1
|
Dheeraj A, Garcia Marques FJ, Tailor D, Bermudez A, Resendez A, Pandrala M, Grau B, Kumar P, Haley CB, Honkala A, Kujur P, Jeffrey SS, Pitteri S, Malhotra SV. Inhibition of protein translational machinery in triple-negative breast cancer as a promising therapeutic strategy. Cell Rep Med 2024; 5:101552. [PMID: 38729158 PMCID: PMC11148772 DOI: 10.1016/j.xcrm.2024.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Y-box binding protein-1 (YB-1) is a proto-oncogenic protein associated with protein translation regulation. It plays a crucial role in the development and progression of triple-negative breast cancer (TNBC). In this study, we describe a promising approach to inhibit YB-1 using SU056, a small-molecule inhibitor. SU056 physically interacts with YB-1 and reduces its expression, which helps to restrain the progression of TNBC. Proteome profiling analysis indicates that the inhibition of YB-1 by SU056 can alter the proteins that regulate protein translation, an essential process for cancer cell growth. Preclinical studies on human cells, mice, and patient-derived xenograft tumor models show the effectiveness of SU056. Moreover, toxicological studies have shown that SU056 treatment and dosing are well tolerated without any adverse effects. Overall, our study provides a strong foundation for the further development of SU056 as a potential treatment option for patients with TNBC by targeting YB-1.
Collapse
Affiliation(s)
- Arpit Dheeraj
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fernando Jose Garcia Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Dhanir Tailor
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Angel Resendez
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mallesh Pandrala
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Benedikt Grau
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kumar
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Carrsyn B Haley
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexander Honkala
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kujur
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sanjay V Malhotra
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Quan C, Wu Z, Xiong J, Li M, Fu Y, Su J, Wang Y, Ning L, Zhang D, Xie N. Upregulated PARP1 confers breast cancer resistance to CDK4/6 inhibitors via YB-1 phosphorylation. Exp Hematol Oncol 2023; 12:100. [PMID: 38037159 PMCID: PMC10687910 DOI: 10.1186/s40164-023-00462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Cyclic-dependent kinase (CDK) 4/6 kinases, as the critical drivers of the cell cycle, are involved in the tumor progression of various malignancies. Pharmacologic inhibitors of CDK4/6 have shown significant clinical prospects in treating hormone receptor-positive and human epidermal growth factor receptor-negative (HR + /HER2-) breast cancer (BC) patients. However, acquired resistance to CDK4/6 inhibitors (CDK4/6i), as a common issue, has developed rapidly. It is of great significance that the identification of novel therapeutic targets facilitates overcoming the CDK4/6i resistance. PARP1, an amplified gene for CDK4/6i-resistant patients, was found to be significantly upregulated during the construction of CDK4/6i-resistant strains. Whether PARP1 drives CDK4/6i resistance in breast cancer is worth further study. METHOD PARP1 and p-YB-1 protein levels in breast cancer cells and tissues were quantified using Western blot (WB) analysis, immunohistochemical staining (IHC) and immunofluorescence (IF) assays. Bioinformatics analyses of Gene Expression Profiling Interactive Analysis (GEPIA), Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets were applied to explore the relationship between YB-1/PARP1 protein levels and CDK4/6i IC50. Cell Counting Kit-8 (CCK-8) and crystal violet staining assays were performed to evaluate cell proliferation rates and drug killing effects. Flow cytometry assays were conducted to assess apoptosis rates and the G1/S ratio in the cell cycle. An EdU proliferation assay was used to detect the DNA replication ratio after treatment with PARP1 and YB-1 inhibitors. A ChIP assay was performed to assess the interaction of the transcription factor YB-1 and associated DNA regions. A double fluorescein reporter gene assay was designed to assess the influence of WT/S102A/S102E YB-1 on the promoter region of PARP1. Subcutaneous implantation models were applied for in vivo tumor growth evaluations. RESULTS Here, we reported that PARP1 was amplified in breast cancer cells and CDK4/6i-resistant patients, and knockdown or inhibition of PARP1 reversed drug resistance in cell experiments and animal models. In addition, upregulation of transcription factor YB-1 also occurred in CDK4/6i-resistant breast cancer, and YB-1 inhibition can regulate PARP1 expression. p-YB-1 and PARP1 were upregulated when treated with CDK4/6i based on the WB and IF results, and elevated PARP1 and p-YB-1 were almost simultaneously observed during the construction of MCF7AR-resistant strains. Inhibition of YB-1 or PAPR1 can cause decreased DNA replication, G1/S cycle arrest, and increased apoptosis. We initially confirmed that YB-1 can bind to the promoter region of PARP1 through a ChIP assay. Furthermore, we found that YB-1 phosphorylated at S102 was crucial for PARP1 transcription according to the double fluorescein reporter gene assay. The combination therapy of YB-1 inhibitors and CDK4/6i exerted a synergistic antitumor effect in vitro and in vivo. The clinical data suggested that HR + /HER2- patients with low expression of p-YB-1/PARP1 may be sensitive to CDK4/6i in breast cancer. CONCLUSION These findings indicated that a ''YB-1/PARP1'' loop conferred resistance to CDK4/6 inhibitors. Furthermore, interrupting the loop can enhance tumor killing in the xenograft tumor model, which provides a promising strategy against drug resistance in breast cancer.
Collapse
Affiliation(s)
- Chuntao Quan
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology, Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People's Republic of China
| | - Zhijie Wu
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Juan Xiong
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Manqing Li
- Public Health School of Sun Yat-Sen University, Guangzhou, 510182, People's Republic of China
| | - Yu Fu
- Laboratory Department, Shenzhen Center for Chronic Disease Control, Shenzhen, 518035, People's Republic of China
| | - Jiaying Su
- Laboratory Department, Shenzhen Baoan People's Hospital, Second Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People's Republic of China
| | - Yue Wang
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Lvwen Ning
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Deju Zhang
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China.
| |
Collapse
|
3
|
Sun X, Gao C, Xu X, Li M, Zhao X, Wang Y, Wang Y, Zhang S, Yan Z, Liu X, Wu C. FBL promotes cancer cell resistance to DNA damage and BRCA1 transcription via YBX1. EMBO Rep 2023; 24:e56230. [PMID: 37489617 PMCID: PMC10481664 DOI: 10.15252/embr.202256230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Fibrillarin (FBL) is a highly conserved nucleolar methyltransferase responsible for methylation of ribosomal RNA and proteins. Here, we reveal a role for FBL in DNA damage response and its impact on cancer proliferation and sensitivity to DNA-damaging agents. FBL is highly expressed in various cancers and correlates with poor survival outcomes in cancer patients. Knockdown of FBL sensitizes tumor cells and xenografts to DNA crosslinking agents, and leads to homologous recombination-mediated DNA repair defects. We identify Y-box-binding protein-1 (YBX1) as a key interacting partner of FBL, and FBL increases the nuclear accumulation of YBX1 in response to DNA damage. We show that FBL promotes the expression of BRCA1 by increasing the binding of YBX1 to the BRCA1 promoter. Our study sheds light on the regulatory mechanism of FBL in tumorigenesis and DNA damage response, providing potential therapeutic targets to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Xiaorui Sun
- College of Life SciencesHebei UniversityBaodingChina
| | - Congwen Gao
- College of Life SciencesHebei UniversityBaodingChina
| | - Xin Xu
- College of Life SciencesHebei UniversityBaodingChina
| | - Mengyuan Li
- College of Life SciencesHebei UniversityBaodingChina
| | - Xinhua Zhao
- College of Life SciencesHebei UniversityBaodingChina
| | - Yanan Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Yun Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Shun Zhang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Zhenzhen Yan
- College of Life SciencesHebei UniversityBaodingChina
| | - Xiuhua Liu
- College of Life SciencesHebei UniversityBaodingChina
| | - Chen Wu
- College of Life SciencesHebei UniversityBaodingChina
- The Key Laboratory of Zoological Systematics and ApplicationHebei UniversityBaodingChina
| |
Collapse
|
4
|
Guens GP. YB-1 Protein in Breast Cancer (Scientific and Personal Meetings with Professor Ovchinnikov). BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S86-S47. [PMID: 35501988 DOI: 10.1134/s0006297922140073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
In the article, the author examines the properties of Y-box-binding protein (YB-1) and expression of the YBX-1 gene in various malignant tumors and provides the data from her own prospective study in breast cancer patients. YB-1 is a member of the highly conserved family of cold shock proteins with multiple functions in the cytoplasm and cell nucleus. YB-1 is involved in embryogenesis; it ensures cell proliferation and protects cell from the action of various aggressive environmental factors. In adult organisms, YB-1 is involved in a variety of cellular functions that regulate malignant phenotype in several types of tumors. YB-1 is a molecular marker of tumor progression that can be used in clinical practice as both prognostic factor and a target for anticancer therapy. Our prospective clinical study showed that expression of YB-1 mRNA is an independent prognostic factor, as breast cancer patients expressing YB-1 have a lower disease-free survival rate, regardless of the tumor stage and biological subtype. We recommend determining the level of YB-1 mRNA expression as a prognostic test in breast cancer patients.
Collapse
Affiliation(s)
- Gelena P Guens
- Department of Oncology and Radiation Therapy, Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, 127473, Russia.
| |
Collapse
|
5
|
Tailor D, Resendez A, Garcia-Marques FJ, Pandrala M, Going CC, Bermudez A, Kumar V, Rafat M, Nambiar DK, Honkala A, Le QT, Sledge GW, Graves E, Pitteri SJ, Malhotra SV. Y box binding protein 1 inhibition as a targeted therapy for ovarian cancer. Cell Chem Biol 2021; 28:1206-1220.e6. [PMID: 33713600 DOI: 10.1016/j.chembiol.2021.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
Y box binding protein 1 (YB-1) is a multifunctional protein associated with tumor progression and the emergence of treatment resistance (TR). Here, we report an azopodophyllotoxin small molecule, SU056, that potently inhibits tumor growth and progression via YB-1 inhibition. This YB-1 inhibitor inhibits cell proliferation, resistance to apoptosis in ovarian cancer (OC) cells, and arrests in the G1 phase. Inhibitor treatment leads to enrichment of proteins associated with apoptosis and RNA degradation pathways while downregulating spliceosome pathway. In vivo, SU056 independently restrains OC progression and exerts a synergistic effect with paclitaxel to further reduce disease progression with no observable liver toxicity. Moreover, in vitro mechanistic studies showed delayed disease progression via inhibition of drug efflux and multidrug resistance 1, and significantly lower neurotoxicity as compared with etoposide. These data suggest that YB-1 inhibition may be an effective strategy to reduce OC progression, antagonize TR, and decrease patient mortality.
Collapse
Affiliation(s)
- Dhanir Tailor
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Angel Resendez
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Fernando Jose Garcia-Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Mallesh Pandrala
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Catherine C Going
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Vineet Kumar
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Marjan Rafat
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Dhanya K Nambiar
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Alexander Honkala
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - George W Sledge
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Edward Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sanjay V Malhotra
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
6
|
Interaction network analysis of YBX1 for identification of therapeutic targets in adenocarcinomas. J Biosci 2019. [DOI: 10.1007/s12038-019-9848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Kuwano M, Shibata T, Watari K, Ono M. Oncogenic Y-box binding protein-1 as an effective therapeutic target in drug-resistant cancer. Cancer Sci 2019; 110:1536-1543. [PMID: 30903644 PMCID: PMC6500994 DOI: 10.1111/cas.14006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
Y-box binding protein-1 (YBX1), a multifunctional oncoprotein containing an evolutionarily conserved cold shock domain, dysregulates a wide range of genes involved in cell proliferation and survival, drug resistance, and chromatin destabilization by cancer. Expression of a multidrug resistance-associated ATP binding cassette transporter gene, ABCB1, as well as growth factor receptor genes, EGFR and HER2/ErbB2, was initially discovered to be transcriptionally activated by YBX1 in cancer cells. Expression of other drug resistance-related genes, MVP/LRP, TOP2A, CD44, CD49f, BCL2, MYC, and androgen receptor (AR), is also transcriptionally activated by YBX1, consistently indicating that YBX1 is involved in tumor drug resistance. Furthermore, there is strong evidence to support that nuclear localization and/or overexpression of YBX1 can predict poor outcomes in patients with more than 20 different tumor types. YBX1 is phosphorylated by kinases, including AKT, p70S6K, and p90RSK, and translocated into the nucleus to promote the transcription of resistance- and malignancy-related genes. Phosphorylated YBX1, therefore, plays a crucial role as a potent transcription factor in cancer. Herein, a novel anticancer therapeutic strategy is presented by targeting activated YBX1 to overcome drug resistance and malignant progression.
Collapse
Affiliation(s)
- Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Shibata T, Tokunaga E, Hattori S, Watari K, Murakami Y, Yamashita N, Oki E, Itou J, Toi M, Maehara Y, Kuwano M, Ono M. Y-box binding protein YBX1 and its correlated genes as biomarkers for poor outcomes in patients with breast cancer. Oncotarget 2018; 9:37216-37228. [PMID: 30647855 PMCID: PMC6324687 DOI: 10.18632/oncotarget.26469] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/05/2018] [Indexed: 01/10/2023] Open
Abstract
The enhanced expression of the Y-box binding protein YBX1 is consistently correlated with poor outcomes or reduced survival of breast cancer patients. However, the mechanism underlying the association between increased YBX1 expression and poor outcomes has yet to be revealed. We searched a database for the top 500 genes that are positively or negatively correlated with YBX1 and with ESR1 in breast cancer patients. We further examined the association between YBX1-correlated genes and breast cancer outcomes in patients at Kyushu University Hospital. More than 60% of genes that are positively correlated with YBX1 are also negatively correlated with ESR1. The enhanced expression levels of the top 20 positively correlated genes mostly predict negative outcomes, while the enhanced expression levels of the top 20 negatively correlated genes mostly predict positive outcomes. Furthermore, in breast cancer patients at Kyushu University Hospital, the expression levels of YBX1 and YBX1-positively correlated genes were significantly higher and the expression levels of genes negatively correlated with YBX1 were significantly lower in patients who relapsed after their primary surgery than in those who did not relapse. The expression of YBX1 together with the expression of its positively or negatively correlated genes may help to predict outcomes as well as resistance to endocrine therapies in breast cancer patients. Determining the expression of YBX1 and its closely correlated genes will contribute to the development of precision therapeutics for breast cancer.
Collapse
Affiliation(s)
- Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Eriko Tokunaga
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Satoshi Hattori
- Department of Integrated Medicine, Biomedical Statistics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Murakami
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Nami Yamashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junji Itou
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiko Maehara
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Lindquist JA, Mertens PR. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun Signal 2018; 16:63. [PMID: 30257675 PMCID: PMC6158828 DOI: 10.1186/s12964-018-0274-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cold shock proteins are multifunctional RNA/DNA binding proteins, characterized by the presence of one or more cold shock domains. In humans, the best characterized members of this family are denoted Y-box binding proteins, such as Y-box binding protein-1 (YB-1). Biological activities range from the regulation of transcription, splicing and translation, to the orchestration of exosomal RNA content. Indeed, the secretion of YB-1 from cells via exosomes has opened the door to further potent activities. Evidence links a skewed cold shock protein expression pattern with cancer and inflammatory diseases. In this review the evidence for a causative involvement of cold shock proteins in disease development and progression is summarized. Furthermore, the potential application of cold shock proteins for diagnostics and as targets for therapy is elucidated.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Peter R Mertens
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| |
Collapse
|
10
|
Tanaka T, Ohashi S, Saito H, Wada T, Aoyama T, Ichimaru Y, Miyairi S, Kobayashi S. Indirubin 3'-oxime inhibits anticancer agent-induced YB-1 nuclear translocation in HepG2 human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2017; 496:7-11. [PMID: 29274785 DOI: 10.1016/j.bbrc.2017.12.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a disease with poor prognosis. Nuclear accumulation of YB-1 is closely related to the malignancy of HCC. Treatment with anticancer agents often induces translocation of YB-1 from cytoplasm to nucleus and activates the expression of multidrug resistance gene 1 (MDR1). Therefore, any effective inhibitor of this phenomenon would be useful for cancer treatment. Here we examined various indirubin derivatives and found that indirubin 3'-oxime inhibits actinomycin D-induced nuclear transport of YB-1 and suppresses the activation of MDR1 gene expression in the human hepatocellular carcinoma cell line HepG2. Furthermore, use of both indirubin 3'-oxime and actinomycin D in combination increased the anticancer effect on HepG2 cells. Indirubin 3'-oxime is a novel and efficient inhibitor of anticancer agent-induced YB-1 nuclear translocation.
Collapse
Affiliation(s)
- Toru Tanaka
- Department of Biochemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Sachiyo Ohashi
- Department of Biochemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Hiroaki Saito
- Department of Bio-organic Chemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Taira Wada
- Department of Health Science, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Tadashi Aoyama
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Tokyo 101-8308, Japan
| | - Yoshimi Ichimaru
- Department of Bio-organic Chemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Shinichi Miyairi
- Department of Bio-organic Chemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Shunsuke Kobayashi
- Department of Biochemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan.
| |
Collapse
|
11
|
Abstract
Drug-drug interactions (DDIs) occur commonly and may lead to severe adverse drug reactions if not handled appropriately. Considerable information to support clinical decision making regarding potential DDIs is available in the literature and through various systems providing electronic decision support for healthcare providers. The challenge for the prescribing physician lies in sorting out the evidence and identifying those drugs for which potential interactions are likely to become clinically manifest. P-glycoprotein (P-gp) is a drug transporting protein that is found in the plasma membranes in cells of barrier and elimination organs, and plays a role in drug absorption and excretion. Increasingly, P-gp has been acknowledged as an important player in potential DDIs and a growing body of information on the role of this transporter in DDIs has become available from research and from the drug approval process. This has led to a clear need for a comprehensive review of P-gp-mediated DDIs with a focus on highlighting the drugs that are likely to lead to clinically relevant DDIs. The objective of this review is to provide information for identifying and interpreting evidence of P-gp-mediated DDIs and to suggest a classification for individual drugs based on both in vitro and in vivo evidence (substrates, inhibitors and inducers). Further, various ways of handling potential DDIs in clinical practice are described and exemplified in relation to drugs interfering with P-gp.
Collapse
|
12
|
Fung SK, Zou T, Cao B, Lee PY, Fung YME, Hu D, Lok CN, Che CM. Cyclometalated Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands Engage Multiple Anti-Cancer Molecular Targets. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612583] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sin Ki Fung
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Taotao Zou
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Bei Cao
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Pui-Yan Lee
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Di Hu
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen 518053 China
| |
Collapse
|
13
|
Fung SK, Zou T, Cao B, Lee PY, Fung YME, Hu D, Lok CN, Che CM. Cyclometalated Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands Engage Multiple Anti-Cancer Molecular Targets. Angew Chem Int Ed Engl 2017; 56:3892-3896. [PMID: 28247451 DOI: 10.1002/anie.201612583] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 01/03/2023]
Abstract
Metal N-heterocyclic carbene (NHC) complexes are a promising class of anti-cancer agents displaying potent in vitro and in vivo activities. Taking a multi-faceted approach employing two clickable photoaffinity probes, herein we report the identification of multiple molecular targets for anti-cancer active pincer gold(III) NHC complexes. These complexes display potent and selective cytotoxicity against cultured cancer cells and in vivo anti-tumor activities in mice bearing xenografts of human cervical and lung cancers. Our experiments revealed the specific engagement of the gold(III) complexes with multiple cellular targets, including HSP60, vimentin, nucleophosmin, and YB-1, accompanied by expected downstream mechanisms of action. Additionally, PtII and PdII analogues can also bind the cellular proteins targeted by the gold(III) complexes, uncovering a distinct pincer cyclometalated metal-NHC scaffold in the design of anti-cancer metal medicines with multiple molecular targets.
Collapse
Affiliation(s)
- Sin Ki Fung
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Taotao Zou
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bei Cao
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Pui-Yan Lee
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Di Hu
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| |
Collapse
|
14
|
Martin M, Hua L, Wang B, Wei H, Prabhu L, Hartley AV, Jiang G, Liu Y, Lu T. Novel Serine 176 Phosphorylation of YBX1 Activates NF-κB in Colon Cancer. J Biol Chem 2017; 292:3433-3444. [PMID: 28077578 DOI: 10.1074/jbc.m116.740258] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Y box protein 1 (YBX1) is a well known oncoprotein that has tumor-promoting functions. YBX1 is widely considered to be an attractive therapeutic target in cancer. To develop novel therapeutics to target YBX1, it is of great importance to understand how YBX1 is finely regulated in cancer. Previously, we have shown that YBX1 could function as a tumor promoter through phosphorylation of its Ser-165 residue, leading to the activation of the NF-κB signaling pathway (1). In this study, using mass spectrometry analysis, we discovered a distinct phosphorylation site, Ser-176, on YBX1. Overexpression of the YBX1-S176A (serine-to-alanine) mutant in either HEK293 cells or colon cancer HT29 cells showed dramatically reduced NF-κB-activating ability compared with that of WT-YBX1, confirming that Ser-176 phosphorylation is critical for the activation of NF-κB by YBX1. Importantly, the mutant of Ser-176 and the previously reported Ser-165 sites regulate distinct groups of NF-κB target genes, suggesting the unique and irreplaceable function of each of these two phosphorylated serine residues. Our important findings could provide a novel cancer therapy strategy by blocking either Ser-176 or Ser-165 phosphorylation or both of YBX1 in colon cancer.
Collapse
Affiliation(s)
| | | | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Han Wei
- Departments of Pharmacology and Toxicology
| | | | | | - Guanglong Jiang
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yunlong Liu
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tao Lu
- Departments of Pharmacology and Toxicology; Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202; Biochemistry and Molecular Biology.
| |
Collapse
|
15
|
Shibata T, Watari K, Izumi H, Kawahara A, Hattori S, Fukumitsu C, Murakami Y, Takahashi R, Toh U, Ito KI, Ohdo S, Tanaka M, Kage M, Kuwano M, Ono M. Breast Cancer Resistance to Antiestrogens Is Enhanced by Increased ER Degradation and ERBB2 Expression. Cancer Res 2016; 77:545-556. [PMID: 27879270 DOI: 10.1158/0008-5472.can-16-1593] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 11/16/2022]
Abstract
Endocrine therapies effectively improve the outcomes of patients with estrogen receptor (ER)-positive breast cancer. However, the emergence of drug-resistant tumors creates a core clinical challenge. In breast cancer cells rendered resistant to the antiestrogen fulvestrant, we defined causative mechanistic roles for the transcription factor YBX1 and the levels of ER and the ERBB2 receptor. Enforced expression of YBX1 in parental cells conferred resistance against tamoxifen and fulvestrant in vitro and in vivo Furthermore, YBX1 overexpression was associated with decreased and increased levels of ER and ERBB2 expression, respectively. In antiestrogen-resistant cells, increased YBX1 phosphorylation was associated with a 4-fold higher degradation rate of ER. Notably, YBX1 bound the ER, leading to its accelerated proteasomal degradation, and induced the transcriptional activation of ERBB2. In parallel fashion, tamoxifen treatment also augmented YBX1 binding to the ERBB2 promoter to induce increased ERBB2 expression. Together, these findings define a mechanism of drug resistance through which YBX1 contributes to antiestrogen bypass in breast cancer cells. Cancer Res; 77(2); 545-56. ©2016 AACR.
Collapse
Affiliation(s)
- Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | | | - Chihiro Fukumitsu
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Yuichi Murakami
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Ryuji Takahashi
- Department of Breast Care Center, Kyushu Medical Center, Fukuoka, Japan
| | - Uhi Toh
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Ken-Ichi Ito
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Tanaka
- Kurume General Hospital, Japan Community Health Care Organization (JCHO), Kurume, Japan
| | - Masayoshi Kage
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
16
|
Tanaka T, Ohashi S, Kobayashi S. Four nucleocytoplasmic-shuttling proteins and p53 interact specifically with the YB-NLS and are involved in anticancer reagent-induced nuclear localization of YB-1. Biochem Biophys Res Commun 2016; 478:1363-9. [DOI: 10.1016/j.bbrc.2016.08.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022]
|
17
|
Moiseeva NI, Susova OY, Mitrofanov AA, Panteleev DY, Pavlova GV, Pustogarov NA, Stavrovskaya AA, Rybalkina EY. Connection between proliferation rate and temozolomide sensitivity of primary glioblastoma cell culture and expression of YB-1 and LRP/MVP. BIOCHEMISTRY (MOSCOW) 2016; 81:628-35. [DOI: 10.1134/s0006297916060109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Reichl P, Mikulits W. Accuracy of novel diagnostic biomarkers for hepatocellular carcinoma: An update for clinicians (Review). Oncol Rep 2016; 36:613-25. [PMID: 27278244 PMCID: PMC4930874 DOI: 10.3892/or.2016.4842] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver malignancy and a leading cause of cancer-related mortality worldwide. Accurate detection and differential diagnosis of early HCC can significantly improve patient survival. Currently, detection of HCC in clinical practice is performed by diagnostic imaging techniques and determination of serum biomarkers, most notably α-fetoprotein (AFP), fucosylated AFP and des-γ-carboxyprothrombin. However, these methods display limitations in sensitivity and specificity, especially with respect to early stages of HCC. Recently, high-throughput technologies have elucidated many new pathways involved in hepatocarcinogenesis and have led to the discovery of a plethora of novel, non-invasive serum biomarkers. In particular, the combination of AFP with these new candidate molecules has yielded promising results. In this review, we aimed at recapitulating the most recent (2013–2015) developments in HCC biomarker research. We compared promising novel diagnostic serum protein biomarkers, such as annexin A2, the soluble form of the receptor tyrosine kinase Axl and thioredoxin, as well as their combinations with AFP. High diagnostic performance (area under the curve >0.75) as shown by threshold-independent receiver operating characteristic curve analysis was a prerequisite for inclusion in this review. In addition, we discuss the role and potential of microRNAs in HCC diagnosis and associated methodological challenges.
Collapse
Affiliation(s)
- Patrick Reichl
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
19
|
Koh I, Hinoi T, Sentani K, Hirata E, Nosaka S, Niitsu H, Miguchi M, Adachi T, Yasui W, Ohdan H, Kudo Y. Regulation of multidrug resistance 1 expression by CDX2 in ovarian mucinous adenocarcinoma. Cancer Med 2016; 5:1546-55. [PMID: 27060927 PMCID: PMC4944882 DOI: 10.1002/cam4.697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/16/2015] [Accepted: 02/14/2016] [Indexed: 12/15/2022] Open
Abstract
Epithelial ovarian cancer is an aggressive gynecological malignancy with a high mortality rate. Resistance against chemotherapeutic agents often develops in ovarian cancer patients, contributing to high recurrence rates. The multidrug resistance 1 (MDR1/ABCB1) gene encodes P‐glycoprotein, which affects the pharmacokinetic properties of anticancer agents. We previously reported that the Caudal‐related homeobox transcription factor CDX2 transcriptionally regulates MDR1 expression in colorectal cancer. CDX2 is a factor that influences cancer cell differentiation, malignancy, and cancer progression. We hypothesized that profiling of CDX2 and MDR1 expression could be an effective strategy for predicting anticancer drug resistance. We studied the expression of these factors in clinical samples from ovarian cancer patients. We found that endogenous MDR1 expression was positively associated with CDX2 expression in ovarian mucinous adenocarcinoma. Using ovarian mucinous adenocarcinoma cell lines, we also observed decreased MDR1 expression following inhibition of CDX2 by RNA interference. In addition, CDX2 overexpression in MN‐1 cells, which display low endogenous CDX2, resulted in upregulation of MDR1 expression. CDX2 induced MDR1‐dependent resistance to vincristine and paclitaxel, which was reversed by treatment with the MDR1‐specific inhibitor verapamil. Our findings show that CDX2 promotes upregulation of MDR1 expression, leading to drug resistance in ovarian mucinous adenocarcinoma. Therefore, our study demonstrates the potential of novel chemotherapy regimens based on CDX2 status and MDR1 expression in ovarian mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Iemasa Koh
- Program for Applied Biomedicine, Division of Clinical Medical Science, Department of Obstetrics and Gynecology, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Takao Hinoi
- Program for Biomedical Research, Division of Frontier Medical Science, Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Eiji Hirata
- Program for Applied Biomedicine, Division of Clinical Medical Science, Department of Obstetrics and Gynecology, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Suguru Nosaka
- Program for Applied Biomedicine, Division of Clinical Medical Science, Department of Obstetrics and Gynecology, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Hiroaki Niitsu
- Program for Biomedical Research, Division of Frontier Medical Science, Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Masashi Miguchi
- Program for Biomedical Research, Division of Frontier Medical Science, Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Tomohiro Adachi
- Program for Biomedical Research, Division of Frontier Medical Science, Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Hideki Ohdan
- Program for Biomedical Research, Division of Frontier Medical Science, Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Yoshiki Kudo
- Program for Applied Biomedicine, Division of Clinical Medical Science, Department of Obstetrics and Gynecology, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, 734-8551, Japan
| |
Collapse
|
20
|
Imada K, Shiota M, Kohashi K, Kuroiwa K, Song Y, Sugimoto M, Naito S, Oda Y. Mutual regulation between Raf/MEK/ERK signaling and Y-box-binding protein-1 promotes prostate cancer progression. Clin Cancer Res 2013; 19:4638-50. [PMID: 23838318 DOI: 10.1158/1078-0432.ccr-12-3705] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Y-box-binding protein-1 (YB-1) is known to conduct various functions related to cell proliferation, anti-apoptosis, epithelial-mesenchymal transition, and castration resistance in prostate cancer. However, it is still unknown how YB-1 affects cancer biology, especially its correlations with the mitogen-activated protein kinase (MAPK) signaling pathway. Therefore, we aimed to examine the interaction between YB-1 and the MAPK pathway in prostate cancer. EXPERIMENTAL DESIGN Quantitative real-time PCR, Western blotting, and co-immunoprecipitation assay were conducted in prostate cancer cells. YB-1, phosphorylated YB-1 (p-YB-1), and ERK2 protein expressions in 165 clinical specimens of prostate cancer were investigated by immunohistochemistry. YB-1, p-YB-1, and ERK2 nuclear expressions were compared with clinicopathologic characteristics and patient prognoses. RESULTS EGF upregulated p-YB-1, whereas MEK inhibitor (U0126, PD98059) decreased p-YB-1. Inversely, silencing of YB-1 using siRNA decreased the expression of ERK2 and phosphorylated MEK, ERK1/2, and RSK. Furthermore, YB-1 interacted with ERK2 and Raf-1 and regulated their expressions, through the proteasomal pathway. Immunohistochemical staining showed a significant correlation among the nuclear expressions of YB-1, p-YB-1, and ERK2. The Cox proportional hazards model revealed that high ERK2 expression was an independent prognostic factor [HR, 7.947; 95% confidence interval (CI), 3.527-20.508; P<0.0001]. CONCLUSION We revealed the functional relationship between YB-1 and MAPK signaling and its biochemical relevance to the progression of prostate cancer. In addition, ERK2 expression was an independent prognostic factor. These findings suggest that both the ERK pathway and YB-1 may be promising molecular targets for prostate cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Kenjiro Imada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Guo TT, Yu YN, Cheong Yip GW, Matsumoto K, Bay BH. Silencing the YB-1Gene Inhibits Cell Migration in Gastric Cancer In Vitro. Anat Rec (Hoboken) 2013; 296:891-898. [DOI: 10.1002/ar.22702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Tian Tian Guo
- Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| | - Ying Nan Yu
- Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| | - George Wai Cheong Yip
- Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| | - Ken Matsumoto
- Chemical Genetics Laboratory; the Institute of Physical and Chemical Research (RIKEN); Saitama Japan
| | - Boon Huat Bay
- Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| |
Collapse
|
22
|
Kawahara A, Azuma K, Hattori S, Nakashima K, Basaki Y, Akiba J, Takamori S, Aizawa H, Yanagawa T, Izumi H, Kohno K, Kono S, Kage M, Kuwano M, Ono M. The close correlation between 8-hydroxy-2′-deoxyguanosine and epidermal growth factor receptor activating mutation in non–small cell lung cancer. Hum Pathol 2010; 41:951-9. [DOI: 10.1016/j.humpath.2009.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/30/2009] [Accepted: 12/18/2009] [Indexed: 11/24/2022]
|
23
|
Basaki Y, Taguchi KI, Izumi H, Murakami Y, Kubo T, Hosoi F, Watari K, Nakano K, Kawaguchi H, Ohno S, Kohno K, Ono M, Kuwano M. Y-box binding protein-1 (YB-1) promotes cell cycle progression through CDC6-dependent pathway in human cancer cells. Eur J Cancer 2010; 46:954-65. [PMID: 20079629 DOI: 10.1016/j.ejca.2009.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/10/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Y-box binding protein-1 (YB-1) plays pivotal roles in acquisition of global drug resistance and cell growth promotion through transcriptional activation of genes for both drug resistance and growth factor receptors. In this study, we investigated whether YB-1 is involved in regulation of the cell cycle and cell proliferation of human cancer cells. Treatment with YB-1 siRNA caused a marked suppression of cell proliferation and expression of a cell cycle related gene, CDC6 by cancer cells. Of cell cycle of cancer cells, S phase content was specifically reduced by knockdown of YB-1. The overexpression of CDC6 abrogated this inhibition of both cell proliferation and S phase entry. ChIP assay demonstrated that YB-1 binds to a Y-box located in the promoter region of the CDC6 gene. Expression of cyclin D1, CDK1 and CDK2 was also reduced with increased expression of p21(Cip1) and p16(INK4A) when treated with YB-1 siRNA. Furthermore, the nuclear YB-1 expression was significantly associated with the level of CDC6 nuclear expression in patients with breast cancer. In conclusion, YB-1 plays an important role in cell cycle progression at G1/S of human cancer cells. YB-1 thus could be a potent biomarker for tumour growth and cell cycle in its close association with CDC6.
Collapse
Affiliation(s)
- Yuji Basaki
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nuclear Y-Box Binding Protein-1, a Predictive Marker of Prognosis, Is Correlated with Expression of HER2/ErbB2 and HER3/ErbB3 in Non-small Cell Lung Cancer. J Thorac Oncol 2009; 4:1066-74. [DOI: 10.1097/jto.0b013e3181ae2828] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Shiota M, Izumi H, Tanimoto A, Takahashi M, Miyamoto N, Kashiwagi E, Kidani A, Hirano G, Masubuchi D, Fukunaka Y, Yasuniwa Y, Naito S, Nishizawa S, Sasaguri Y, Kohno K. Programmed cell death protein 4 down-regulates Y-box binding protein-1 expression via a direct interaction with Twist1 to suppress cancer cell growth. Cancer Res 2009; 69:3148-56. [PMID: 19318582 DOI: 10.1158/0008-5472.can-08-2334] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Programmed cell death protein 4 (PDCD4) has recently been shown to be involved in both transcription and translation, and to regulate cell growth. However, the mechanisms underlying PDCD4 function are not well understood. In this study, we show that PDCD4 interacts directly with the transcription factor Twist1 and leads to reduced cell growth through the down-regulation of the Twist1 target gene Y-box binding protein-1 (YB-1). PDCD4 interacts with the DNA binding domain of Twist1, inhibiting its DNA binding ability and YB-1 expression. Immunohistochemical analysis showed that an inverse correlation between nuclear PDCD4 and YB-1 expression levels was observed in 37 clinical prostate cancer specimens. Growth suppression by PDCD4 expression was completely recovered by either Twist1 or YB-1 expression. Moreover, PDCD4-overexpressing cells are sensitive to cisplatin and paclitaxel but not to etoposide or 5-fluorouracil. In summary, PDCD4 negatively regulates YB-1 expression via its interaction with Twist1 and is involved in cancer cell growth and chemoresistance.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Expression of HER2 and Estrogen Receptor α Depends upon Nuclear Localization of Y-Box Binding Protein-1 in Human Breast Cancers. Cancer Res 2008; 68:1504-12. [DOI: 10.1158/0008-5472.can-07-2362] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A, Yokomizo A, Naito S, Kohno K. Twist promotes tumor cell growth through YB-1 expression. Cancer Res 2008; 68:98-105. [PMID: 18172301 DOI: 10.1158/0008-5472.can-07-2981] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
YB-1 controls gene expression through both transcriptional and translational mechanisms and is involved in various biological activities such as brain development, chemoresistance, and tumor progression. We have previously shown that YB-1 is overexpressed in cisplatin-resistant cells and is involved in resistance against DNA-damaging agents. Structural analysis of the YB-1 promoter reveals that several E-boxes may participate in the regulation of YB-1 expression. Here, we show that the E-box-binding transcription factor Twist is overexpressed in cisplatin-resistant cells and that YB-1 is a target gene of Twist. Silencing of either Twist or YB-1 expression induces G(1) phase cell cycle arrest of tumor cell growth. Significantly, reexpression of YB-1 led to increase colony formation when Twist expression was down-regulated by small interfering RNA. However, cotransfection of Twist expression plasmid could not increase colony formation when YB-1 expression was down-regulated. Collectively, these data suggest that YB-1 is a major downstream target of Twist. Both YB-1 and Twist expression could induce tumor progression, promoting cell growth and driving oncogenesis in various cancers. Thus, both YB-1 and Twist may represent promising molecular targets for cancer therapy.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|