res 2024; 30:1859-1877. [PMID: 38393682 PMCID: PMC11062832 DOI: 10.1158/1078-0432.ccr-23-3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Marc Wehrli
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Samantha Guinn
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Filippo Birocchi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Adam Kuo
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Yi Sun
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Rebecca C. Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Antonio J. Almazan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Irene Scarfò
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Amanda A. Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Stefanie R. Bailey
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | | | | | - Linda T. Nieman
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Yuhui Song
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Katherine H. Xu
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Trisha R. Berger
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Michael C. Kann
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Mark B. Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Blood and Marrow Transplant Program, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Harrison Silva
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Diego Salas-Benito
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Tamina Kienka
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Korneel Grauwet
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Todd D. Armstrong
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Rui Zhang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Qingfeng Zhu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Juan Fu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Andrea Schmidts
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Felix Korell
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Max Jan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School; Boston, MA, USA
| | - Bryan D. Choi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School; Boston, MA, USA
| | - Andrew S. Liss
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Genevieve M. Boland
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School; Boston, MA, USA
| | - David T. Ting
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Richard A. Burkhart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Russell W. Jenkins
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Elizabeth M. Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Jacquelyn W. Zimmerman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Marcela V. Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Blood and Marrow Transplant Program, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| |
Collapse
|
19
|
Cui R, Duan H, Hu W, Li C, Zhong S, Liang L, Chen S, Hu H, He Z, Wang Z, Guo X, Chen Z, Xu C, Zhu Y, Chen Y, Sai K, Yang Q, Guo C, Mou Y, Jiang X. Establishment of Human Pituitary Neuroendocrine Tumor Derived Organoid and Its Pilot Application for Drug Screening. J Clin Endocrinol Metab 2024:dgae228. [PMID: 38656317 DOI: 10.1210/clinem/dgae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Indexed: 04/26/2024]
Abstract
CONTEXT Precision medicine for pituitary neuroendocrine tumors (PitNETs) is limited by the lack of reliable research models. OBJECTIVE To generate patient-derived organoids (PDOs), which could serve as a platform for personalized drug screening for PitNET patients. DESIGN From July 2019 to May 2022, a total of 32 human PitNET specimens were collected for the establishment of organoids with an optimized culture protocol. SETTING This study was conducted at Sun Yat-Sen University Cancer Center. PATIENTS PitNET patients who were pathologically confirmed were enrolled in this study. INTERVENTIONS Histological staining and whole-exome sequencing were utilized to confirm the pathologic and genomic features of PDOs. A drug response assay on PDOs was also performed. MAIN OUTCOME MEASURES PDOs retained key genetic and morphological features of their parental tumors. RESULTS PDOs were successfully established from various types of PitNET samples with an overall success rate of 87.5%. Clinical nonfunctioning PitNETs-derived organoids (22/23, 95.7%) showed a higher likelihood of successful generation compared to those from functioning PitNETs (6/9, 66.7%). Preservation of cellular structure, subtype-specific neuroendocrine profiles, mutational features, and tumor microenvironment heterogeneity from parental tumors was observed. A distinctive response profile in drug tests was observed among the organoids from patients with different subtypes of PitNETs. With the validation of key characteristics from parental tumors in histological, genomic, and microenvironment heterogeneity consistency assays, we demonstrated the predictive value of the PDOs in testing individual drugs. CONCLUSION The established PDOs, retaining typical features of parental tumors, indicate a translational significance in innovating personalized treatment for refractory PitNETs.
Collapse
Affiliation(s)
- Run Cui
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
- Department of Neurosurgery, Guangdong 2nd Provincial Peoples Hospital, Guangzhou, 523058 Guangdong, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Wanming Hu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510000 Guangdong, China
| | - Chang Li
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Sheng Zhong
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Lun Liang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Siyu Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Hongrong Hu
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Zhenqiang He
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Zhenning Wang
- Department of Neurosurgery, Dongguan People's Hospital, Dongguan, 523058 Guangdong, China
| | - Xiaoyu Guo
- Department of Neurosurgery, First Affiliated Hospital of Ji'nan University, Guangzhou, 510630 Guangdong, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510320 Guangdong, China
| | - Cong Xu
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510320 Guangdong, China
| | - Yu Zhu
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510320 Guangdong, China
| | - Yinsheng Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Ke Sai
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Qunying Yang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Chengcheng Guo
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Xiaobing Jiang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| |
Collapse
|
20
|
Jose A, Kulkarni P, Thilakan J, Munisamy M, Malhotra AG, Singh J, Kumar A, Rangnekar VM, Arya N, Rao M. Integration of pan-omics technologies and three-dimensional in vitro tumor models: an approach toward drug discovery and precision medicine. Mol Cancer 2024; 23:50. [PMID: 38461268 PMCID: PMC10924370 DOI: 10.1186/s12943-023-01916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/15/2023] [Indexed: 03/11/2024] Open
Abstract
Despite advancements in treatment protocols, cancer is one of the leading cause of deaths worldwide. Therefore, there is a need to identify newer and personalized therapeutic targets along with screening technologies to combat cancer. With the advent of pan-omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, and lipidomics, the scientific community has witnessed an improved molecular and metabolomic understanding of various diseases, including cancer. In addition, three-dimensional (3-D) disease models have been efficiently utilized for understanding disease pathophysiology and as screening tools in drug discovery. An integrated approach utilizing pan-omics technologies and 3-D in vitro tumor models has led to improved understanding of the intricate network encompassing various signalling pathways and molecular cross-talk in solid tumors. In the present review, we underscore the current trends in omics technologies and highlight their role in understanding genotypic-phenotypic co-relation in cancer with respect to 3-D in vitro tumor models. We further discuss the challenges associated with omics technologies and provide our outlook on the future applications of these technologies in drug discovery and precision medicine for improved management of cancer.
Collapse
Affiliation(s)
- Anmi Jose
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pallavi Kulkarni
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Jaya Thilakan
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Murali Munisamy
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Anvita Gupta Malhotra
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Vivek M Rangnekar
- Markey Cancer Center and Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India.
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
21
|
Yun WG, Han Y, Cho YJ, Jung HS, Lee M, Kwon W, Jang JY. In Neoadjuvant FOLFIRINOX Chemotherapy for Pancreatic Ductal Adenocarcinoma, Which Response is the More Reliable Indicator for Prognosis, Radiologic or Biochemical? Ann Surg Oncol 2024; 31:1336-1346. [PMID: 37991581 DOI: 10.1245/s10434-023-14532-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND In this era of increasing neoadjuvant chemotherapy, methods for evaluating responses to neoadjuvant chemotherapy are still diverse among institutions. Additionally, the efficacy of adjuvant chemotherapy for patients undergoing neoadjuvant chemotherapy remains unclear. Therefore, this retrospective study was performed to evaluate the effectiveness of methods for assessing response to neoadjuvant chemotherapy and the need for adjuvant chemotherapy in treating patients with non-metastatic pancreatic ductal adenocarcinoma. METHODS The study identified 150 patients who underwent neoadjuvant FOLFIRINOX chemotherapy followed by curative-intent pancreatectomy. The patients were stratified by biochemical response based on the normalization of carbohydrate antigen 19-9 and by radiologic response based on size change at imaging. RESULTS The patients were classified into the following three groups based on their response to neoadjuvant chemotherapy and prognosis: biochemical responders (BR+), radiology-only responders (BR-/RR+), and non-responders (BR-/RR-). The 3-year overall survival rate was higher for BR+ (71.0%) than for BR-/RR+ (53.6%) or BR-/RR- (33.1%) (P < 0.001). Response to neoadjuvant chemotherapy also was identified as a significant risk factor for recurrence in a comparison between BR-/RR+ and BR+ (hazard ratio [HR], 2.15; 95% confidence interval [CI] 1.19-3.88; P = 0.011) and BR-/RR- (HR, 3.82; 95% CI 2.41-6.08; P < 0.001). Additionally, regardless of the response to neoadjuvant chemotherapy, patients who completed adjuvant chemotherapy had a significantly higher 3-year overall survival rate than those who did not. CONCLUSIONS This response evaluation criterion for neoadjuvant chemotherapy is feasible and can significantly predict prognosis. Additionally, completion of adjuvant chemotherapy could be helpful to patients who undergo neoadjuvant chemotherapy regardless of their response to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Won-Gun Yun
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngmin Han
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Jae Cho
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye-Sol Jung
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mirang Lee
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Yan X, Fu X, Gui Y, Chen X, Cheng Y, Dai M, Wang W, Xiao M, Tan L, Zhang J, Shao Y, Wang H, Chang X, Lv K. Development and validation of a nomogram model based on pretreatment ultrasound and contrast-enhanced ultrasound to predict the efficacy of neoadjuvant chemotherapy in patients with borderline resectable or locally advanced pancreatic cancer. Cancer Imaging 2024; 24:13. [PMID: 38245789 PMCID: PMC10800053 DOI: 10.1186/s40644-024-00662-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVES To develop a nomogram using pretreatment ultrasound (US) and contrast-enhanced ultrasound (CEUS) to predict the clinical response of neoadjuvant chemotherapy (NAC) in patients with borderline resectable pancreatic cancer (BRPC) or locally advanced pancreatic cancer (LAPC). METHODS A total of 111 patients with pancreatic ductal adenocarcinoma (PDAC) treated with NAC between October 2017 and February 2022 were retrospectively enrolled. The patients were randomly divided (7:3) into training and validation cohorts. The pretreatment US and CEUS features were reviewed. Univariate and multivariate logistic regression analyses were used to determine the independent predictors of clinical response in the training cohort. Then a prediction nomogram model based on the independent predictors was constructed. The area under the curve (AUC), calibration plot, C-index and decision curve analysis (DCA) were used to assess the nomogram's performance, calibration, discrimination and clinical benefit. RESULTS The multivariate logistic regression analysis showed that the taller-than-wide shape in the longitudinal plane (odds ratio [OR]:0.20, p = 0.01), time from injection of contrast agent to peak enhancement (OR:3.64; p = 0.05) and Peaktumor/ Peaknormal (OR:1.51; p = 0.03) were independent predictors of clinical response to NAC. The predictive nomogram developed based on the above imaging features showed AUCs were 0.852 and 0.854 in the primary and validation cohorts, respectively. Good calibration was achieved in the training datasets, with C-index of 0.852. DCA verified the clinical usefulness of the nomogram. CONCLUSIONS The nomogram based on pretreatment US and CEUS can effectively predict the clinical response of NAC in patients with BRPC and LAPC; it may help guide personalized treatment.
Collapse
Affiliation(s)
- Xiaoyi Yan
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xianshui Fu
- Department of Ultrasound, No.304 Hospital of Chinese PLA, Beijing, 100037, China
| | - Yang Gui
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueqi Chen
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuejuan Cheng
- Department of Medical Oncology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mengsu Xiao
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Tan
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Zhang
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuming Shao
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huanyu Wang
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ke Lv
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
23
|
Lumibao JC, Okhovat SR, Peck KL, Lin X, Lande K, Yomtoubian S, Ng I, Tiriac H, Lowy AM, Zou J, Engle DD. The effect of extracellular matrix on the precision medicine utility of pancreatic cancer patient-derived organoids. JCI Insight 2024; 9:e172419. [PMID: 38051586 PMCID: PMC10906458 DOI: 10.1172/jci.insight.172419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The use of patient-derived organoids (PDOs) to characterize therapeutic sensitivity and resistance is a promising precision medicine approach, and its potential to inform clinical decisions is now being tested in several large multiinstitutional clinical trials. PDOs are cultivated in the extracellular matrix from basement membrane extracts (BMEs) that are most commonly acquired commercially. Each clinical site utilizes distinct BME lots and may be restricted due to the availability of commercial BME sources. However, the effect of different sources of BMEs on organoid drug response is unknown. Here, we tested the effect of BME source on proliferation, drug response, and gene expression in mouse and human pancreatic ductal adenocarcinoma (PDA) organoids. Both human and mouse organoids displayed increased proliferation in Matrigel compared with Cultrex and UltiMatrix. However, we observed no substantial effect on drug response when organoids were cultured in Matrigel, Cultrex, or UltiMatrix. We also did not observe major shifts in gene expression across the different BME sources, and PDOs maintained their classical or basal-like designation. Overall, we found that the BME source (Matrigel, Cultrex, UltiMatrix) does not shift PDO dose-response curves or drug testing results, indicating that PDO pharmacotyping is a robust approach for precision medicine.
Collapse
Affiliation(s)
- Jan C. Lumibao
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Shira R. Okhovat
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Kristina L. Peck
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Xiaoxue Lin
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Kathryn Lande
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Shira Yomtoubian
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Isabella Ng
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, and
| | - Hervé Tiriac
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, and
| | - Andrew M. Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, and
| | - Jingjing Zou
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health and Human Longevity Science, UCSD, San Diego, California, USA
| | | |
Collapse
|
24
|
Huffman BM, Feng H, Parmar K, Wang J, Kapner KS, Kochupurakkal B, Martignetti DB, Sadatrezaei G, Abrams TA, Biller LH, Giannakis M, Ng K, Patel AK, Perez KJ, Singh H, Rubinson DA, Schlechter BL, Andrews E, Hannigan AM, Dunwell S, Getchell Z, Raghavan S, Wolpin BM, Fortier C, D’Andrea AD, Aguirre AJ, Shapiro GI, Cleary JM. A Phase I Expansion Cohort Study Evaluating the Safety and Efficacy of the CHK1 Inhibitor LY2880070 with Low-dose Gemcitabine in Patients with Metastatic Pancreatic Adenocarcinoma. Clin Cancer Res 2023; 29:5047-5056. [PMID: 37819936 PMCID: PMC10842136 DOI: 10.1158/1078-0432.ccr-23-2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Combining gemcitabine with CHK1 inhibition has shown promise in preclinical models of pancreatic ductal adenocarcinoma (PDAC). Here, we report the findings from a phase I expansion cohort study (NCT02632448) investigating low-dose gemcitabine combined with the CHK1 inhibitor LY2880070 in patients with previously treated advanced PDAC. PATIENTS AND METHODS Patients with metastatic PDAC were treated with gemcitabine intravenously at 100 mg/m2 on days 1, 8, and 15, and LY2880070 50 mg orally twice daily on days 2-6, 9-13, and 16-20 of each 21-day cycle. Pretreatment tumor biopsies were obtained from each patient for correlative studies and generation of organoid cultures for drug sensitivity testing and biomarker analyses. RESULTS Eleven patients with PDAC were enrolled in the expansion cohort between August 27, 2020 and July 30, 2021. Four patients (36%) experienced drug-related grade 3 adverse events. No objective radiologic responses were observed, and all patients discontinued the trial by 3.2 months. In contrast to the lack of efficacy observed in patients, organoid cultures derived from biopsies procured from two patients demonstrated strong sensitivity to the gemcitabine/LY2880070 combination and showed treatment-induced upregulation of replication stress and DNA damage biomarkers, including pKAP1, pRPA32, and γH2AX, as well as induction of replication fork instability. CONCLUSIONS No evidence of clinical activity was observed for combined low-dose gemcitabine and LY2880070 in this treatment-refractory PDAC cohort. However, the gemcitabine/LY2880070 combination showed in vitro efficacy, suggesting that drug sensitivity for this combination in organoid cultures may not predict clinical benefit in patients.
Collapse
Affiliation(s)
- Brandon M. Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Hanrong Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kalindi Parmar
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kevin S. Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Bose Kochupurakkal
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David B. Martignetti
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Golbahar Sadatrezaei
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas A. Abrams
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Leah H. Biller
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Anuj K. Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kimberly J. Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Benjamin L. Schlechter
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth Andrews
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Alison M. Hannigan
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Stanley Dunwell
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Zoe Getchell
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | | | - Alan D. D’Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
25
|
Obreque J, Vergara-Gómez L, Venegas N, Weber H, Owen GI, Pérez-Moreno P, Leal P, Roa JC, Bizama C. Advances towards the use of gastrointestinal tumor patient-derived organoids as a therapeutic decision-making tool. Biol Res 2023; 56:63. [PMID: 38041132 PMCID: PMC10693174 DOI: 10.1186/s40659-023-00476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
In December 2022 the US Food and Drug Administration (FDA) removed the requirement that drugs in development must undergo animal testing before clinical evaluation, a declaration that now demands the establishment and verification of ex vivo preclinical models that closely represent tumor complexity and that can predict therapeutic response. Fortunately, the emergence of patient-derived organoid (PDOs) culture has enabled the ex vivo mimicking of the pathophysiology of human tumors with the reassembly of tissue-specific features. These features include histopathological variability, molecular expression profiles, genetic and cellular heterogeneity of parental tissue, and furthermore growing evidence suggests the ability to predict patient therapeutic response. Concentrating on the highly lethal and heterogeneous gastrointestinal (GI) tumors, herein we present the state-of-the-art and the current methodology of PDOs. We highlight the potential additions, improvements and testing required to allow the ex vivo of study the tumor microenvironment, as well as offering commentary on the predictive value of clinical response to treatments such as chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Javiera Obreque
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Vergara-Gómez
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Nicolás Venegas
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
| | - Helga Weber
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Gareth I Owen
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Pérez-Moreno
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Pamela Leal
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Bizama
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Zuercher P, Moser A, Garcia de Guadiana-Romualdo L, Llewelyn MJ, Graf R, Reding T, Eggimann P, Que YA, Prazak J. Discriminative performance of pancreatic stone protein in predicting ICU mortality and infection severity in adult patients with infection: a systematic review and individual patient level meta-analysis. Infection 2023; 51:1797-1807. [PMID: 37707744 PMCID: PMC10665254 DOI: 10.1007/s15010-023-02093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Several studies suggested pancreatic stone protein (PSP) as a promising biomarker to predict mortality among patients with severe infection. The objective of the study was to evaluate the performance of PSP in predicting intensive care unit (ICU) mortality and infection severity among critically ill adults admitted to the hospital for infection. METHODS A systematic search across Cochrane Central Register of Controlled Trials and MEDLINE databases (1966 to February 2022) for studies on PSP published in English using 'pancreatic stone protein', 'PSP', 'regenerative protein', 'lithostatin' combined with 'infection' and 'sepsis' found 46 records. The search was restricted to the five trials that measured PSP using the enzyme-linked immunosorbent assay technique (ELISA). We used Bayesian hierarchical regression models for pooled estimates and to predict mortality or disease severity using PSP, C-Reactive Protein (CRP) and procalcitonin (PCT) as main predictor. We used statistical discriminative measures, such as the area under the receiver operating characteristic curve (AUC) and classification plots. RESULTS Among the 678 patients included, the pooled ICU mortality was 17.8% (95% prediction interval 4.1% to 54.6%) with a between-study heterogeneity (I-squared 87%). PSP was strongly associated with ICU mortality (OR = 2.7, 95% credible interval (CrI) [1.3-6.0] per one standard deviation increase; age, gender and sepsis severity adjusted OR = 1.5, 95% CrI [0.98-2.8]). The AUC was 0.69 for PSP 95% confidence interval (CI) [0.64-0.74], 0.61 [0.56-0.66] for PCT and 0.52 [0.47-0.57] for CRP. The sensitivity was 0.96, 0.52, 0.30 for risk thresholds 0.1, 0.2 and 0.3; respective false positive rate values were 0.84, 0.25, 0.10. CONCLUSIONS We found that PSP showed a very good discriminative ability for both investigated study endpoints ICU mortality and infection severity; better in comparison to CRP, similar to PCT. Combinations of biomarkers did not improve their predictive ability.
Collapse
Affiliation(s)
- Patrick Zuercher
- Department of Intensive Care Medicine, INO E-104, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - André Moser
- CTU Bern, University of Bern, Bern, Switzerland
| | | | - Martin J Llewelyn
- University Hospitals Sussex NHS Foundation Trust, Brighton BN2 5BE UK and Brighton and Sussex Medical School, Falmer, BN1 9PS, UK
| | - Rolf Graf
- Department of Visceral and Transplantation Surgery, Universitätsspital Zürich, Zurich, Switzerland
| | - Theresia Reding
- Department of Visceral and Transplantation Surgery, Universitätsspital Zürich, Zurich, Switzerland
| | - Philippe Eggimann
- Department of Locomotor Apparatus, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, INO E-104, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - Josef Prazak
- Department of Intensive Care Medicine, INO E-104, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland.
| |
Collapse
|
27
|
Pedrazzoli S. Currently Debated Topics on Surgical Treatment of Pancreatic Ductal Adenocarcinoma: A Narrative Review on Surgical Treatment of Borderline Resectable, Locally Advanced, and Synchronous or Metachronous Oligometastatic Tumor. J Clin Med 2023; 12:6461. [PMID: 37892599 PMCID: PMC10607532 DOI: 10.3390/jcm12206461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Previously considered inoperable patients (borderline resectable, locally advanced, synchronous oligometastatic or metachronous pancreatic adenocarcinoma (PDAC)) are starting to become resectable thanks to advances in chemo/radiotherapy and the reduction in operative mortality. METHODS This narrative review presents a chosen literature selection, giving a picture of the current state of treatment of these patients. RESULTS Neoadjuvant therapy (NAT) is generally recognized as the treatment of choice before surgery. However, despite the increased efficacy, the best pathological response is still limited to 10.9-27.9% of patients. There are still limited data on the selection of possible NAT responders and how to diagnose non-responders early. Multidetector computed tomography has high sensitivity and low specificity in evaluating resectability after NAT, limiting the resection rate of resectable patients. Ca 19-9 and Positron emission tomography are giving promising results. The prediction of early recurrence after a radical resection of synchronous or metachronous metastatic PDAC, thus identifying patients with poor prognosis and saving them from a resection of little benefit, is still ongoing, although some promising data are available. CONCLUSION In conclusion, high-level evidence demonstrating the benefit of the surgical treatment of such patients is still lacking and should not be performed outside of high-volume centers with interdisciplinary teams of surgeons and oncologists.
Collapse
|
28
|
Weng G, Tao J, Liu Y, Qiu J, Su D, Wang R, Luo W, Zhang T. Organoid: Bridging the gap between basic research and clinical practice. Cancer Lett 2023; 572:216353. [PMID: 37599000 DOI: 10.1016/j.canlet.2023.216353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Nowadays, the diagnosis and treatment system of malignant tumors has increasingly tended to be more precise and personalized while the existing tumor models are still unable to fully meet the needs of clinical practice. Notably, the emerging organoid platform has been proven to have huge potential in the field of basic-translational medicine, which is expected to promote a paradigm shift in personalized medicine. Here, given the unique advantages of organoid platform, we mainly explore the prominent role of organoid models in basic research and clinical practice from perspectives of tumor biology, tumorigenic microbes-host interaction, clinical decision-making, and regenerative strategy. In addition, we also put forward some practical suggestions on how to construct a new generation of organoid platform, which is destined to vigorously promote the reform of basic-translational medicine.
Collapse
Affiliation(s)
- Guihu Weng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Dan Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Ruobing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
29
|
Yang Q, Li M, Yang X, Xiao Z, Tong X, Tuerdi A, Li S, Lei L. Flourishing tumor organoids: History, emerging technology, and application. Bioeng Transl Med 2023; 8:e10559. [PMID: 37693042 PMCID: PMC10487342 DOI: 10.1002/btm2.10559] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Malignant tumors are one of the leading causes of death which impose an increasingly heavy burden on all countries. Therefore, the establishment of research models that closely resemble original tumor characteristics is crucial to further understanding the mechanisms of malignant tumor development, developing safer and more effective drugs, and formulating personalized treatment plans. Recently, organoids have been widely used in tumor research owing to their advantages including preserving the structure, heterogeneity, and cellular functions of the original tumor, together with the ease of manipulation. This review describes the history and characteristics of tumor organoids and the synergistic combination of three-dimensional (3D) culture approaches for tumor organoids with emerging technologies, including tissue-engineered cell scaffolds, microfluidic devices, 3D bioprinting, rotating wall vessels, and clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9). Additionally, the progress in research and the applications in basic and clinical research of tumor organoid models are summarized. This includes studies of the mechanism of tumor development, drug development and screening, precision medicine, immunotherapy, and simulation of the tumor microenvironment. Finally, the existing shortcomings of tumor organoids and possible future directions are discussed.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ayinuer Tuerdi
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
30
|
Kayser C, Brauer A, Susanne S, Wandmacher AM. The challenge of making the right choice: patient avatars in the era of cancer immunotherapies. Front Immunol 2023; 14:1237565. [PMID: 37638045 PMCID: PMC10449253 DOI: 10.3389/fimmu.2023.1237565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Immunotherapies are a key therapeutic strategy to fight cancer. Diverse approaches are used to activate tumor-directed immunity and to overcome tumor immune escape. The dynamic interplay between tumor cells and their tumor(immune)microenvironment (T(I)ME) poses a major challenge to create appropriate model systems. However, those model systems are needed to gain novel insights into tumor (immune) biology and a prerequisite to accurately develop and test immunotherapeutic approaches which can be successfully translated into clinical application. Several model systems have been established and advanced into so-called patient avatars to mimic the patient´s tumor biology. All models have their advantages but also disadvantages underscoring the necessity to pay attention in defining the rationale and requirements for which the patient avatar will be used. Here, we briefly outline the current state of tumor model systems used for tumor (immune)biological analysis as well as evaluation of immunotherapeutic agents. Finally, we provide a recommendation for further development to make patient avatars a complementary tool for testing and predicting immunotherapeutic strategies for personalization of tumor therapies.
Collapse
Affiliation(s)
- Charlotte Kayser
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Annika Brauer
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Sebens Susanne
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Anna Maxi Wandmacher
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
- Department of Internal Medicine II, University Hospital Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
31
|
Al Shihabi A, Tebon PJ, Nguyen HTL, Chantharasamee J, Sartini S, Davarifar A, Jensen AY, Diaz-Infante M, Cox H, Gonzalez AE, Swearingen S, Tavanaie N, Dry S, Singh A, Chmielowski B, Crompton JG, Kalbasi A, Eilber FC, Hornicek F, Bernthal N, Nelson SD, Boutros PC, Federman N, Yanagawa J, Soragni A. The landscape of drug sensitivity and resistance in sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542375. [PMID: 37292676 PMCID: PMC10245988 DOI: 10.1101/2023.05.25.542375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sarcomas are a family of rare malignancies composed of over 100 distinct histological subtypes. The rarity of sarcoma poses significant challenges in conducting clinical trials to identify effective therapies, to the point that many rarer subtypes of sarcoma do not have standard-of-care treatment. Even for established regimens, there can be substantial heterogeneity in responses. Overall, novel, personalized approaches for identifying effective treatments are needed to improve patient out-comes. Patient-derived tumor organoids (PDTOs) are clinically relevant models representative of the physiological behavior of tumors across an array of malignancies. Here, we use PDTOs as a tool to better understand the biology of individual tumors and characterize the landscape of drug resistance and sensitivity in sarcoma. We collected n=194 specimens from n=126 sarcoma patients, spanning 24 distinct subtypes. We characterized PDTOs established from over 120 biopsy, resection, and metastasectomy samples. We leveraged our organoid high-throughput drug screening pipeline to test the efficacy of chemotherapeutics, targeted agents, and combination therapies, with results available within a week from tissue collection. Sarcoma PDTOs showed patient-specific growth characteristics and subtype-specific histopathology. Organoid sensitivity correlated with diagnostic subtype, patient age at diagnosis, lesion type, prior treatment history, and disease trajectory for a subset of the compounds screened. We found 90 biological pathways that were implicated in response to treatment of bone and soft tissue sarcoma organoids. By comparing functional responses of organoids and genetic features of the tumors, we show how PDTO drug screening can provide an orthogonal set of information to facilitate optimal drug selection, avoid ineffective therapies, and mirror patient outcomes in sarcoma. In aggregate, we were able to identify at least one effective FDA-approved or NCCN-recommended regimen for 59% of the specimens tested, providing an estimate of the proportion of immediately actionable information identified through our pipeline. Highlights Standardized organoid culture preserve unique sarcoma histopathological featuresDrug screening on patient-derived sarcoma organoids provides sensitivity information that correlates with clinical features and yields actionable information for treatment guidanceHigh-throughput screenings provide orthogonal information to genetic sequencingSarcoma organoid response to treatment correlates with patient response to therapyLarge scale, functional precision medicine programs for rare cancers are feasible within a single institution.
Collapse
|
32
|
Jeong S, Kim HR, Shin JH, Son MH, Lee IH, Roe JS. Streamlined DNA-encoded small molecule library screening and validation for the discovery of novel chemotypes targeting BET proteins. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:637-649. [PMID: 37207130 PMCID: PMC10189352 DOI: 10.1016/j.omtn.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Targeting aberrant epigenetic programs that drive tumorigenesis is a promising approach to cancer therapy. DNA-encoded library (DEL) screening is a core platform technology increasingly used to identify drugs that bind to protein targets. Here, we use DEL screening against bromodomain and extra-terminal motif (BET) proteins to identify inhibitors with new chemotypes, and successfully identified BBC1115 as a selective BET inhibitor. While BBC1115 does not structurally resemble OTX-015, a clinically active pan-BET inhibitor, our intensive biological characterization revealed that BBC1115 binds to BET proteins, including BRD4, and suppresses aberrant cell fate programs. Phenotypically, BBC1115-mediated BET inhibition impaired proliferation in acute myeloid leukemia, pancreatic, colorectal, and ovarian cancer cells in vitro. Moreover, intravenous administration of BBC1115 inhibited subcutaneous tumor xenograft growth with minimal toxicity and favorable pharmacokinetic properties in vivo. Since epigenetic regulations are ubiquitously distributed across normal and malignant cells, it will be critical to evaluate if BBC1115 affects normal cell function. Nonetheless, our study shows integrating DEL-based small-molecule compound screening and multi-step biological validation represents a reliable strategy to discover new chemotypes with selectivity, efficacy, and safety profiles for targeting proteins involved in epigenetic regulation in human malignancies.
Collapse
Affiliation(s)
- Seoyeon Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - June-Ha Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | | | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Corresponding author: Jae-Seok Roe, PhD, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.
| |
Collapse
|
33
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
34
|
Van Hemelryk A, Erkens-Schulze S, Lim L, de Ridder CMA, Stuurman DC, Jenster GW, van Royen ME, van Weerden WM. Viability Analysis and High-Content Live-Cell Imaging for Drug Testing in Prostate Cancer Xenograft-Derived Organoids. Cells 2023; 12:1377. [PMID: 37408211 DOI: 10.3390/cells12101377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Tumor organoids have been pushed forward as advanced model systems for in vitro oncology drug testing, with the eventual goal to direct personalized cancer treatments. However, drug testing efforts suffer from a large variation in experimental conditions for organoid culturing and organoid treatment. Moreover, most drug tests are restricted to whole-well viability as the sole read-out, thereby losing important information about key biological aspects that might be impacted due to the use of administered drugs. These bulk read-outs also discard potential inter-organoid heterogeneity in drug responses. To tackle these issues, we developed a systematic approach for processing organoids from prostate cancer (PCa) patient-derived xenografts (PDXs) for viability-based drug testing and identified essential conditions and quality checks for consistent results. In addition, we generated an imaging-based drug testing procedure using high-content fluorescence microscopy in living PCa organoids to detect various modalities of cell death. Individual organoids and cell nuclei in organoids were segmented and quantified using a dye combination of Hoechst 33342, propidium iodide and Caspase 3/7 Green, allowing the identification of cytostatic and cytotoxic treatment effects. Our procedures provide important insights into the mechanistic actions of tested drugs. Moreover, these methods can be adapted for tumor organoids originating from other cancer types to increase organoid-based drug test validity, and ultimately, accelerate clinical implementation.
Collapse
Affiliation(s)
- Annelies Van Hemelryk
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Lifani Lim
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Corrina M A de Ridder
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Debra C Stuurman
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Guido W Jenster
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
35
|
Lumibao JC, Okhovat SR, Peck KL, Lin X, Lande K, Zou J, Engle DD. The impact of extracellular matrix on the precision medicine utility of pancreatic cancer patient-derived organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525757. [PMID: 36747742 PMCID: PMC9900943 DOI: 10.1101/2023.01.26.525757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of patient-derived organoids (PDOs) to characterize therapeutic sensitivity and resistance (pharmacotyping) is a promising precision medicine approach. The potential of this approach to inform clinical decisions is now being tested in several large multi-institutional clinical trials. PDOs are cultivated in extracellular matrix from basement membrane extracts (BMEs) that are most commonly acquired commercially. Each clinical site utilizes distinct BME lots and may be restricted due to the availability of commercial BME sources. However, the impact of different sources and lots of BMEs on organoid drug response is unknown. Here, we tested the impact of BME source and lot on proliferation, chemotherapy and targeted therapy drug response, and gene expression in mouse and human pancreatic ductal adenocarcinoma (PDA) organoids. Both human and mouse organoids displayed increased proliferation in Matrigel (Corning) compared to Cultrex (RnD) and UltiMatrix (RnD). However, we observed no substantial impact on drug response when oragnoids were cultured in Matrigel, Cultrex, or UltiMatrix. We also did not observe major shifts in gene expression across the different BME sources, and PDOs maintained their Classical or Basal-like designation. Overall, we find that BME source (Matrigel, Cultrex, UltiMatrix) does not shift PDO dose-response curves and drug testing results, indicating that PDO pharmacotyping is a robust approach for precision medicine.
Collapse
|
36
|
Piñeiro-Llanes J, Stec DE, Cristofoletti R. Editorial: Insights in drug metabolism and transport: 2021. Front Pharmacol 2023; 14:1198598. [PMID: 37229271 PMCID: PMC10203872 DOI: 10.3389/fphar.2023.1198598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Affiliation(s)
- Janny Piñeiro-Llanes
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - David E. Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| |
Collapse
|
37
|
Ecker BL, Tao AJ, Janssen QP, Walch HS, Court CM, Balachandran VP, Crane CH, D’Angelica MI, Drebin JA, Kingham TP, Soares KC, Iacobuzio-Donahue CA, Vakiani E, Gonen M, O’Reilly EM, Varghese AM, Jarnagin WR, Wei AC. Genomic Biomarkers Associated with Response to Induction Chemotherapy in Patients with Localized Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2023; 29:1368-1374. [PMID: 36795432 PMCID: PMC10073273 DOI: 10.1158/1078-0432.ccr-22-3089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE There is increasing use of neoadjuvant chemotherapy in the management of localized pancreatic ductal adenocarcinoma (PDAC), yet there are few validated biomarkers to guide therapy selection. We aimed to determine whether somatic genomic biomarkers predict response to induction FOLFIRINOX or gemcitabine/nab-paclitaxel. EXPERIMENTAL DESIGN This single-institution cohort study included consecutive patients (N = 322) with localized PDAC (2011-2020) who received at least one cycle of FOLFIRINOX (N = 271) or gemcitabine/nab-paclitaxel (N = 51) as initial treatment. We assessed somatic alterations in four driver genes (KRAS, TP53, CDKN2A, and SMAD4) by targeted next-generation sequencing, and determined associations between these alterations and (1) rate of metastatic progression during induction chemotherapy, (2) surgical resection, and (3) complete/major pathologic response. RESULTS The alteration rates in driver genes KRAS, TP53, CDKN2A, and SMAD4 were 87.0%, 65.5%, 26.7%, and 19.9%, respectively. For patients receiving first-line FOLFIRINOX, SMAD4 alterations were uniquely associated with metastatic progression (30.0% vs. 14.5%; P = 0.009) and decreased rate of surgical resection (37.1% vs. 66.7%; P < 0.001). For patients receiving induction gemcitabine/nab-paclitaxel, alterations in SMAD4 were not associated with metastatic progression (14.3% vs. 16.2%; P = 0.866) nor decreased rate of surgical resection (33.3% vs. 41.9%; P = 0.605). Major pathologic response was rare (6.3%) and not associated with type of chemotherapy regimen. CONCLUSIONS SMAD4 alterations were associated with more frequent development of metastasis and lower probability of reaching surgical resection during neoadjuvant FOLFIRINOX but not gemcitabine/nab-paclitaxel. Confirmation in a larger, diverse patient cohort will be important before prospective evaluation of SMAD4 as a genomic biomarker to guide treatment selection.
Collapse
Affiliation(s)
- Brett L. Ecker
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Alice J. Tao
- Weill Cornell Medical College, New York, NY, USA
| | - Quisette P. Janssen
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Henry S. Walch
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colin M. Court
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P. Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
| | - Christopher H. Crane
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael I. D’Angelica
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey A. Drebin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T. Peter Kingham
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin C. Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A. Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gonen
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M. O’Reilly
- Weill Cornell Medical College, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna M. Varghese
- Weill Cornell Medical College, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William R. Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alice C. Wei
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
38
|
Functional precision oncology using patient-derived assays: bridging genotype and phenotype. Nat Rev Clin Oncol 2023; 20:305-317. [PMID: 36914745 DOI: 10.1038/s41571-023-00745-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Genomics-based precision medicine has revolutionized oncology but also has inherent limitations. Functional precision oncology is emerging as a complementary approach that aims to bridge the gap between genotype and phenotype by modelling individual tumours in vitro. These patient-derived ex vivo models largely preserve several tumour characteristics that are not captured by genomics approaches and enable the functional dissection of tumour vulnerabilities in a personalized manner. In this Review, we discuss several examples of personalized functional assays involving tumour organoids, spheroids and explants and their potential to predict treatment responses and drug-induced toxicities in individual patients. These developments have opened exciting new avenues for precision oncology, with the potential for successful clinical applications in contexts in which genomic data alone are not informative. To implement these assays into clinical practice, we outline four key barriers that need to be overcome: assay success rates, turnaround times, the need for standardized conditions and the definition of in vitro responders. Furthermore, we discuss novel technological advances such as microfluidics that might reduce sample requirements, assay times and labour intensity and thereby enable functional precision oncology to be implemented in routine clinical practice.
Collapse
|
39
|
Liu Y, Li N, Zhu Y. Pancreatic Organoids: A Frontier Method for Investigating Pancreatic-Related Diseases. Int J Mol Sci 2023; 24:4027. [PMID: 36835437 PMCID: PMC9959977 DOI: 10.3390/ijms24044027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The pancreas represents an important organ that has not been comprehensively studied in many fields. To fill this gap, many models have been generated, and traditional models have shown good performance in addressing pancreatic-related diseases, but are increasingly struggling to keep up with the need for further research due to ethical issues, genetic heterogeneity and difficult clinical translation. The new era calls for new and more reliable research models. Therefore, organoids have been proposed as a novel model for the evaluation of pancreatic-related diseases such as pancreatic malignancy, diabetes, and pancreatic cystic fibrosis. Compared with common traditional models, including 2D cell culture and gene editing mice, organoids derived from living humans or mice cause minimal harm to the donor, raise fewer ethical concerns, and reasonably address the claims of heterogeneity, which allows for the further development of pathogenesis studies and clinical trial analysis. In this review, we analyse studies on the use of pancreatic organoids in research on pancreatic-related diseases, discuss the advantages and disadvantages, and hypothesize future trends.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Jiangxi Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| |
Collapse
|
40
|
Fischetti M, Di Donato V, Palaia I, Perniola G, Tomao F, Perrone C, Giancotti A, Di Mascio D, Monti M, Muzii L, Benedetti Panici P, Bogani G. Advances in small molecule maintenance therapies for high-grade serous ovarian cancer. Expert Opin Pharmacother 2023; 24:65-72. [PMID: 36458890 DOI: 10.1080/14656566.2022.2154144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
INTRODUCTION Ovarian cancer is one of the most lethal gynecological tumors with a lack of effective treatment modalities especially in advanced/recurrent disease. Nevertheless, recently, new small molecules have emerged as an effective approach for the management of ovarian cancer patients, especially in the maintenance setting. AREAS COVERED This review summarizes the role of small molecules used in the management of high-grade serous ovarian cancer. The authors performed a critical review of current evidence and ongoing studies. Of note, tyrosine kinase inhibitors (TKIs) and poly(ADP-ribose) polymerase (PARP) inhibitors are the most intriguing medications in this setting. EXPERT OPINION Protein-targeted therapies against tumor tissues have progressed significantly in the last years due to an enhanced knowledge of the biological and molecular processes of carcinogenesis. Treatment with small molecules allows the targeting of specific proteins involved in cancer biology. TKIs seem promising but further data are necessary to assess the pros and cons of adopting this treatment modality. PARP inhibitors represent the new standard of care for ovarian cancer patients harboring either a BRCA mutation or with homologous recombination deficiency (HRD). Interestingly, the accumulation of data has highlighted that PARP inhibitors provide benefits even in patients with HR proficient tumors.
Collapse
Affiliation(s)
- Margherita Fischetti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Violante Di Donato
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Innocenza Palaia
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Federica Tomao
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Chiara Perrone
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Daniele Di Mascio
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Marco Monti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Giorgio Bogani
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| |
Collapse
|
41
|
Schueler J, Borenstein J, Buti L, Dong M, Masmoudi F, Hribar K, Anderson E, Sommergruber W. How to build a tumor: An industry perspective. Drug Discov Today 2022; 27:103329. [PMID: 35908685 PMCID: PMC9585375 DOI: 10.1016/j.drudis.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
During the past 15 years, a plethora of innovative 3D in vitro systems has been developed. They offer the possibility of identifying crucial cellular and molecular contributors to the disease by permitting manipulation of each in isolation. However, improvements are needed particularly with respect to the predictivity and validity of those models. The major challenge now is to identify which assay and readout combination(s) best suits the current scientific question(s). A deep understanding of the different platforms along with their pros and cons is a prerequisite to make this decision. This review aims to give an overview of the most prominent systems with a focus on applications, translational relevance and adoption drivers from an industry perspective.
Collapse
Affiliation(s)
- Julia Schueler
- Charles River Discovery Research Services Germany GmbH, Freiburg, Germany,Corresponding author.
| | | | | | - Meng Dong
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
42
|
Zhang Y, Houchen CW, Li M. Patient-Derived Organoid Pharmacotyping Guides Precision Medicine for Pancreatic Cancer. Clin Cancer Res 2022; 28:3176-3178. [PMID: 35617521 PMCID: PMC9357115 DOI: 10.1158/1078-0432.ccr-22-1083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
The patient-derived organoids (PDO) platform recapitulates the phenotype, genotype, and molecular characteristics of primary tumors. High-throughput drug screening in terms of pharmacotyping using standard-of-care chemotherapy agents in the PDO platform has shown promising sensitivities to guide precision medicine for individual patients with pancreatic ductal adenocarcinoma (PDAC) within a clinically relevant time frame. See related article by Seppälä et al., p. 3296.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Courtney W. Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
43
|
Hyun S, Park D. Challenges in genomic analysis of model systems and primary tumors of pancreatic ductal adenocarcinoma. Comput Struct Biotechnol J 2022; 20:4806-4815. [PMID: 36147673 PMCID: PMC9464644 DOI: 10.1016/j.csbj.2022.08.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive tumor behavior and poor prognosis. Recent next-generation sequencing (NGS)-based genomic studies have provided novel treatment modes for pancreatic cancer via the identification of cancer driver variants and molecular subtypes in PDAC. Genome-wide approaches have been extended to model systems such as patient-derived xenografts (PDXs), organoids, and cell lines for pre-clinical purposes. However, the genomic characteristics vary in the model systems, which is mainly attributed to the clonal evolution of cancer cells during their construction and culture. Moreover, fundamental limitations such as low tumor cellularity and the complex tumor microenvironment of PDAC hinder the confirmation of genomic features in the primary tumor and model systems. The occurrence of these phenomena and their associated complexities may lead to false insights into the understanding of mechanisms and dynamics in tumor tissues of patients. In this review, we describe various model systems and discuss differences in the results based on genomics and transcriptomics between primary tumors and model systems. Finally, we introduce practical strategies to improve the accuracy of genomic analysis of primary tissues and model systems.
Collapse
|