1
|
Seres R, Hameed H, McCabe MG, Russell D, Lee ATJ. The Multimodality Management of Malignant Peripheral Nerve Sheath Tumours. Cancers (Basel) 2024; 16:3266. [PMID: 39409887 PMCID: PMC11475700 DOI: 10.3390/cancers16193266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Malignant peripheral nerve sheath tumours (MPNST) are aggressive sarcomas that have nerve sheath differentiation and can present at any anatomical site. They can arise from precursor neurofibroma in the context of neurofibromatosis type 1 (NF1) or as de novo and sporadic tumours in the absence of an underlying genetic predisposition. The primary therapeutic approach is most often radical surgery, with non-surgical modalities playing an important role, especially in locally advanced or metastatic cases. The aim of multimodality approaches is to optimize both local and systemic control while keeping to a minimum acute and late treatment morbidity. Advances in the understanding of the underlying biology of MPNSTs in both sporadic and NF-1-related contexts are essential for the management and implementation of novel therapeutic approaches.
Collapse
Affiliation(s)
- Remus Seres
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Hassan Hameed
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Martin G. McCabe
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - David Russell
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Radiology, Lancashire Teaching Hospitals NHS Trust, Chorley PR7 1PP, UK
| | - Alexander T. J. Lee
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- NHS England Highly Specialised Service for Complex Neurofibromatosis Type 1: Manchester, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester M13 9WL, UK
| |
Collapse
|
2
|
Somaiah N, Paudyal B, Winkler RE, Van Tine BA, Hirbe AC. Malignant Peripheral Nerve Sheath Tumor, a Heterogeneous, Aggressive Cancer with Diverse Biomarkers and No Targeted Standard of Care: Review of the Literature and Ongoing Investigational Agents. Target Oncol 2024; 19:665-678. [PMID: 38954182 PMCID: PMC11392982 DOI: 10.1007/s11523-024-01078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Malignant peripheral sheath tumor (MPNST) is a rare, aggressive form of soft-tissue sarcoma that presents a unique set of diagnostic and treatment challenges and is associated with major unmet treatment medical needs. OBJECTIVE The chief aim of this review is to consider the epidemiology, histology, anatomic distribution, pathologic signaling pathways, diagnosis, and management of MPNST, with a focus on potential targeted therapies. A subordinate objective was to establish benchmarks for the antitumor activity of such treatments. RESULTS MPNST has an incidence of 1:100,000 in the general population and 1:3500 among patients with the inherited condition of neurofibromatosis-1. Spindle-cell sarcomas of neural-crest origin, MPNSTs are frequently situated in the extremities and pelvis/trunk, often at the confluence of large nerve roots and bundles. Highly copy-number aberrant and enriched in chromosome 8, MPNSTs have a complex molecular pathogenesis that likely involves the interplay of multiple signaling pathways, including Ras/AKT/mTOR/MAPK, EGFR, p53, PTEN, and PRC2, as well as factors in the tumor microenvironment. A combination of magnetic resonance imaging (MRI) and positron emission tomography with 18F-fluorodeoxyglucose (FDG-PET) enables comprehensive assessment of both morphology and metabolism, while MRI- and ultrasound-guided core needle biopsy can confirm histopathology. Although surgery with wide excisional margins is now the chief curative approach to localized disease, MPNST-specific survival has not improved in decades. For advanced and metastatic MPNST, radiation and chemotherapy (chiefly with anthracyclines plus ifosfamide) have somewhat promising but still largely uncertain treatment roles, chiefly in local control, downstaging, and palliation. No single druggable target has emerged, no objective responses have been observed with a number of targeted therapies (cumulative disease control rate in our review = 22.9-34.8%), and combinatorial approaches directed toward multiple signal transduction mechanisms are hallmarks of ongoing clinical trials. CONCLUSIONS Despite advances in our understanding of the genetics and molecular biology of MPNST, further research is warranted to: (1) unravel the complex pathogenesis of this condition; (2) improve diagnostic yield; (3) delineate the appropriate roles of chemotherapy and radiation; and (4) develop a targeted therapy (or combination of such treatments) that is well tolerated and prolongs survival.
Collapse
Affiliation(s)
- Neeta Somaiah
- Chair of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Brian A Van Tine
- Medicine and of Pediatrics, Developmental Therapeutics (Phase 1) Program, Sarcoma Program, Washington University School of Medicine, Barnes and Jewish Hospital, Siteman Cancer Center, St. Louis, MO, USA
| | - Angela C Hirbe
- Medicine and Pediatrics, Adult Neurofibromatosis Clinical Program, Division of Oncology, Sarcoma Section, Couch Building, Room 3304, Washington University School of Medicine, Barnes Jewish Hospital, Siteman Cancer Center, 660 S. Euclid Avenue, Campus, Box 8076, St. Louis, MO, 63110-1010, USA.
| |
Collapse
|
3
|
Wei XH, Liu YY. Potential applications of JAK inhibitors, clinically approved drugs against autoimmune diseases, in cancer therapy. Front Pharmacol 2024; 14:1326281. [PMID: 38235120 PMCID: PMC10792058 DOI: 10.3389/fphar.2023.1326281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Disturbances in immunoregulation may lead to both cancer and autoimmune diseases. Many therapeutic drugs for autoimmune diseases also display anti-tumor efficacy. The Janus kinase/signal transducer and activator of transcription signaling pathways are involved in the secretion of more than 50 distinct cytokines, which have critical roles in inducing autoimmune diseases and tumorigenesis. Thus, Janus kinases have become classical immunotherapeutic targets for immune disease. More than 70 Janus kinase inhibitors have been approved as immunomodulatory drugs for clinical use, of which 12 are used in the treatment of autoimmune diseases. This systematic review aims to elucidate the anti-tumor role of clinically approved Janus kinase inhibitors that were primarily designed for the treatment of autoimmune diseases and their potential for clinical translation as cancer treatments.
Collapse
Affiliation(s)
- Xiao-Huan Wei
- Respiratory and Critical Care Department, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Oncology Department, People’s Hospital of Peixian, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Liu
- Respiratory and Critical Care Department, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Wu X, Ma Y, Wang L, Qin X. A Route for Investigating Psoriasis: From the Perspective of the Pathological Mechanisms and Therapeutic Strategies of Cancer. Int J Mol Sci 2023; 24:14390. [PMID: 37762693 PMCID: PMC10532365 DOI: 10.3390/ijms241814390] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Psoriasis is an incurable skin disease that develops in about two-thirds of patients before the age of 40 and requires lifelong treatment; its pathological mechanisms have not been fully elucidated. The core pathological process of psoriasis is epidermal thickening caused by the excessive proliferation of epidermal keratinocytes, which is similar to the key feature of cancer; the malignant proliferation of cancer cells causes tumor enlargement, suggesting that there is a certain degree of commonality between psoriasis and cancer. This article reviews the pathological mechanisms that are common to psoriasis and cancer, including the interaction between cell proliferation and an abnormal immune microenvironment, metabolic reprogramming, and epigenetic reprogramming. In addition, there are common therapeutic agents and drug targets between psoriasis and cancer. Thus, psoriasis and cancer share a common pathological mechanisms-drug targets-therapeutic agents framework. On this basis, it is proposed that investigating psoriasis from a cancer perspective is beneficial to enriching the research strategies related to psoriasis.
Collapse
Affiliation(s)
- Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.M.); (L.W.)
| | | | | | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.M.); (L.W.)
| |
Collapse
|
5
|
Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (Beijing) 2023; 4:e290. [PMID: 37261210 PMCID: PMC10227178 DOI: 10.1002/mco2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology has become a powerful strategy in drug discovery, especially for undruggable targets/proteins. A typical PROTAC degrader consists of three components: a small molecule that binds to a target protein, an E3 ligase ligand (consisting of an E3 ligase and its small molecule recruiter), and a chemical linker that hooks first two components together. In the past 20 years, we have witnessed advancement of multiple PROTAC degraders into the clinical trials for anticancer therapies. However, one of the major challenges of PROTAC technology is that only very limited number of E3 ligase recruiters are currently available as E3 ligand for targeted protein degradation (TPD), although human genome encodes more than 600 E3 ligases. Thus, there is an urgent need to identify additional effective E3 ligase recruiters for TPD applications. In this review, we summarized the existing RING-type E3 ubiquitin ligase and their small molecule recruiters that act as effective E3 ligands of PROTAC degraders and their application in anticancer drug discovery. We believe that this review could serve as a reference in future development of efficient E3 ligands of PROTAC technology for cancer drug discovery and development.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
6
|
Zhang L, Lemberg KM, Calizo A, Varadhan R, Siegel AH, Meyer CF, Blakeley JO, Pratilas CA. Analysis of treatment sequence and outcomes in patients with relapsed malignant peripheral nerve sheath tumors. Neurooncol Adv 2023; 5:vdad156. [PMID: 38130899 PMCID: PMC10733661 DOI: 10.1093/noajnl/vdad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas originating from cellular components within the nerve sheath. The incidence of MPNST is highest in people with neurofibromatosis type 1 (NF1), and MPNST is the leading cause of death for these individuals. Complete surgical resection is the only curative therapeutic option, but is often unfeasible due to tumor location, size, or presence of metastases. Evidence-based choices of chemotherapy for recurrent/refractory MPNST remain elusive. To address this gap, we conducted a retrospective analysis of our institutional experience in treating patients with relapsed MPNST in order to describe patient outcomes related to salvage regimens. Methods We conducted a retrospective electronic health record analysis of patients with MPNST who were treated at Johns Hopkins Hospital from January 2010 to June 2021. We calculated time to progression (TTP) based on salvage chemotherapy regimens. Results Sixty-five patients were included in the analysis. Upfront therapy included single or combined modalities of surgery, chemotherapy, or radiotherapy. Forty-eight patients received at least 1 line of chemotherapy, which included 23 different regimens (excluding active clinical studies). Most patients (n = 42, 87.5%) received a combination of doxorubicin, ifosfamide, or etoposide as first-line chemotherapy. Salvage chemotherapy regimens and their TTP varied greatly, with irinotecan/temozolomide-based regimens having the longest average TTP (255.5 days, among 4 patients). Conclusions Patients with advanced or metastatic MPNST often succumb to their disease despite multiple lines of therapy. These data may be used as comparative information in decision-making for future patients and clinical trials.
Collapse
Affiliation(s)
- Lindy Zhang
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn M Lemberg
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ana Calizo
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ravi Varadhan
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan H Siegel
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christian F Meyer
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaishri O Blakeley
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|