1
|
Zhao L, Zhang Y, Tian Y, Ding X, Lin R, Xiao L, Peng F, Zhang K, Yang Z. Role of ENPP1 in cancer pathogenesis: Mechanisms and clinical implications (Review). Oncol Lett 2024; 28:590. [PMID: 39411204 PMCID: PMC11474142 DOI: 10.3892/ol.2024.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer is a significant societal, public health and economic challenge in the 21st century, and is the primary cause of death from disease globally. Ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) serves a crucial role in several biochemical processes, including adenosine triphosphate hydrolysis, purine metabolism and regulation of signaling pathways. Specifically, ENPP1, a type II transmembrane glycoprotein and key member of the ENPP family, may be upregulated in tumor cells and implicated in the pathogenesis of multiple human cancers. The present review provides an overview of the structural, pathological and physiological roles of ENPP1 and discusses the potential mechanisms of ENPP1 in the development of cancers such as breast, colon, gallbladder, liver and lung cancers, and also summarizes the four major signaling pathways in tumors. Furthermore, the present review demonstrates that ENPP1 serves a crucial role in cell migration, proliferation and invasion, and that corresponding inhibitors have been developed and associated with clinical characterization.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yu Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yahui Tian
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Xin Ding
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Runling Lin
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
- Weifang Key L2aboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Kai Zhang
- Genetic Testing Centre, Qingdao University Women's and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| |
Collapse
|
2
|
Kawaguchi M, Minami S, Ieda N, Nakagawa H. [1,2,4]Triazolo[1,5-a]pyrimidine derivatives: Structure-activity relationship study leading to highly selective ENPP1 inhibitors. Bioorg Med Chem Lett 2024; 110:129820. [PMID: 38851358 DOI: 10.1016/j.bmcl.2024.129820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
The STING (stimulator of interferon genes) pathway is one of the pathways that regulate innate immunity, and the extracellular hydrolytic enzyme ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as its dominant negative regulator. Since activation of the innate immune system is a promising strategy for the treatment of various infectious diseases and cancers, ENPP1 inhibitors have attracted great attention as candidate drugs. We have previously identified small-molecule ENPP1 inhibitors having a [1,2,4]triazolo[1,5-a]pyrimidine scaffold by means of chemical screening using a fluorescence probe, TG-mAMP. In this study, we evaluated the structure-activity relationships of the hit and lead compounds in detail, and succeeded in developing compounds that strongly and selectively inhibit ENPP1 not only in vitro, but also in cellular systems.
Collapse
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| | - Shohei Minami
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| |
Collapse
|
3
|
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A. Small molecule innate immune modulators in cancer therapy. Front Immunol 2024; 15:1395655. [PMID: 39318624 PMCID: PMC11419979 DOI: 10.3389/fimmu.2024.1395655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a bulk of the approved/late-stage cancer immunotherapy are antibody-based. Although these antibody-based drugs have demonstrated great promise, a majority of them are limited due to their access to extracellular targets, lack of oral bioavailability, tumor microenvironment penetration, induction of antibody dependent cytotoxicity etc. In recent times, there has been an increased research focus on the development of small molecule immunomodulators since they have the potential to overcome the aforementioned limitations posed by antibodies. Furthermore, while most biologics based therapeutics that are in clinical use are limited to modulating the adaptive immune system, very few clinically approved therapeutic modalities exist that modulate the innate immune system. The innate immune system, which is the body's first line of defense, has the ability to turn cold tumors hot and synergize strongly with existing adaptive immune modulators. In preclinical studies, small molecule innate immune modulators have demonstrated synergistic efficacy as combination modalities with current standard-of-care immune checkpoint antibodies. In this review, we highlight the recent advances made by small molecule innate immunomodulators in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Barnali Deb
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
- Avammune Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
4
|
Ednacot EMQ, Nabhani A, Dinh DM, Morehouse BR. Pharmacological potential of cyclic nucleotide signaling in immunity. Pharmacol Ther 2024; 258:108653. [PMID: 38679204 DOI: 10.1016/j.pharmthera.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.
Collapse
Affiliation(s)
- Eirene Marie Q Ednacot
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - David M Dinh
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
An Y, Zhu J, Xie Q, Feng J, Gong Y, Fan Q, Cao J, Huang Z, Shi W, Lin Q, Wu L, Yang C, Ji T. Tumor Exosomal ENPP1 Hydrolyzes cGAMP to Inhibit cGAS-STING Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308131. [PMID: 38498770 PMCID: PMC11132070 DOI: 10.1002/advs.202308131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Indexed: 03/20/2024]
Abstract
To evade immune surveillance, tumor cells express ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) on the surface of their membrane, which degrades extracellular cyclic GMP-AMP (cGAMP), thereby inhibiting the cyclic GMP-AMP synthase (cGAS) stimulator of interferon gene (STING) DNA-sensing pathway. To fully understand this tumor stealth mechanism, it is essential to determine whether other forms of ENPP1 with hydrolytic cGAMP activity also are present in the tumor microenvironment to regulate this innate immune pathway. Herein, it is reported that various tumor-derived exosomes carry ENPP1, and can hydrolyze synthetic 2'3'-cGAMP and endogenous 2'3'-cGAMP produced by cells to inhibit cGAS-STING pathway in immune cells. Moreover, tumor exosomal ENPP1 also can hydrolyze 2'3'-cGAMP bound to LL-37 (an effective transporter of 2'3'-cGAMP) to inhibit STING signaling. Furthermore, high expression of ENPP1 in exosomes is observed isolated from human breast and lung cancer tissue, and tumor exosomal ENPP1 inhibited the immune infiltration of CD8+ T cells and CD4+ T cells. The results elucidate the essential function of tumor exosomal ENPP1 in the cGAS-STING pathway, furthering understanding of the crosstalk between the tumor cells and immune system.
Collapse
Affiliation(s)
- Yu An
- Department of PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Jinchao Zhu
- Department of PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Qihui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool & Hospital of StomatologyWuhan UniversityWuhan430070P. R. China
| | - Jianzhou Feng
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Yanli Gong
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Qian Fan
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jiao Cao
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Zhi Huang
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Weixiong Shi
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Qingyuan Lin
- Department of PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Lingling Wu
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Chaoyong Yang
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
- The MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Tianhai Ji
- Department of PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| |
Collapse
|
7
|
Markowska A, Kojs Z, Twardawa D, Pietras J, Markowska J. Selected markers of ovarian cancer and their relation to targeted therapy (Review). Exp Ther Med 2024; 27:236. [PMID: 38628658 PMCID: PMC11019661 DOI: 10.3892/etm.2024.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Despite advances in surgical treatment techniques and chemotherapy-including anti-angiogenic and immune poly (ADP-ribose) polymerase inhibitors, the 5-year survival rate in ovarian cancer (OC) remains low. The reasons for this are the diagnosis of cancer in advanced clinical stages, chemoresistance and cancer recurrence. New therapeutic approaches are being developed, including the search for new biomarkers that are also targets for targeted therapy. The present review describes new molecular markers with relevance to targeted therapy, which to date have been studied only in experimental research. These include the angiogenic protein angiopoietin-2, the transmembrane glycoprotein ectonucleotide pyrophosphatase/phosphodiesterase 1, the adhesion protein E-cadherin, the TIMP metallopeptidase inhibitor 1 and Kruppel-like factor 7. Drugs affecting cancer stem cells (CSCs) in OC, such as metformin and salinomycin, as well as inhibitors of CSCs markers aldehyde dehydrogenase 1 (with the drug ATRA) and the transcription factor Nanog homeobox (microRNA) are also discussed. A new approach to prevention and possible therapies under investigation such as development of vaccines containing a subpopulation of CD117(+) and CD44(+) stem cells with a promising option for use in women with OC was described.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Zbigniew Kojs
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland
| | - Damian Twardawa
- Medical Department, Bausch Health Poland, 02-674 Warsaw, Poland
| | - Joanna Pietras
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | | |
Collapse
|
8
|
Du B, Ru J, Zhan Z, Lin C, Liu Y, Mao W, Zhang J. Insight into small-molecule inhibitors targeting extracellular nucleotide pyrophosphatase/phosphodiesterase1 for potential multiple human diseases. Eur J Med Chem 2024; 268:116286. [PMID: 38432057 DOI: 10.1016/j.ejmech.2024.116286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Extracellular nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as a type II transmembrane glycoprotein. It plays a crucial role in various biological processes, such as bone mineralization, cancer cell proliferation, and immune regulation. Consequently, ENPP1 has garnered attention as a promising target for pharmacological interventions. Despite its potential, the development of clinical-stage ENPP1 inhibitors for solid tumors, diabetes, and silent rickets remains limited. However, there are encouraging findings from preclinical trials involving small molecules exhibiting favorable therapeutic effects and safety profiles. This perspective aims to shed light on the structural properties, biological functions and the relationship between ENPP1 and diseases. Additionally, it focuses on the structure-activity relationship of ENPP1 inhibitors, with the intention of guiding the future development of new and effective ENPP1 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinxiao Ru
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zixuan Zhan
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Wuyu Mao
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Guan D, Fang L, Feng M, Guo S, Xie L, Chen C, Sun X, Wu Q, Yuan X, Xie Z, Zhou J, Zhang H. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 inhibitors: Research progress and prospects. Eur J Med Chem 2024; 267:116211. [PMID: 38359537 DOI: 10.1016/j.ejmech.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The cancer immunotherapies involved in cGAS-STING pathway have been made great progress in recent years. STING agonists exhibit broad-spectrum anti-tumor effects with strong immune response. As a negative regulator of the cGAS-STING pathway, ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) can hydrolyze extracellular 2', 3'-cGAMP and reduce extracellular 2', 3'-cGAMP concentration. ENPP1 has been validated to play important roles in diabetes, cancers, and cardiovascular disease and now become a promising target for tumor immunotherapy. Several ENPP1 inhibitors under development have shown good anti-tumor effects alone or in combination with other agents in clinical and preclinical researches. In this review, the biological profiles of ENPP1 were described, and the structures and the structure-activity relationships (SAR) of the known ENPP1 inhibitors were summarized. This review also provided the prospects and challenges in the development of ENPP1 inhibitors.
Collapse
Affiliation(s)
- Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China
| | - Lincheng Fang
- Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mingshun Feng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shi Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lingfeng Xie
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Chao Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xue Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China
| | - Qingyun Wu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zuoquan Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
10
|
Huang R, Ning Q, Zhao J, Zhao X, Zeng L, Yi Y, Tang S. Targeting ENPP1 for cancer immunotherapy: Killing two birds with one stone. Biochem Pharmacol 2024; 220:116006. [PMID: 38142838 DOI: 10.1016/j.bcp.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Cancer immunotherapy, particularly with immune checkpoint inhibitors, has revolutionized the paradigm of cancer treatment. Nevertheless, the efficacy of cancer immunotherapy remains limited in most clinical settings due to the lack of a preexisting antitumor T-cell response in tumors. Therefore, the clinical outcomes of cancer immunotherapy must be improved crucially. With increased awareness of the importance of the innate immune response in the recruitment of T cells, as well as the onset and maintenance of the T cell response, great interest has been shown in activating the cGAS-STING signaling pathway to awaken the innate immune response, thereby orchestrating both innate and adaptive immune responses to induce tumor clearance. However, tumor cells have evolved to overexpress ectonucleotide pyrophosphate phosphodiesterase 1 (ENPP1), which degrades the immunotransmitter 2',3'-cGAMP and promotes the production of immune-suppressing adenosine, resulting in inhibition of the anticancer immune response in the tumor microenvironment. Clinically, ENPP1 overexpression is closely associated with poor prognosis in patients with cancer. Conversely, depleting or inhibiting ENPP1 has been verified to elevate extracellular 2',3'-cGAMP levels and inhibit the generation of adenosine, thereby reinvigorating the anticancer immune response for tumor elimination. A variety of ENPP1 inhibitors have recently been developed and have demonstrated significant promise for cancer immunotherapy. In this review, we provide an overview of ENPP1, dissect its immunosuppressive mechanisms, and discuss the development of ENPP1 inhibitors with the potential to further improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Ruilei Huang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jihui Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xuhong Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Luting Zeng
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yi Yi
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
11
|
Wang M, Xu P, Wu Q. Cell-to-cell communications of cGAS-STING pathway in tumor immune microenvironment. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:15-24. [PMID: 38229499 PMCID: PMC10945497 DOI: 10.3724/zdxbyxb-2023-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Targeting cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway is a promising strategy for tumor treatment. The pattern recognition receptor cGAS identifies dsDNA and catalyzes the formation of a second messenger 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), activating the downstream interferons and pro-inflammatory cytokines through the adaptor protein STING. Notably, in tumor immune microenvironment, key components of cGAS-STING pathway are transferred among neighboring cells. The intercellular transmission under these contexts serves to sustain and amplify innate immune responses while facilitating the emergence of adaptive immunity. The membrane-based system, including extracellular vesicles transport, phagocytosis and membrane fusion transmit dsDNA, cGAMP and activated STING, enhances the immune surveillance and inflammatory responses. The membrane proteins, including a specific protein channel and intercellular gap junctions, transfer cGAMP and dsDNA, which are crucial to regulate immune responses. The ligand-receptor interactions for interferon transmission amplifies the anti-tumor response. This review elaborates on the regulatory mechanisms of cell-to-cell communications of cGAS-STING pathway in tumor immune microenvironment, explores how these mechanisms modulate immunological processes and discusses potential interventions and immunotherapeutic strategies targeting these signaling cascades.
Collapse
Affiliation(s)
- Mengqiu Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| | - Pinglong Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Qirou Wu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Minafò YA, Antonini D, Dellambra E. NAD+ Metabolism-Related Gene Profile Can Be a Relevant Source of Squamous Cell Carcinoma Biomarkers. Cancers (Basel) 2024; 16:309. [PMID: 38254798 PMCID: PMC10814490 DOI: 10.3390/cancers16020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Poor survival rates of squamous cell carcinomas (SCCs) are associated with high recurrence, metastasis, and late diagnosis, due in part to a limited number of reliable biomarkers. Thus, the identification of signatures improving the diagnosis of different SCC types is mandatory. Considering the relevant role of NAD+ metabolism in SCC chemoprevention and therapy, the study aimed at identifying new biomarkers based on NAD+ metabolism-related gene (NMRG) expression. Gene expression of 18 NMRGs and clinical-pathological information for patients with head and neck SCC (HNSCC), lung SCC (LuSCC), and cervix SCC (CeSCC) from The Cancer Genome Atlas (TCGA) were analyzed by several bioinformatic tools. We identified a 16-NMRG profile discriminating 3 SCCs from 3 non-correlated tumors. We found several genes for HNSCC, LuSCC, and CeSCC with high diagnostic power. Notably, three NMRGs were SCC-type specific biomarkers. Furthermore, specific signatures displayed high diagnostic power for several clinical-pathological characteristics. Analyzing tumor-infiltrating immune cell profiles and PD-1/PD-L1 levels, we found that NMRG expression was associated with suppressive immune microenvironment mainly in HNSCC. Finally, the evaluation of patient survival identified specific genes for HNSCC, LuSCC, and CeSCC with potential prognostic power. Therefore, our analyses indicate NAD+ metabolism as an important source of SCC biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Ylenia Aura Minafò
- Molecular and Cell Biology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Via dei Monti di Creta, 104, 00167 Rome, Italy;
| | - Dario Antonini
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Elena Dellambra
- Molecular and Cell Biology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Via dei Monti di Creta, 104, 00167 Rome, Italy;
| |
Collapse
|
13
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2023:10.1007/s11302-023-09976-5. [PMID: 37966629 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
14
|
Zhao K, Huang J, Zhao Y, Wang S, Xu J, Yin K. Targeting STING in cancer: Challenges and emerging opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188983. [PMID: 37717857 DOI: 10.1016/j.bbcan.2023.188983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is a key pathway through which the host regulates immune responses by recognizing cytoplasmic double-stranded DNA of abnormal origin, and it plays an important role in tumor growth as well as metastasis, with relevant molecular details constantly being explored and updated. The significant immunomodulatory effects make STING an attractive target for cancer immunotherapy, and STING agonists have been receiving great attention for their development and clinical translation. Despite exciting results in preclinical work, the application of STING agonists to cancer therapy remains challenging due to their poor pharmacokinetic and physicochemical properties, as well as toxic side effects they produce. Here, we summarize the dichotomous role of cGAS-STING in cancer and discuss the limitations of cancer immunotherapy based on STING activation as well as feasible strategies to overcome them to achieve tumor regression.
Collapse
Affiliation(s)
- Kexin Zhao
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaojiao Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Juan Xu
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
15
|
Chen K, Liao J, Patel DJ, Xie W. Advances in structure-guided mechanisms impacting on the cGAS-STING innate immune pathway. Adv Immunol 2023; 159:1-32. [PMID: 37996205 DOI: 10.1016/bs.ai.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The metazoan cGAS-STING innate immunity pathway is triggered in response to cytoplasmic double-stranded DNA (dsDNA), thereby providing host defense against microbial pathogens. This pathway also impacts on autoimmune diseases, cellular senescence and anti-tumor immunity. The cGAS-STING pathway was also observed in the bacterial antiviral immune response, known as the cyclic oligonucleotide (CDN)-based anti-phage signaling system (CBASS). This review highlights a structure-based mechanistic perspective of recent advances in metazoan and bacterial cGAS-STING innate immune signaling by focusing on the cGAS sensor, cGAMP second messenger and STING adaptor components, thereby elucidating the specificity, activation, regulation and signal transduction features of the pathway.
Collapse
Affiliation(s)
- Kexin Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jialing Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China; School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, United States.
| | - Wei Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
16
|
Xu C, Ju D, Zhang X. Editorial: Community series in combinational immunotherapy of cancer: novel targets, mechanisms, and strategies, volume II. Front Immunol 2023; 14:1256691. [PMID: 37638018 PMCID: PMC10455921 DOI: 10.3389/fimmu.2023.1256691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|