1
|
He H, He M, Wang Y, Xiong H, Xiong Y, Shan M, Liu D, Guo Z, Kou Y, Zhang Y, Yang M, Lian J, Sun L, He F. Berberine increases the killing effect of pirarubicin on HCC cells by inhibiting ATG4B-autophagy pathway. Exp Cell Res 2024; 439:114094. [PMID: 38750718 DOI: 10.1016/j.yexcr.2024.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/17/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Pirarubicin (THP) is a new generation of cell cycle non-specific anthracycline-based anticancer drug. In the clinic, THP and THP combination therapies have been shown to be effective in hepatocellular carcinoma (HCC) patients with transcatheter arterial chemoembolization (TACE) without serious side effects. However, drug resistance limits its therapeutic efficacy. Berberine (BBR), an isoquinoline alkaloid, has been shown to possess antitumour properties against various malignancies. However, the synergistic effect of BBR and THP in the treatment of HCC is unknown. In the present study, we demonstrated for the first time that BBR sensitized HCC cells to THP, including enhancing THP-induced growth inhibition and apoptosis of HCC cells. Moreover, we found that BBR sensitized THP by reducing the expression of autophagy-related 4B (ATG4B). Mechanistically, the inhibition of HIF1α-mediated ATG4B transcription by BBR ultimately led to attenuation of THP-induced cytoprotective autophagy, accompanied by enhanced growth inhibition and apoptosis in THP-treated HCC cells. Tumor-bearing experiments in nude mice showed that the combination treatment with BBR and THP significantly suppressed the growth of HCC xenografts. These results reveal that BBR is able to strengthen the killing effect of THP on HCC cells by repressing the ATG4B-autophagy pathway, which may provide novel insights into the improvement of chemotherapeutic efficacy of THP, and may be conducive to the further clinical application of THP in HCC treatment.
Collapse
Affiliation(s)
- Haiyan He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China; Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Meng He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yu Xiong
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Dong Liu
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Ziyuan Guo
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Yuhong Kou
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Jiqin Lian
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China.
| | - Liangbo Sun
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Dakkak BE, Taneera J, El-Huneidi W, Abu-Gharbieh E, Hamoudi R, Semreen MH, Soares NC, Abu-Rish EY, Alkawareek MY, Alkilany AM, Bustanji Y. Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy. Biomol Ther (Seoul) 2024; 32:267-280. [PMID: 38589288 PMCID: PMC11063480 DOI: 10.4062/biomolther.2023.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 04/10/2024] Open
Abstract
Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.
Collapse
Affiliation(s)
- Bisan El Dakkak
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon 1649-016, Portugal
| | - Eman Y. Abu-Rish
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | | | | | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
3
|
Sun L, He M, Li F, Wu D, Zheng P, Zhang C, Liu Y, Liu D, Shan M, Yang M, Ma Y, Lian J, Xiong H. Oxyberberine sensitizes liver cancer cells to sorafenib via inhibiting NOTCH1-USP7-c-Myc pathway. Hepatol Commun 2024; 8:e0405. [PMID: 38573832 PMCID: PMC10997235 DOI: 10.1097/hc9.0000000000000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/04/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Sorafenib is the first-line therapy for patients with advanced-stage HCC, but its clinical cure rate is unsatisfactory due to adverse reactions and drug resistance. Novel alternative strategies to overcome sorafenib resistance are urgently needed. Oxyberberine (OBB), a major metabolite of berberine in vivo, exhibits potential antitumor potency in various human malignancies, including liver cancer. However, it remains unknown whether and how OBB sensitizes liver cancer cells to sorafenib. METHODS Cell viability, trypan blue staining and flow cytometry assays were employed to determine the synergistic effect of OBB and sorafenib on killing HCC cells. PCR, western blot, co-immunoprecipitation and RNA interference assays were used to decipher the mechanism by which OBB sensitizes sorafenib. HCC xenograft models and clinical HCC samples were utilized to consolidate our findings. RESULTS We found for the first time that OBB sensitized liver cancer cells to sorafenib, enhancing its inhibitory effect on cell growth and induction of apoptosis in vitro. Interestingly, we observed that OBB enhanced the sensitivity of HCC cells to sorafenib by reducing ubiquitin-specific peptidase 7 (USP7) expression, a well-known tumor-promoting gene. Mechanistically, OBB inhibited notch homolog 1-mediated USP7 transcription, leading to the downregulation of V-Myc avian myelocytomatosis viral oncogene homolog (c-Myc), which synergized with sorafenib to suppress liver cancer. Furthermore, animal results showed that cotreatment with OBB and sorafenib significantly inhibited the tumor growth of liver cancer xenografts in mice. CONCLUSIONS These results indicate that OBB enhances the sensitivity of liver cancer cells to sorafenib through inhibiting notch homolog 1-USP7-c-Myc signaling pathway, which potentially provides a novel therapeutic strategy for liver cancer to improve the effectiveness of sorafenib.
Collapse
Affiliation(s)
- Liangbo Sun
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng He
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Feng Li
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Zheng
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Cong Zhang
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yang Liu
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong Liu
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuanhang Ma
- Department of General Surgery of Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiqin Lian
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Kang H, Kim B, Park J, Youn H, Youn B. The Warburg effect on radioresistance: Survival beyond growth. Biochim Biophys Acta Rev Cancer 2023; 1878:188988. [PMID: 37726064 DOI: 10.1016/j.bbcan.2023.188988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
The Warburg effect is a phenomenon in which cancer cells rely primarily on glycolysis rather than oxidative phosphorylation, even in the presence of oxygen. Although evidence of its involvement in cell proliferation has been discovered, the advantages of the Warburg effect in cancer cell survival under treatment have not been fully elucidated. In recent years, the metabolic characteristics of radioresistant cancer cells have been evaluated, enabling an extension of the original concept of the Warburg effect. In this review, we focused on the role of the Warburg effect in redox homeostasis and DNA damage repair, two critical factors contributing to radioresistance. In addition, we highlighted the metabolic involvement in the radioresistance of cancer stem cells, which is the root cause of tumor recurrence. Finally, we summarized radiosensitizing drugs that target the Warburg effect. Insights into the molecular mechanisms underlying the Warburg effect and radioresistance can provide valuable information for developing strategies to enhance the efficacy of radiotherapy and provide future directions for successful cancer therapy.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Byeongsoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Junhyeong Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Du RL, Chow HY, Chen YW, Chan PH, Daniel RA, Wong KY. Gossypol acetate: A natural polyphenol derivative with antimicrobial activities against the essential cell division protein FtsZ. Front Microbiol 2023; 13:1080308. [PMID: 36713210 PMCID: PMC9878342 DOI: 10.3389/fmicb.2022.1080308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Antimicrobial resistance has attracted worldwide attention and remains an urgent issue to resolve. Discovery of novel compounds is regarded as one way to circumvent the development of resistance and increase the available treatment options. Gossypol is a natural polyphenolic aldehyde, and it has attracted increasing attention as a possible antibacterial drug. In this paper, we studied the antimicrobial properties (minimum inhibitory concentrations) of gossypol acetate against both Gram-positive and Gram-negative bacteria strains and dig up targets of gossypol acetate using in vitro assays, including studying its effects on functions (GTPase activity and polymerization) of Filamenting temperature sensitive mutant Z (FtsZ) and its interactions with FtsZ using isothermal titration calorimetry (ITC), and in vivo assays, including visualization of cell morphologies and proteins localizations using a microscope. Lastly, Bacterial membrane permeability changes were studied, and the cytotoxicity of gossypol acetate was determined. We also estimated the interactions of gossypol acetate with the promising target. We found that gossypol acetate can inhibit the growth of Gram-positive bacteria such as the model organism Bacillus subtilis and the pathogen Staphylococcus aureus [both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA)]. In addition, gossypol acetate can also inhibit the growth of Gram-negative bacteria when the outer membrane is permeabilized by Polymyxin B nonapeptide (PMBN). Using a cell biological approach, we show that gossypol acetate affects cell division in bacteria by interfering with the assembly of the cell division FtsZ ring. Biochemical analysis shows that the GTPase activity of FtsZ was inhibited and polymerization of FtsZ was enhanced in vitro, consistent with the block to cell division in the bacteria tested. The binding mode of gossypol acetate in FtsZ was modeled using molecular docking and provides an understanding of the compound mode of action. The results point to gossypol (S2303) as a promising antimicrobial compound that inhibits cell division by affecting FtsZ polymerization and has potential to be developed into an effective antimicrobial drug by chemical modification to minimize its cytotoxic effects in eukaryotic cells that were identified in this work.
Collapse
Affiliation(s)
- Ruo-Lan Du
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ho-Yin Chow
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yu Wei Chen
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Pak-Ho Chan
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Richard A. Daniel
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom,Richard A. Daniel,
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,*Correspondence: Kwok-Yin Wong,
| |
Collapse
|
6
|
Gossypol and Its Natural Derivatives: Multitargeted Phytochemicals as Potential Drug Candidates for Oncologic Diseases. Pharmaceutics 2022; 14:pharmaceutics14122624. [PMID: 36559116 PMCID: PMC9787675 DOI: 10.3390/pharmaceutics14122624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the vast amounts of research and remarkable discoveries that have been made in recent decades, cancer remains a leading cause of death and a major public health concern worldwide. Gossypol, a natural polyphenolic compound derived from the seeds, roots, and stems of cotton (Gossypium hirsutum L.), was first used as a male contraceptive agent. Due to its diverse biological properties, including antifertility, antiviral, antioxidant, antibacterial, antimalarial, and most notably antitumor activities, gossypol has been the subject of numerous studies. Nevertheless, no systematic review has been performed that analyzes the antineoplastic potential of gossypol and related natural compounds in an organ-specific manner while delineating the molecular mechanisms of action. Hence, we have performed an extensive literature search for anticancer properties of gossypol and their natural derivatives against various types of cancer cells utilizing PubMed, ScienceDirect, Google Scholar, and Scopus. The sources, distribution, chemical structure, and toxicity of gossypol and its constituents are briefly reviewed. Based on emerging evidence, gossypol and related compounds exhibit significant antineoplastic effects against various cancer types through the modulation of different cancer hallmarks and signaling pathways. Additionally, the synergistic activity of gossypol and its derivatives with chemotherapeutic agents has been observed. Our evaluation of the current literature suggests the potential of gossypol and its derivatives as multitargeting drug candidates to combat multiple human malignancies.
Collapse
|
7
|
Zhang R, Wu M, Cao T, Luo K, Huang F, Zhang R, Huang Z, Zhou J, Wang Y, Zhu S. Identification of the gossypol derivatives as androgen receptor inhibitor. Bioorg Med Chem Lett 2022; 75:128952. [PMID: 36031018 DOI: 10.1016/j.bmcl.2022.128952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed male malignant tumor and remains the second leading cause of male cancer mortality in western countries. The development of novel antiandrogens to circumvent the drug resistance in anti-PCa treatment is highly demanded. Herein, we identified that gossypol (GOS) specificly inhibited the AR signaling. Further optimization of GOS derivatives led to the discovery of compound XY-32. XY-32 efficiently inhibits AR signaling with the IC50 of 1.23 μM. XY-32 downregulates both the full-length AR and the AR variable splice AR-V7 via suppressing the mRNA expression. It inhibits the proliferation of CRPC cells such as the LNCaP cells, the PC-3 cells, and enzalutamide resistance 22Rv1 cells. The work demonstrates the GOS derivatives represent a novel series of anti-androgen to conquer the acquired AR mutations or AR splice variants induced drug resistance of mCRPC.
Collapse
Affiliation(s)
- Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Meng Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Kui Luo
- Singfar Laboratories, Guangzhou 510670, PR China
| | - Fangjiao Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Ruoying Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | | | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China.
| | | | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
8
|
Li Y, Qu J, Liu L, Sun Y, Zhang J, Han S, Zhang Y. Apogossypolone Inhibits Cell Proliferation and Epithelial-Mesenchymal Transition in Cervical Cancer via Activating DKK3. Front Oncol 2022; 12:948023. [PMID: 35924156 PMCID: PMC9341244 DOI: 10.3389/fonc.2022.948023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Apogossypolone (ApoG2), a novel derivative of gossypol lacking of two aldehyde groups, exhibits anti-tumor effects. However, the mechanisms by which ApoG2 regulates cervical cancer (CC) cells remain unclear. In this study, we treated two CC cell lines (CaSki and HeLa) with an increasing concentration of ApoG2 for 24 h. Cell Counting Kit-8 (CCK-8) assay, colony formation assay, flow cytometry and transwell invasion assay were utilized to detect cell proliferation, apoptosis and invasion in vitro. We first observed that ApoG2 inhibited cell proliferation, invasion and epithelial-to-mesenchymal transition (EMT) process in CC cells, along with upregulation of Dickkopf Wnt signaling pathway inhibitor 3 (DKK3) in a dose-dependent manner. The immunohistochemistry confirmed the downregulation of DKK3 in tumor tissues. Moreover, DKK3 was correlated with FIGO stage and lymph node metastasis. Functionally, DKK3 overexpression significantly suppressed cell viability, colony formation and invasion, but promoted apoptosis in CaSki and HeLa cells. Overexpression of DKK3 upregulated the protein levels of cleaved caspase-3 and E-cadherin, but downregulated the protein levels of Bcl-2, N-cadherin and Vimentin. Furthermore, DKK3 knockdown reversed the suppressive effects of ApoG2 on CaSki cell proliferation, invasion and EMT markers, while DKK3 overexpression enhanced these effects. In addition, ApoG2 treatment inhibited CC xenograft tumor growth and upregulated the protein levels of DKK3, cleaved caspase-3 and E-cadherin. In conclusions, these findings suggested that ApoG2 could effectively inhibit the growth and invasion of CC cells at least partly by activating DKK3.
Collapse
Affiliation(s)
- Yuling Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinfeng Qu
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Junhua Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Youzhong Zhang,
| |
Collapse
|
9
|
Cai B, Gong L, Zhu Y, Kong L, Ju X, Li X, Yang X, Zhou H, Li Y. Identification of Gossypol Acetate as an Autophagy Modulator with Potent Anti-tumor Effect against Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2589-2599. [PMID: 35180345 DOI: 10.1021/acs.jafc.1c06399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Autophagy, an evolutionarily conserved process, is intricately involved in many aspects of human health and a variety of human diseases, including cancer. Discovery of small-molecule autophagy modulators with potent anticancer effect would be of great significance. To this end, a natural product library consisting of 170 natural compounds were screened as autophagy modulators with potent cytotoxicity in our present study. Among these compounds, gossypol acetate (GAA), the mostly used medicinal form of gossypol, was identified. GAA effectively increased the number of autophagic puncta in GFP-LC3B-labeled 293T cells and significantly decreased cell viability in different cancer cells. In A549 cells, GAA at concentrations below 10 μM triggered caspase-independent cell death via targeting autophagy, as evidenced by elevated LC3 conversion and decreased p62/SQSTM1 levels. Knocking down of LC3 significantly attenuated GAA-induced cell death. Mechanistically, GAA at low concentrations induced autophagy through targeting AMPK-mTORC1-ULK1 signaling. Interestingly, high concentrations of GAA induced LC3 conversion, p62 accumulation, and yellow autophagosome formation, indicating that GAA at high concentrations blocked autophagic flux. Mechanistically, GAA decreased intracellular ATP level and suppressed lysosome activity. Exogenous ATP partially reversed the inhibitory effect of GAA on autophagy, suggesting that decreased ATP level and lysosome activity might be involved in the blocking of autophagy flux by GAA. Collectively, our present study reveals the mechanisms by which GAA modulates autophagy and illustrates whether autophagy regulation by GAA is functionally involved in GAA-induced cancer cell death.
Collapse
Affiliation(s)
- Bicheng Cai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
- Institute of Shenzhen Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China
| | - Liang Gong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Yiying Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Xiaoman Ju
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Xue Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, China
| | - Hongyu Zhou
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500 Yunnan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Yan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| |
Collapse
|
10
|
Macasoi I, Mioc A, Mioc M, Racoviceanu R, Soica I, Chevereșan A, Dehelean C, Dumitrașcu V. Targeting Mitochondria through the Use of Mitocans as Emerging Anticancer Agents. Curr Med Chem 2020; 27:5730-5757. [DOI: 10.2174/0929867326666190712150638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
Mitochondria are key players with a multi-functional role in many vital cellular processes,
such as energy metabolism, redox regulation, calcium homeostasis, Reactive Oxygen Species
(ROS) as well as in cell signaling, survival and apoptosis. These functions are mainly regulated
through important enzyme signaling cascades, which if altered may influence the outcome of cell
viability and apoptosis. Therefore some of the key enzymes that are vital for these signaling pathways
are emerging as important targets for new anticancer agent development. Mitocans are compounds
aimed at targeting mitochondria in cancer cells by altering mitochondrial functions thus
causing cell growth inhibition or apoptosis. This review summarizes the till present known classes
of mitocans, their mechanism of action and potential therapeutic use in different forms of cancer.
Collapse
Affiliation(s)
- Ioana Macasoi
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Irina Soica
- Earlscliffe Sixth Form, Earlscliffe, 29 Shorncliffe Road, Folkestone, CT20 2NB, United Kingdom
| | - Adelina Chevereșan
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Victor Dumitrașcu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| |
Collapse
|
11
|
Badr El-Din NK, Areida SK, Ahmed KO, Ghoneum M. Arabinoxylan rice bran (MGN-3/Biobran) enhances radiotherapy in animals bearing Ehrlich ascites carcinoma†. JOURNAL OF RADIATION RESEARCH 2019; 60:747-758. [PMID: 31504707 PMCID: PMC6873627 DOI: 10.1093/jrr/rrz055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/22/2019] [Indexed: 05/08/2023]
Abstract
This study examines the ability of arabinoxylan rice bran (MGN-3/Biobran) to enhance the anti-cancer effects of fractionated X-ray irradiation of Ehrlich solid tumor-bearing mice. Swiss albino mice bearing tumors were exposed to the following: (i) Biobran treatment (40 mg/kg/day, intraperitoneal injections) beginning on day 11 post-tumor cell inoculation until day 30; (ii) ionizing radiation (Rad) 2 Gy at three consecutive doses on days 12, 14 and 16; or (iii) Biobran + Rad. Final tumor weight was suppressed by 46% for Biobran, 31% for Rad and 57% for the combined treatment (Biobran + Rad) relative to control untreated mice. Biobran and Rad also arrested the hypodiploid cells in the sub-G1-phase, signifying apoptosis by +102% and +85%, respectively, while the combined treatment induced apoptosis by +123%, with similar results in the degree of DNA fragmentation. Furthermore, Biobran + Rad upregulated the relative gene expression and protein level of p53 and Bax in tumor cells, down-regulated Bcl-2 expression, and increased the Bax/Bcl-2 ratio and caspase-3 activity, with the combined treatment greater than for either treatment alone. Additionally, the combined treatment modulated the decrease in body weight, the increase in liver and spleen weight, and the elevation of liver enzymes aspartate aminotransferase, alanine aminotransferase and gamma-glutamyl transferase to be within normal values. We conclude that Biobran enhances radiation therapy-induced tumor regression by potentiating apoptosis and minimizing toxicities related to radiation therapy, suggesting that Biobran may be useful in human cancer patients undergoing radiotherapy and warranting clinical trials.
Collapse
Affiliation(s)
| | - Said K Areida
- Department of Zoology, Faculty of Science, University of Mansoura, Mansoura, Egypt
| | | | - Mamdooh Ghoneum
- Department of Surgery, Drew University of Medicine and Science, Los Angeles, CA, USA
| |
Collapse
|
12
|
Zeng Y, Ma J, Xu L, Wu D. Natural Product Gossypol and its Derivatives in Precision Cancer Medicine. Curr Med Chem 2019; 26:1849-1873. [PMID: 28545375 DOI: 10.2174/0929867324666170523123655] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 01/07/2023]
Abstract
Gossypol, a natural product extracted from the seed, roots, and stem of cotton, was initially used as a male contraceptive but was subsequently investigated as a novel antitumor agent. This review depicts the current status of gossypol and its derivatives as novel antitumor agents as well as presents their preparation and characteristics, especially of some gossypol Schiff bases, through quantitative and structural analysis. The main attractive target sites of gossypol and its derivatives are Bcl-2 family proteins containing the anti-apoptosis proteins Bcl-2 and Bcl-XL. The molecular mechanism of gossypol analogs not only involves cell apoptosis but also autophagy, cell cycle arrest, and other abnormal cellular phenomena. Gossypol and its derivatives exert antitumor effects on different cancer types in vitro and in vivo, and demonstrate synergistic effects with other chemo- and radio- therapeutic treatments. In addition, several nanocarriers have been designed to load gossypol or its derivatives in order to expand the range of their applications and evaluate their combination effects with other anti-tumor agents. This review may serve as a reference for the rational application of gossypol analogs as anti-tumor agents.
Collapse
Affiliation(s)
- Yun Zeng
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingwen Ma
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States.,Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, Kansas, United States
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Chen CW, Hu S, Tsui KH, Hwang GS, Chen ST, Tang TK, Cheng HT, Yu JW, Wang HC, Juang HH, Wang PS, Wang SW. Anti-inflammatory Effects of Gossypol on Human Lymphocytic Jurkat Cells via Regulation of MAPK Signaling and Cell Cycle. Inflammation 2019; 41:2265-2274. [PMID: 30136021 DOI: 10.1007/s10753-018-0868-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gossypol, a natural polyphenolic compound extracted from cottonseed oil, has been reported to possess pharmacological properties via modulation cell cycle and immune signaling pathway. However, whether gossypol has anti-inflammatory effects against phytohemagglutinin (PHA)-induced cytokine secretion in T lymphocytes through similar mechanism remains unclear. Using the T lymphocytes Jurkat cell line, we found that PHA exposure caused dramatic increase in interleukin-2 (IL-2) mRNA expression as well as IL-2 secretion. All of these PHA-stimulated reactions were attenuated in a dose-dependent manner by being pretreated with gossypol. However, gossypol did not show any in vitro cytotoxic effect at doses of 5-20 μM. As a possible mechanism underlying gossypol action, such as pronounced suppression IL-2 release, robust decreased PHA-induced phosphorylation of p38 and c-Jun N-terminal kinase expressions was found with gossypol pretreatment, but not significant phosphorylation of extracellular signal-regulated kinase expression. Furthermore, gossypol could suppress the Jurkat cells' growth, which was associated with increased percentage of G1/S phase and decreased fraction of G2 phase in flow cytometry test. We conclude that gossypol exerts anti-inflammatory effects probably through partial attenuation of mitogen-activated protein kinase (phosphorylated JNK and p38) signaling and cell cycle arrest in Jurkat cells.
Collapse
Affiliation(s)
- Chien-Wei Chen
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Division of Geriatric Urology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Bioinformation Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Guey-Shyang Hwang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tswen-Kei Tang
- Department of Nursing, National Quemoy University, Kinmen County, Taiwan
| | - Hao-Tsai Cheng
- Division of Gastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ju-Wen Yu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hsiao-Chiu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Horng-Heng Juang
- Bioinformation Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Paulus S Wang
- Medical Center of Aging Research, China Medical University Hospital, Taichung, Taiwan, Republic of China. .,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China.
| | - Shyi-Wu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China. .,Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Benvenuto M, Mattera R, Sticca JI, Rossi P, Cipriani C, Giganti MG, Volpi A, Modesti A, Masuelli L, Bei R. Effect of the BH3 Mimetic Polyphenol (-)-Gossypol (AT-101) on the in vitro and in vivo Growth of Malignant Mesothelioma. Front Pharmacol 2018; 9:1269. [PMID: 30459622 PMCID: PMC6232343 DOI: 10.3389/fphar.2018.01269] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023] Open
Abstract
Malignant mesothelioma (MM) is a primary tumor arising from mesothelial cells. The survival of MM patients following traditional chemotherapy is poor, thus innovative treatments for MM are needed. (-)-gossypol (AT-101) is a BH3 mimetic compound which possesses anti-tumoral activity by targeting multiple signaling transduction pathways. Several clinical trials employing AT-101 have been performed and some of them are still ongoing. Accordingly, we investigated the in vitro effects of AT-101 on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis and autophagy of human (MM-B1, H-Meso-1, and MM-F1) and mouse (#40a) MM cell lines. In addition, we explored the in vivo anti-tumor activities of AT-101 in a mouse model, in which the transplantation of MM cells induces ascites in the peritoneal space. AT-101 inhibited in vitro MM cells survival in a dose- and time-dependent manner and triggered autophagy, but the process was then blocked and was coincident with apoptosis activation. To confirm the effect of AT-101 in inducing the apoptosis of MM cells, MM cells were simultaneously treated with AT-101 and with the caspase inhibitor, Z-VAD-FMK. Z-VAD-FMK was able to significantly reduce the number of cells in the subG1 phase compared to the treatment with AT-101 alone. This result corroborates the induction of cell death by apoptosis following treatment with AT-101. Indeed, Western blotting results showed that AT-101 increases Bax/Bcl-2 ratio, modulates p53 expression, activates caspase 9 and the cleavage of PARP-1. In addition, the treatment with AT-101 was able to: (a) decrease the ErbB2 protein expression; (b) increase the EGFR protein expression; (c) affect the phosphorylation of ERK1/2, p38 and AKT; (d) stimulate JNK1/2 and c-jun phosphorylation. Our in vivo results showed that the intraperitoneal administration of AT-101 increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of developing tumors. Our findings may have important implications for the design of MM therapies by employing AT-101 as an anticancer agent in combination with standard therapies.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Joshua Ismaele Sticca
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Piero Rossi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Volpi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
15
|
Li X, He J, Li B, Gao M, Zeng Y, Lian J, Shi C, Huang Y, He F. The PPARγ agonist rosiglitazone sensitizes the BH3 mimetic (-)-gossypol to induce apoptosis in cancer cells with high level of Bcl-2. Mol Carcinog 2018; 57:1213-1222. [PMID: 29856104 DOI: 10.1002/mc.22837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
The BH3 mimetic (-)-gossypol (-)-G has shown promising efficacy to kill several kinds of cancer cells or potentiate current chemotherapeutics. But it induces limited apoptosis in cancer cells with high level of Bcl-2. The nuclear receptor PPARγ and its agonist rosiglitazone can suppress various malignancies. More importantly, rosiglitazone is able to enhance the anti-tumor effects of chemotherapy drugs such as carboplatin and tyrosine kinase inhibitors. In this study, we for the first time demonstrated that rosiglitazone could sensitize (-)-G to induce apoptosis in cancer cells with high level of Bcl-2. Furthermore, we found that (-)-G increased the mRNA level and protein stability of Mcl-1, which weakened the pro-apoptotic effect of (-)-G. Rosiglitazone attenuated the (-)-G-induced Mcl-1 stability through decreasing JNK phosphorylation. Additionally, rosiglitazone upregulated dual-specificity phosphatase 16 (DUSP16), leading to a reduction of (-)-G-triggered JNK phosphorylation. Animal experiments showed that rosiglitazone could sensitize (-)-G to repress the growth of cancer cells with high level of Bcl-2 in vivo. Taken together, our results suggest that the PPARγ agonists may enhance the therapeutic effect of BH3 mimetics in cancers with high level of Bcl-2 through regulating the DUSP16/JNK/Mcl-1 singling pathway. This study may provide novel insights into the cancer therapeutics based on the combination of PPARγ agonists and BH3 mimetics.
Collapse
Affiliation(s)
- Xinzhe Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jintao He
- Institute of Combined Injury, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China.,Chinese PLA 44 Hospital, Guiyang, China
| | - Min Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yijun Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiqin Lian
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunmeng Shi
- Institute of Combined Injury, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Huang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
16
|
Wolf P. BH3 Mimetics for the Treatment of Prostate Cancer. Front Pharmacol 2017; 8:557. [PMID: 28868037 PMCID: PMC5563364 DOI: 10.3389/fphar.2017.00557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Despite improved diagnostic and therapeutic intervention, advanced prostate cancer (PC) remains incurable. The acquired resistance of PC cells to current treatment protocols has been traced to apoptosis resistance based on the upregulation of anti-apoptotic proteins of the Bcl-2 family. The use of BH3 mimetics, mimicking pro-apoptotic activator or sensitizer proteins of the intrinsic apoptotic pathway, is therefore a promising treatment strategy. The present review gives an overview of preclinical and clinical studies with pan- and specific BH3 mimetics as sensitizers for cell death and gives an outlook how they could be effectively used for the therapy of advanced PC in future.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of FreiburgFreiburg, Germany
| |
Collapse
|
17
|
Ahire V, Kumar A, Mishra KP, Kulkarni G. Ellagic Acid Enhances Apoptotic Sensitivity of Breast Cancer Cells to γ-Radiation. Nutr Cancer 2017; 69:904-910. [PMID: 28718725 DOI: 10.1080/01635581.2017.1339811] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herbal polyphenols have gained increased significance because of the promises they hold in the prevention and treatment of cancer. There exists an enormous opportunity for the screening and valuation of natural dietary compounds in the development of an effective chemopreventive drug and radiosensitizer that may be of practical use for patients undergoing cancer therapy. This study describes the effect of the flavonoid ellagic acid (EA) on gamma-irradiated human breast cancer MCF-7 cells in vitro when administered alone or in combination with radiation. It was interesting to find the radioprotective effect of EA on NIH3T3, which is a normal cell line. Irradiation of breast tumor cells in the presence of EA (10 μM) to doses of 2 and 4-Gy gamma radiation produced a marked synergistic tumor cytotoxicity while it was found to aid recovery from the radiation damage to NIH3T3 cells. When cells were given a combined treatment of EA and radiation, the cell death increased to 21.7% and 20.7% in the 2 and 4-Gy-treated cells respectively, significantly (P < 0.05) reducing the capacity of MCF-7 cells to form colonies. Even at 24 h, 38 foci/cell were observed in samples that were given the combined treatment, suggesting the cells' inability in repairing the damage. Also, increased apoptosis in EA+ 2Gy (50%) and EA+ 4 Gy (62%)-treated cells was observed in the the sub-G1 phase of the cell cycle. A 6.2-fold decrease in the mitochondrial membrane potential was observed in the combined treatment of EA and IR that facilitated the upregulation of pro-apopttotic Bax and downregulation of Bcl-2, pushing the MCF-7 cells to undergo an apoptotic cell death. It is suggested that EA may be a potential drug adjuvant for improving cancer radiotherapy by increasing tumor toxicity and reducing the normal cell damage caused by irradiation.
Collapse
Affiliation(s)
- Vidhula Ahire
- a School of Basic Medical Science, University of Pune , Pune , India.,b RB&HSD, Bhabha Atomic Research Center , Trombay, Mumbai , India
| | - Amit Kumar
- b RB&HSD, Bhabha Atomic Research Center , Trombay, Mumbai , India
| | - Kaushala Prasad Mishra
- c Foundation for Education and Research, India and BM International Research Centre , Mumbai , India
| | - Gauri Kulkarni
- a School of Basic Medical Science, University of Pune , Pune , India
| |
Collapse
|
18
|
Takeda T, Tsubaki M, Kino T, Kawamura A, Isoyama S, Itoh T, Imano M, Tanabe G, Muraoka O, Matsuda H, Satou T, Nishida S. Mangiferin enhances the sensitivity of human multiple myeloma cells to anticancer drugs through suppression of the nuclear factor κB pathway. Int J Oncol 2016; 48:2704-12. [PMID: 27035859 DOI: 10.3892/ijo.2016.3470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/15/2016] [Indexed: 11/05/2022] Open
Abstract
Multiple myeloma (MM) is still an incurable hematological malignancy with a 5-year survival rate of ~35%, despite the use of various treatment options. The nuclear factor κB (NF-κB) pathway plays a crucial role in the pathogenesis of MM. Thus, inhibition of the NF-κB pathway is a potential target for the treatment of MM. In a previous study, we showed that mangiferin suppressed the nuclear translocation of NF-κB. However, the treatment of MM involves a combination of two or three drugs. In this study, we examined the effect of the combination of mangiferin and conventional anticancer drugs in an MM cell line. We showed that the combination of mangiferin and an anticancer drug decreased the viability of MM cell lines in comparison with each drug used separately. The decrease in the combination of mangiferin and an anticancer drug induced cell viability was attributed to increase the expression of p53 and Noxa and decreases the expression of XIAP, survivin, and Bcl-xL proteins via inhibition of NF-κB pathway. In addition, the combination treatment caused the induction of apoptosis, activation of caspase-3 and the accumulation of the cells in the sub-G1 phase of the cell cycle. Our findings suggest that the combination of mangiferin and an anticancer drug could be used as a new regime for the treatment of MM.
Collapse
Affiliation(s)
- Tomoya Takeda
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Toshiki Kino
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Ayako Kawamura
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Shota Isoyama
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Tatsuki Itoh
- Department of Food Science and Nutrition, Kinki University School of Agriculture, Nara, Japan
| | - Motohiro Imano
- Department of Surgery, Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Genzoh Tanabe
- Laboratory of Pharmaceutical Organic Chemistry, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Osamu Muraoka
- Laboratory of Pharmaceutical Organic Chemistry, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Hideaki Matsuda
- Department of Natural Drugs Resources, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| |
Collapse
|
19
|
Jang GH, Lee M. BH3-mimetic gossypol-induced autophagic cell death in mutant BRAF melanoma cells with high expression of p21Cip1. Life Sci 2014; 102:41-8. [DOI: 10.1016/j.lfs.2014.02.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/24/2014] [Accepted: 02/21/2014] [Indexed: 02/06/2023]
|
20
|
Wang L, Yang H, Palmbos PL, Ney G, Detzler TA, Coleman D, Leflein J, Davis M, Zhang M, Tang W, Hicks JK, Helchowski CM, Prasad J, Lawrence TS, Xu L, Yu X, Canman CE, Ljungman M, Simeone DM. ATDC/TRIM29 phosphorylation by ATM/MAPKAP kinase 2 mediates radioresistance in pancreatic cancer cells. Cancer Res 2014; 74:1778-88. [PMID: 24469230 DOI: 10.1158/0008-5472.can-13-2289] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by therapeutic resistance for which the basis is poorly understood. Here, we report that the DNA and p53-binding protein ATDC/TRIM29, which is highly expressed in PDAC, plays a critical role in DNA damage signaling and radioresistance in pancreatic cancer cells. Ataxia-telangiectasia group D-associated gene (ATDC) mediated resistance to ionizing radiation in vitro and in vivo in mouse xenograft assays. ATDC was phosphorylated directly by MAPKAP kinase 2 (MK2) at Ser550 in an ATM-dependent manner. Phosphorylation at Ser-550 by MK2 was required for the radioprotective function of ATDC. Our results identify a DNA repair pathway leading from MK2 and ATM to ATDC, suggesting its candidacy as a therapeutic target to radiosensitize PDAC and improve the efficacy of DNA-damaging treatment.
Collapse
Affiliation(s)
- Lidong Wang
- Authors' Affiliations: Departments of Surgery, Radiation Oncology, Pharmacology, Internal Medicine and Molecular and Integrative Physiology, Translational Oncology Program, and Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:735-45. [DOI: 10.1016/j.bbabio.2011.03.010] [Citation(s) in RCA: 397] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 12/11/2022]
|
22
|
Dai Y, Liu M, Tang W, DeSano J, Burstein E, Davis M, Pienta K, Lawrence T, Xu L. Molecularly targeted radiosensitization of human prostate cancer by modulating inhibitor of apoptosis. Clin Cancer Res 2009; 14:7701-10. [PMID: 19047096 DOI: 10.1158/1078-0432.ccr-08-0188] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE The inhibitor of apoptosis proteins (IAP) are overexpressed in hormone-refractory prostate cancer, rendering the cancer cells resistant to radiation. This study aims to investigate the radiosensitizing effect of small-molecule IAP inhibitor both in vitro and in vivo in androgen-independent prostate cancer and the possible mechanism of radiosensitization. EXPERIMENTAL DESIGN Radiosensitization of SH-130 in human prostate cancer DU-145 cells was determined by clonogenic survival assay. Combination effect of SH-130 and ionizing radiation was evaluated by apoptosis assays. Pull-down and immunoprecipitation assays were employed to investigate the interaction between SH-130 and IAPs. DU-145 xenografts in nude mice were treated with SH-130, radiation, or combination, and tumor suppression effect was determined by caliper measurement or bioluminescence imaging. Nuclear factor-kappaB activation was detected by luciferase reporter assay and quantitative real-time PCR. RESULTS SH-130 potently enhanced radiation-induced caspase activation and apoptosis in DU-145 cells. Both X-linked IAP and cIAP-1 can be pulled down by SH-130 but not by inactive SH-123. Moreover, SH-130 interrupted interaction between X-linked IAP/cIAP-1 and Smac. In a nude mouse xenograft model, SH-130 potently sensitized the DU-145 tumors to X-ray radiation without increasing systemic toxicity. The combination therapy suppressed tumor growth more significantly than either treatment alone, with over 80% of complete tumor regression. Furthermore, SH-130 partially blocked tumor necrosis factor-alpha- and radiation-induced nuclear factor-kappaB activation in DU-145 cells. CONCLUSIONS Our results show that small-molecule inhibitors of IAPs can overcome apoptosis resistance and radiosensitize human prostate cancer with high levels of IAPs. Molecular modulation of IAPs may improve the outcome of prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Yao Dai
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109-0582, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang X, Howell CP, Chen F, Yin J, Jiang Y. Gossypol--a polyphenolic compound from cotton plant. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 58:215-263. [PMID: 19878861 DOI: 10.1016/s1043-4526(09)58006-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gossypol (C(30)H(30)O(8)) is a polyphenolic compound derived from the cotton plant (genus Gossypium, family Malvaceae). The presence of six phenolic hydroxyl groups and two aldehydic groups makes gossypol chemically reactive. Gossypol can undergo Schiff base formation, ozonolysis, oxidation, and methylation to form gossypol derivatives. Gossypol and its derivatives have been the target of much research due to their multifaceted biological activities including antifertility, antivirus, anticancer, antioxidant, antitrypanosomal, antimicrobial, and antimalarial activities. Because of restricted rotation of the internaphthyl bond, gossypol is a chiral compound, which has two atropisomers (i.e., (+)- and (-)-gossypol) that exhibit different levels of biological activities. This chapter covers the physiochemical properties, analyses, biological properties, and agricultural and clinical implications of gossypol.
Collapse
Affiliation(s)
- Xi Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | |
Collapse
|
24
|
Wang L, Sloper DT, Addo SN, Tian D, Slaton JW, Xing C. WL-276, an antagonist against Bcl-2 proteins, overcomes drug resistance and suppresses prostate tumor growth. Cancer Res 2008; 68:4377-83. [PMID: 18519699 DOI: 10.1158/0008-5472.can-07-6590] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with hormone-refractory prostate cancer (HRPC) have an estimated median survival of only 10 months because of acquired drug resistance, urging the need to develop therapies against the drug-resistant HRPC phenotype. Accumulating evidence suggests that overexpressing antiapoptotic Bcl-2 family proteins is at least partially responsible for the development of drug resistance among HRPC patients. Antagonizing the antiapoptotic Bcl-2 family proteins, therefore, is one potential approach to circumventing drug resistance in HRPC. WL-276 was developed as a small-molecule antagonist against antiapoptotic Bcl-2 family proteins, with binding potency comparable to (-)-gossypol. Overexpressing Bcl-2 or Bcl-X(L) failed to confer resistance to WL-276. WL-276 also effectively induced apoptosis in PC-3 cells. In addition, three PC-3 cell lines with acquired drug resistance against standard cancer chemotherapies were more sensitive to WL-276 than the parent PC-3 cell line. The increased cytotoxicity toward drug-resistant PC-3 cells shows the clinical potential of WL-276 against HRPC that is resistant to conventional therapies. The anticancer activity of WL-276 was manifested in its suppression of PC-3-induced prostate tumor growth in vivo. The selective toxicity of WL-276 against drug-resistant PC-3 cells and its in vivo suppression of PC-3 prostate tumor growth suggest that WL-276 is a promising lead candidate for the development of Bcl-2 antagonists against drug-resistant HRPC.
Collapse
Affiliation(s)
- Liangyou Wang
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
25
|
Pienta KJ, Bradley D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res 2006; 12:1665-71. [PMID: 16551847 DOI: 10.1158/1078-0432.ccr-06-0067] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kenneth J Pienta
- Michigan Urology Center, University of Michigan, Ann Arbor, Michigan 48109-0946, USA.
| | | |
Collapse
|