1
|
Kitano T, Nishikawa K, Takagaki T, Sugitani Y, Hino O, Kobayashi T. Induction by rapamycin and proliferation‑promoting activity of Hspb1 in a Tsc2‑deficient cell line. Exp Ther Med 2023; 26:315. [PMID: 37273756 PMCID: PMC10236050 DOI: 10.3892/etm.2023.12014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/21/2023] [Indexed: 06/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an intractable inherited disease caused by a germline mutation in either the TSC complex subunit 1 (TSC1) or TSC2 tumor suppressor genes. Recent progress in the treatment of TSC with rapamycin has provided benefits to patients with TSC. However, the complete elimination of tumors is difficult to achieve as regrowth often occurs after a drug is suspended; thus, more efficient medication and novel therapeutic targets are required. To overcome tumor remnants in the treatment of TSC, the present study investigated rapamycin-responsive signaling pathways in Tsc2-deficient tumor cells, focusing on heat shock protein-related pathways. The expression levels of heat shock protein family B (small) member 1 (Hspb1; also known as HSP25/27) were increased by rapamycin treatment. The phosphorylation of Hspb1 was also increased. The knockdown of Hspb1 suppressed cell proliferation in the absence of rapamycin, and the overexpression of Hspb1 enhanced cell proliferation both in the presence and absence of rapamycin. Pathways associated with Hspb1 may present target candidates for treatment of TSC.
Collapse
Affiliation(s)
- Takayuki Kitano
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Keiko Nishikawa
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Tetsuya Takagaki
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yoshinobu Sugitani
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
2
|
Sato T, Mukai S, Ikeda H, Mishiro-Sato E, Akao K, Kobayashi T, Hino O, Shimono W, Shibagaki Y, Hattori S, Sekido Y. Silencing of SmgGDS, a Novel mTORC1 Inducer That Binds to RHEBs, Inhibits Malignant Mesothelioma Cell Proliferation. Mol Cancer Res 2021; 19:921-931. [PMID: 33574130 DOI: 10.1158/1541-7786.mcr-20-0637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/15/2020] [Accepted: 02/04/2021] [Indexed: 11/16/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive tumor that typically develops after a long latency following asbestos exposure. Although mechanistic target of rapamycin complex 1 (mTORC1) activation enhances MM cell growth, the mTORC1 inhibitor everolimus has shown limited efficacy in clinical trials of MM patients. We explored the mechanism underlying mTORC1 activation in MM cells and its effects on cell proliferation and progression. Analysis of the expression profiles of 87 MMs from The Cancer Genome Atlas revealed that 40 samples (46%) displayed altered expression of RPTOR (mTORC1 component) and genes immediately upstream that activate mTORC1. Among them, we focused on RHEB and RHEBL1, which encode direct activators of mTORC1. Exogenous RHEBL1 expression enhanced MM cell growth, indicating that RHEB-mTORC1 signaling acts as a pro-oncogenic cascade. We investigated molecules that directly activate RHEBs, identifying SmgGDS as a novel RHEB-binding protein. SmgGDS knockdown reduced mTORC1 activation and inhibited the proliferation of MM cells with mTORC1 activation. Interestingly, SmgGDS displayed high binding affinity with inactive GDP-bound RHEBL1, and its knockdown reduced cytosolic RHEBL1 without affecting its activation. These findings suggest that SmgGDS retains GDP-bound RHEBs in the cytosol, whereas GTP-bound RHEBs are localized on intracellular membranes to promote mTORC1 activation. We revealed a novel role for SmgGDS in the RHEB-mTORC1 pathway and its potential as a therapeutic target in MM with aberrant mTORC1 activation. IMPLICATIONS: Our data showing that SmgGDS regulates RHEB localization to activate mTORC1 indicate that SmgGDS can be used as a new therapeutic target for MM exhibiting mTORC1 activation.
Collapse
Affiliation(s)
- Tatsuhiro Sato
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Satomi Mukai
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Haruna Ikeda
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Emi Mishiro-Sato
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Ken Akao
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.,Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Wataru Shimono
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshio Shibagaki
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Seisuke Hattori
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan. .,Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Emmanuel N, Ragunathan S, Shan Q, Wang F, Giannakou A, Huser N, Jin G, Myers J, Abraham RT, Unsal-Kacmaz K. Purine Nucleotide Availability Regulates mTORC1 Activity through the Rheb GTPase. Cell Rep 2018; 19:2665-2680. [PMID: 28658616 DOI: 10.1016/j.celrep.2017.05.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/24/2017] [Accepted: 05/12/2017] [Indexed: 01/05/2023] Open
Abstract
Pharmacologic agents that interfere with nucleotide metabolism constitute an important class of anticancer agents. Recent studies have demonstrated that mTOR complex 1 (mTORC1) inhibitors suppress de novo biosynthesis of pyrimidine and purine nucleotides. Here, we demonstrate that mTORC1 itself is suppressed by drugs that reduce intracellular purine nucleotide pools. Cellular treatment with AG2037, an inhibitor of the purine biosynthetic enzyme GARFT, profoundly inhibits mTORC1 activity via a reduction in the level of GTP-bound Rheb, an obligate upstream activator of mTORC1, because of a reduction in intracellular guanine nucleotides. AG2037 treatment provokes both mTORC1 inhibition and robust tumor growth suppression in mice bearing non-small-cell lung cancer (NSCLC) xenografts. These results indicate that alterations in purine nucleotide availability affect mTORC1 activity and suggest that inhibition of mTORC1 contributes to the therapeutic effects of purine biosynthesis inhibitors.
Collapse
Affiliation(s)
- Natasha Emmanuel
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Shoba Ragunathan
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Qin Shan
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Fang Wang
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Andreas Giannakou
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Nanni Huser
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646 Science Center Drive/CB4, San Diego, CA 92121, USA
| | - Guixian Jin
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Jeremy Myers
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | - Robert T Abraham
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646 Science Center Drive/CB4, San Diego, CA 92121, USA.
| | - Keziban Unsal-Kacmaz
- Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA.
| |
Collapse
|
4
|
Lu J, Yoshimura K, Goto K, Lee C, Hamura K, Kwon O, Tamanoi F. Nanoformulation of Geranylgeranyltransferase-I Inhibitors for Cancer Therapy: Liposomal Encapsulation and pH-Dependent Delivery to Cancer Cells. PLoS One 2015; 10:e0137595. [PMID: 26352258 PMCID: PMC4564137 DOI: 10.1371/journal.pone.0137595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/18/2015] [Indexed: 12/17/2022] Open
Abstract
Small molecule inhibitors against protein geranylgeranyltransferase-I such as P61A6 have been shown to inhibit proliferation of a variety of human cancer cells and exhibit antitumor activity in mouse models. Development of these inhibitors could be dramatically accelerated by conferring tumor targeting and controlled release capability. As a first step towards this goal, we have encapsulated P61A6 into a new type of liposomes that open and release cargos only under low pH condition. These low pH-release type liposomes were prepared by adjusting the ratio of two types of phospholipid derivatives. Loading of geranylgeranyltransferase-I inhibitor (GGTI) generated liposomes with average diameter of 50–100 nm. GGTI release in solution was sharply dependent on pH values, only showing release at pH lower than 6. Release of cargos in a pH-dependent manner inside the cell was demonstrated by the use of a proton pump inhibitor Bafilomycin A1 that Increased lysosomal pH and inhibited the release of a dye carried in the pH-liposome. Delivery of GGTI to human pancreatic cancer cells was demonstrated by the inhibition of protein geranylgeranylation inside the cell and this effect was blocked by Bafilomycin A1. In addition, GGTI delivered by pH-liposomes induced proliferation inhibition, G1 cell cycle arrest that is associated with the expression of cell cycle regulator p21CIP1/WAF1. Proliferation inhibition was also observed with various lung cancer cell lines. Availability of nanoformulated GGTI opens up the possibility to combine with other types of inhibitors. To demonstrate this point, we combined the liposomal-GGTI with farnesyltransferase inhibitor (FTI) to inhibit K-Ras signaling in pancreatic cancer cells. Our results show that the activated K-Ras signaling in these cells can be effectively inhibited and that synergistic effect of the two drugs is observed. Our results suggest a new direction in the use of GGTI for cancer therapy.
Collapse
Affiliation(s)
- Jie Lu
- Dept. of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Kohei Yoshimura
- DDS Research Laboratory, NOF CORPORATION, Kawasaki, Kanagawa 210–0865, Japan
| | - Koichi Goto
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, Kumamoto, Japan
| | - Craig Lee
- Dept. of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Ken Hamura
- DDS Research Laboratory, NOF CORPORATION, Kawasaki, Kanagawa 210–0865, Japan
| | - Ohyun Kwon
- Dept. of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Fuyuhiko Tamanoi
- Dept. of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, United States of America
- * E-mail:
| |
Collapse
|
5
|
Yasuda S, Sugiura H, Katsurabayashi S, Shimada T, Tanaka H, Takasaki K, Iwasaki K, Kobayashi T, Hino O, Yamagata K. Activation of Rheb, but not of mTORC1, impairs spine synapse morphogenesis in tuberous sclerosis complex. Sci Rep 2014; 4:5155. [PMID: 24889507 PMCID: PMC4042127 DOI: 10.1038/srep05155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/15/2014] [Indexed: 12/30/2022] Open
Abstract
Mutations in the Tsc1 or Tsc2 genes cause tuberous sclerosis complex (TSC). Tsc1 and Tsc2 proteins form a complex that inhibits mammalian target of rapamycin complex 1 (mTORC1) signalling through Rheb-GTPase. We found that Tsc2+/− neurons showed impaired spine synapse formation, which was resistant to an mTORC1 inhibitor. Knockdown of mTOR also failed to restore these abnormalities, suggesting mTORC may not participate in impaired spinogenesis in Tsc2+/− neurons. To address whether Rheb activation impairs spine synapse formation, we expressed active and inactive forms of Rheb in WT and Tsc2+/− neurons, respectively. Expression of active Rheb abolished dendritic spine formation in WT neurons, whereas inactive Rheb restored spine synapse formation in Tsc2+/− neurons. Moreover, inactivation of Rheb with farnesyl transferase inhibitors recovered spine synapse morphogenesis in Tsc2+/− neurons. In conclusion, dendritic spine abnormalities in TSC neurons may be caused through activation of Rheb, but not through of mTORC1.
Collapse
Affiliation(s)
- Shin Yasuda
- 1] Neural Plasticity Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2]
| | - Hiroko Sugiura
- 1] Neural Plasticity Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2]
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Tadayuki Shimada
- Neural Plasticity Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hidekazu Tanaka
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Kotaro Takasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Toshiyuki Kobayashi
- Department of Pathology and Oncology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Okio Hino
- Department of Pathology and Oncology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Kanato Yamagata
- Neural Plasticity Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
6
|
Plasticity and mTOR: towards restoration of impaired synaptic plasticity in mTOR-related neurogenetic disorders. Neural Plast 2012; 2012:486402. [PMID: 22619737 PMCID: PMC3350854 DOI: 10.1155/2012/486402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/14/2012] [Indexed: 12/22/2022] Open
Abstract
Objective. To review the recent literature on the clinical features, genetic mutations, neurobiology associated with dysregulation of mTOR (mammalian target of rapamycin), and clinical trials for tuberous sclerosis complex (TSC), neurofibromatosis-1 (NF1) and fragile X syndrome (FXS), and phosphatase and tensin homolog hamartoma syndromes (PTHS), which are neurogenetic disorders associated with abnormalities in synaptic plasticity and mTOR signaling. Methods. Pubmed and Clinicaltrials.gov were searched using specific search strategies. Results/Conclusions. Although traditionally thought of as irreversible disorders, significant scientific progress has been made in both humans and preclinical models to understand how pathologic features of these neurogenetic disorders can be reduced or reversed. This paper revealed significant similarities among the conditions. Not only do they share features of impaired synaptic plasticity and dysregulation of mTOR, but they also share clinical features—autism, intellectual disability, cutaneous lesions, and tumors. Although scientific advances towards discovery of effective treatment in some disorders have outpaced others, progress in understanding the signaling pathways that connect the entire group indicates that the lesser known disorders will become treatable as well.
Collapse
|
7
|
Ghinet A, Rigo B, Dubois J, Farce A, Hénichart JP, Gautret P. Discovery of ferrocene-containing farnesyltransferase inhibitors. Investigation of bulky lipophilic groups for the A2 binding site of farnesyltransferase. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20138k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Chan LN, Fiji HDG, Watanabe M, Kwon O, Tamanoi F. Identification and characterization of mechanism of action of P61-E7, a novel phosphine catalysis-based inhibitor of geranylgeranyltransferase-I. PLoS One 2011; 6:e26135. [PMID: 22028818 PMCID: PMC3196516 DOI: 10.1371/journal.pone.0026135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/20/2011] [Indexed: 12/31/2022] Open
Abstract
Small molecule inhibitors of protein geranylgeranyltransferase-I (GGTase-I) provide a promising type of anticancer drugs. Here, we first report the identification of a novel tetrahydropyridine scaffold compound, P61-E7, and define effects of this compound on pancreatic cancer cells. P61-E7 was identified from a library of allenoate-derived compounds made through phosphine-catalyzed annulation reactions. P61-E7 inhibits protein geranylgeranylation and blocks membrane association of geranylgeranylated proteins. P61-E7 is effective at inhibiting both cell proliferation and cell cycle progression, and it induces high p21(CIP1/WAF1) level in human cancer cells. P61-E7 also increases p27(Kip1) protein level and inhibits phosphorylation of p27(Kip1) on Thr187. We also report that P61-E7 treatment of Panc-1 cells causes cell rounding, disrupts actin cytoskeleton organization, abolishes focal adhesion assembly and inhibits anchorage independent growth. Because the cellular effects observed pointed to the involvement of RhoA, a geranylgeranylated small GTPase protein shown to influence a number of cellular processes including actin stress fiber organization, cell adhesion and cell proliferation, we have evaluated the significance of the inhibition of RhoA geranylgeranylation on the cellular effects of inhibitors of GGTase-I (GGTIs). Stable expression of farnesylated RhoA mutant (RhoA-F) results in partial resistance to the anti-proliferative effect of P61-E7 and prevents induction of p21(CIP1/WAF1) and p27(Kip1) by P61-E7 in Panc-1 cells. Moreover, stable expression of RhoA-F rescues Panc-1 cells from cell rounding and inhibition of focal adhesion formation caused by P61-E7. Taken together, these findings suggest that P61-E7 is a promising GGTI compound and that RhoA is an important target of P61-E7 in Panc-1 pancreatic cancer cells.
Collapse
Affiliation(s)
- Lai N. Chan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Hannah D. G. Fiji
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - Masaru Watanabe
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Ohyun Kwon
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Balasis ME, Forinash KD, Chen YA, Fulp WJ, Coppola D, Hamilton AD, Cheng JQ, Sebti SM. Combination of farnesyltransferase and Akt inhibitors is synergistic in breast cancer cells and causes significant breast tumor regression in ErbB2 transgenic mice. Clin Cancer Res 2011; 17:2852-62. [PMID: 21536547 DOI: 10.1158/1078-0432.ccr-10-2544] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Akt activation inhibitor triciribine and the farnesyltransferase inhibitor tipifarnib have modest to little activity in clinical trials when used as single agents. In this article, preclinical data show that the combination is more effective than single agents both in cultured cells and in vivo. Combination index data analysis shows that this combination is highly synergistic at inhibiting anchorage-dependent growth of breast cancer cells. This synergistic interaction is also observed with structurally unrelated inhibitors of Akt (MK-2206) and farnesyltransferase (FTI-2153). The triciribine/tipifarnib synergistic effects are seen with several cancer cell lines including those from breast, leukemia, multiple myeloma and lung tumors with different genetic alterations such as K-Ras, B-Raf, PI3K (phosphoinositide 3-kinase), p53 and pRb mutations, PTEN, pRB and Ink4a deletions, and ErbB receptor overexpression. Furthermore, the combination is synergistic at inhibiting anchorage-independent growth and at inducing apoptosis in breast cancer cells. The combination is also more effective at inhibiting the Akt/mTOR/S6 kinase pathway. In an ErbB2-driven breast tumor transgenic mouse model, the combination, but not single agent, treatment with triciribine and tipifarnib induces significant breast tumor regression. Our findings warrant further investigation of the combination of farnesyltransferase and Akt inhibitors.
Collapse
Affiliation(s)
- Maria E Balasis
- Drug Discovery Department, H Lee Moffitt Cancer Center and Research Institut, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Balgi AD, Diering GH, Donohue E, Lam KKY, Fonseca BD, Zimmerman C, Numata M, Roberge M. Regulation of mTORC1 signaling by pH. PLoS One 2011; 6:e21549. [PMID: 21738705 PMCID: PMC3126813 DOI: 10.1371/journal.pone.0021549] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/01/2011] [Indexed: 11/18/2022] Open
Abstract
Background Acidification of the cytoplasm and the extracellular environment is associated with many physiological and pathological conditions, such as intense exercise, hypoxia and tumourigenesis. Acidification affects important cellular functions including protein synthesis, growth, and proliferation. Many of these vital functions are controlled by mTORC1, a master regulator protein kinase that is activated by various growth-stimulating signals and inactivated by starvation conditions. Whether mTORC1 can also respond to changes in extracellular or cytoplasmic pH and play a role in limiting anabolic processes in acidic conditions is not known. Methodology/Findings We examined the effects of acidifying the extracellular medium from pH 7.4 to 6.4 on human breast carcinoma MCF-7 cells and immortalized mouse embryo fibroblasts. Decreasing the extracellular pH caused intracellular acidification and rapid, graded and reversible inhibition of mTORC1, assessed by measuring the phosphorylation of the mTORC1 substrate S6K. Fibroblasts deleted of the tuberous sclerosis complex TSC2 gene, a major negative regulator of mTORC1, were unable to inhibit mTORC1 in acidic extracellular conditions, showing that the TSC1–TSC2 complex is required for this response. Examination of the major upstream pathways converging on the TSC1–TSC2 complex showed that Akt signaling was unaffected by pH but that the Raf/MEK/ERK pathway was inhibited. Inhibition of MEK with drugs caused only modest mTORC1 inhibition, implying that other unidentified pathways also play major roles. Conclusions This study reveals a novel role for the TSC1/TSC2 complex and mTORC1 in sensing variations in ambient pH. As a common feature of low tissue perfusion, low glucose availability and high energy expenditure, acidic pH may serve as a signal for mTORC1 to downregulate energy-consuming anabolic processes such as protein synthesis as an adaptive response to metabolically stressful conditions.
Collapse
Affiliation(s)
- Aruna D. Balgi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Graham H. Diering
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elizabeth Donohue
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen K. Y. Lam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruno D. Fonseca
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carla Zimmerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
11
|
Neuman NA, Henske EP. Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis. EMBO Mol Med 2011; 3:189-200. [PMID: 21412983 PMCID: PMC3377068 DOI: 10.1002/emmm.201100131] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 01/10/2023] Open
Abstract
The protein products of the tuberous sclerosis complex (TSC) genes, TSC1 and TSC2, form a complex, which inhibits the small G-protein, Ras homolog enriched in brain (Rheb). The vast majority of research regarding these proteins has focused on mammalian Target of Rapamycin (mTOR), a target of Rheb. Here, we propose that there are clinically relevant functions and targets of TSC1, TSC2 and Rheb, which are independent of mTOR. We present evidence that such non-canonical functions of the TSC-Rheb signalling network exist, propose a standard of evidence for these non-canonical functions, and discuss their potential clinical and therapeutic implications for patients with TSC and lymphangioleiomyomatosis (LAM).
Collapse
Affiliation(s)
- Nicole A Neuman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
12
|
Harari S, Torre O, Moss J. Lymphangioleiomyomatosis: what do we know and what are we looking for? Eur Respir Rev 2011; 20:34-44. [PMID: 21357890 PMCID: PMC3386525 DOI: 10.1183/09059180.00011010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease characterised by proliferation of abnormal smooth muscle-like cells (LAM cells) leading to progressive cystic destruction of the lung, lymphatic abnormalities and abdominal tumours. It affects predominantly females and can occur sporadically or in patients with tuberous sclerosis complex. This review describes the recent progress in our understanding of the molecular pathogenesis of the disease and LAM cell biology. It also summarises current therapeutic approaches and the most promising areas of research for future therapeutic strategies.
Collapse
Affiliation(s)
- S. Harari
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria – Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare Ospedale San Giuseppe, Milan, Italy. Translational Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,S. Harari, Unità di Pneumologia e Terapia Semi-Intensiva Respiratoria, Ospedale San Giuseppe, via San Vittore 12, 20123 Milan, Italy. E-mail:
| | - O. Torre
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria – Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare Ospedale San Giuseppe, Milan, Italy. Translational Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - J. Moss
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria – Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare Ospedale San Giuseppe, Milan, Italy. Translational Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Zheng H, Liu A, Liu B, Li M, Yu H, Luo X. Ras homologue enriched in brain is a critical target of farnesyltransferase inhibitors in non-small cell lung cancer cells. Cancer Lett 2010; 297:117-25. [DOI: 10.1016/j.canlet.2010.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/30/2010] [Accepted: 05/03/2010] [Indexed: 01/12/2023]
|
14
|
Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Oncogene 2010; 29:6543-56. [PMID: 20818424 DOI: 10.1038/onc.2010.393] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomally inherited disorder that causes tumors to form in many organs. It is frequently caused by inactivating mutations in the TSC2 tumor-suppressor gene. TSC2 negatively regulates the activity of the GTPase Rheb and thereby inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling. Activation of mTORC1 as a result of lack of TSC2 function is observed in TSC and sporadic lymphangioleiomyomatosis (LAM). TSC2 deficiency has recently been associated with elevated AMP-activated protein kinase (AMPK) activity, which in turn correlated with cytoplasmic localization of p27Kip1 (p27), a negative regulator of cyclin-dependent kinase 2 (Cdk2). How AMPK in the absence of TSC2 is stimulated is not fully understood. In this study, we demonstrate that Rheb activates AMPK and reduces p27 levels in Tsc2-null cells. Importantly, both effects occur largely independent of mTORC1. Furthermore, increased p27 levels following Rheb depletion correlated with reduced Cdk2 activity and cell proliferation in vitro, and with inhibition of tumor formation by Tsc2-null cells in vivo. Taken together, our data suggest that Rheb controls proliferation of TSC2-deficient cells by a mechanism that involves regulation of AMPK and p27, and that Rheb is a potential target for TSC/LAM therapy.
Collapse
|
15
|
Abstract
Rheb belongs to a unique family within the Ras superfamily of G-proteins. Although initially identified in rat brain, this G-protein is highly conserved from yeast to human. While only one Rheb is present in lower eukaryotes, two Rheb proteins exist in mammalian cells. A number of studies establish that one of the functions of Rheb is to activate mTOR leading to growth. In particular, the ability of Rheb to activate mTORC1 in vitro points to direct interaction of Rheb with the mTORC1 complex. Additional functions of Rheb that are independent of mTOR have also been suggested.
Collapse
Affiliation(s)
- Nitika Parmar
- Biology Program, California State University Channel Islands, 1 University Drive, Camarillo, California, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
16
|
Zhang J, Yang Y, Wu J. B23 interacts with PES1 and is involved in nucleolar localization of PES1. Acta Biochim Biophys Sin (Shanghai) 2009; 41:991-7. [PMID: 20011973 DOI: 10.1093/abbs/gmp096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PES1, the human homolog of zebrafish pescadillo, is a nucleolar protein that is essential for cell proliferation. We report herein that a nucleolar marker protein B23 physically interacts with PES1 and is involved in the nucleolar localization of PES1. In vivo interaction between B23 and PES1 was verified by co-immunoprecipitation of endogenous B23 and PES1 proteins, and they showed cellular co-localizations under both normal and actinomycin D-induced stress conditions. Furthermore, we mapped their interaction domains via in vitro pulldown assays. When B23 was knocked down by RNA interference, there appeared an increased nucleoplasmic distribution of PES1. Our results support a previous hypothesis that B23 might be a nucleolar hub protein for protein targeting to the nucleolus, and shed light on the nucleolar localization mechanism of PES1. The physical interaction between B23 and PES1 implies that they may participate in ribosome biogenesis in a protein complex.
Collapse
Affiliation(s)
- Jianhua Zhang
- Key Laboratory of Systems Biology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | |
Collapse
|
17
|
Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene 2009; 29:380-91. [PMID: 19838215 PMCID: PMC2809798 DOI: 10.1038/onc.2009.336] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Rheb1 and Rheb2 small GTPases and their effector mTOR are aberrantly activated in human cancer and are attractive targets for anti-cancer drug discovery. Rheb is targeted to endomembranes via its C-terminal CAAX (C = cysteine, A = aliphatic, X = terminal amino acid) motif, a substrate for posttranslational modification by a farnesyl isoprenoid. Following farnesylation, Rheb undergoes two additional CAAX-signaled processing steps, Rce1-catalyzed cleavage of the AAX residues and Icmt-mediated carboxylmethylation of the farnesylated cysteine. However, whether these post-prenylation processing steps are required for Rheb signaling through mTOR is not known. We found that Rheb1 and Rheb2 localize primarily to the endoplasmic reticulum and Golgi apparatus. We determined that Icmt and Rce1 processing is required for Rheb localization, but is dispensable for Rheb-induced activation of the mTOR substrate p70 S6 kinase (S6K). Finally, we evaluated whether farnesylthiosalicylic acid (FTS) blocks Rheb localization and function. Surprisingly, FTS prevented S6K activation induced by a constitutively active mTOR mutant, indicating that FTS inhibits mTOR at a level downstream of Rheb. We conclude that inhibitors of Icmt and Rce1 will not block Rheb function, but FTS could be a promising treatment for Rheb- and mTOR-dependent cancers.
Collapse
|
18
|
Wojtkowiak JW, Gibbs RA, Mattingly RR. Working together: Farnesyl transferase inhibitors and statins block protein prenylation. ACTA ACUST UNITED AC 2009; 1:1-6. [PMID: 20419048 DOI: 10.4255/mcpharmacol.09.01] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Farnesyl transferase inhibitors (FTIs) have so far proved to have limited value as single agents in clinical trials. This PharmSight will focus on the use of a novel group of FTIs that are most effective in vitro when used in combination with the "statin" class of anti-hypercholesterolemic agents, which also block protein prenylation. We recently showed that these novel FTIs in combination with lovastatin reduce Ras prenylation and induce an apoptotic response in malignant peripheral nerve sheath cells. The combination of statins with these new FTIs may produce profound synergistic cytostatic and cytotoxic effects against a variety of tumors and other proliferative disorders. Since statins are well tolerated in the clinic, we suggest that this combination approach should be tested in in vivo models.
Collapse
Affiliation(s)
- Jonathan W Wojtkowiak
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | |
Collapse
|
19
|
Mavrakis KJ, Zhu H, Silva RLA, Mills JR, Teruya-Feldstein J, Lowe SW, Tam W, Pelletier J, Wendel HG. Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev 2008; 22:2178-88. [PMID: 18708578 DOI: 10.1101/gad.1690808] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The AKT-mTOR pathway harbors several known and putative oncogenes and tumor suppressors. In a phenotypic screen for lymphomagenesis, we tested candidate genes acting upstream of and downstream from mTOR in vivo. We find that Rheb, a proximal activator of mTORC1, can produce rapid development of aggressive and drug-resistant lymphomas. Rheb causes mTORC1-dependent effects on apoptosis, senescence, and treatment responses that resemble those of Akt. Moreover, Rheb activity toward mTORC1 requires farnesylation and is readily blocked by a pharmacological inhibitor of farnesyltransferase (FTI). In Pten-deficient tumor cells, inhibition of Rheb by FTI is responsible for the drug's anti-tumor effects, such that a farnesylation-independent mutant of Rheb renders these tumors resistant to FTI therapy. Notably, RHEB is highly expressed in some human lymphomas, resulting in mTORC1 activation and increased sensitivity to rapamycin and FTI. Downstream from mTOR, we examined translation initiation factors that have been implicated in transformation in vitro. Of these, only eIF4E was able to enhance lymphomagenesis in vivo. In summary, the Rheb GTPase is an oncogenic activity upstream of mTORC1 and eIF4E and a direct therapeutic target of farnesyltransferase inhibitors in cancer.
Collapse
Affiliation(s)
- Konstantinos J Mavrakis
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Karbowniczek M, Spittle CS, Morrison T, Wu H, Henske EP. mTOR is activated in the majority of malignant melanomas. J Invest Dermatol 2007; 128:980-7. [PMID: 17914450 DOI: 10.1038/sj.jid.5701074] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study was to determine whether activation of the kinase mammalian target of rapamycin (mTOR) is associated with human melanoma. We found moderate or strong hyperphosphorylation of ribosomal protein S6 in 78/107 melanomas (73%). In contrast, only 3/67 benign nevi (4%) were moderately positive, and none were strongly positive. These data indicate that mTOR activation is very strongly associated with malignant, compared to benign, melanocytic lesions. Next, we tested six melanoma-derived cell lines for evidence of mTOR dysregulation. Five of the six lines showed persistent phosphorylation of S6 after 18 hours of serum deprivation, and four had S6 phosphorylation after 30 minutes of amino-acid withdrawal, indicating inappropriate mTOR activation. The proliferation of three melanoma-derived lines was blocked by the mTOR inhibitor rapamycin, indicating that mTOR activation is a growth-promoting factor in melanoma-derived cells. mTOR is directly activated by the small guanosine triphosphatase Ras homolog enriched in brain (Rheb), in a farnesylation-dependent manner. Therefore, to investigate the mechanism of mTOR activation, we used the farnesyl transferase inhibitor FTI-277, which partially blocked the growth of three of the six melanoma cell lines. Together, these data implicate activation of mTOR in the pathogenesis of melanoma, and suggest that Rheb and mTOR may be targets for melanoma therapy.
Collapse
Affiliation(s)
- Magdalena Karbowniczek
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
21
|
Gilleron P, Wlodarczyk N, Houssin R, Farce A, Laconde G, Goossens JF, Lemoine A, Pommery N, Hénichart JP, Millet R. Design, synthesis and biological evaluation of substituted dioxodibenzothiazepines and dibenzocycloheptanes as farnesyltransferase inhibitors. Bioorg Med Chem Lett 2007; 17:5465-71. [PMID: 17827015 DOI: 10.1016/j.bmcl.2007.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/29/2007] [Accepted: 07/01/2007] [Indexed: 12/24/2022]
Abstract
A new series of FTase inhibitors containing a tricyclic moiety--dioxodibenzothiazepine or dibenzocycloheptane--has been designed and synthesized. Among them, dioxodibenzothiazepine 18d displayed significant inhibitory FTase activity (IC(50)=17.3 nM) and antiproliferative properties.
Collapse
Affiliation(s)
- Pauline Gilleron
- Institut de Chimie Pharmaceutique Albert Lespagnol, EA 2692, IFR 114, Université de Lille 2, 3 rue du Professeur Laguesse, BP 83, 59006 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bilanges B, Argonza-Barrett R, Kolesnichenko M, Skinner C, Nair M, Chen M, Stokoe D. Tuberous sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner. Mol Cell Biol 2007; 27:5746-64. [PMID: 17562867 PMCID: PMC1952130 DOI: 10.1128/mcb.02136-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tuberous sclerosis complex (TSC) proteins TSC1 and TSC2 regulate protein translation by inhibiting the serine/threonine kinase mTORC1 (for mammalian target of rapamycin complex 1). However, how TSC1 and TSC2 control overall protein synthesis and the translation of specific mRNAs in response to different mitogenic and nutritional stimuli is largely unknown. We show here that serum withdrawal inhibits mTORC1 signaling, causes disassembly of translation initiation complexes, and causes mRNA redistribution from polysomes to subpolysomes in wild-type mouse embryo fibroblasts (MEFs). In contrast, these responses are defective in Tsc1(-/-) or Tsc2(-/-) MEFs. Microarray analysis of polysome- and subpolysome-associated mRNAs uncovered specific mRNAs that are translationally regulated by serum, 90% of which are TSC1 and TSC2 dependent. Surprisingly, the mTORC1 inhibitor, rapamycin, abolished mTORC1 activity but only affected approximately 40% of the serum-regulated mRNAs. Serum-dependent signaling through mTORC1 and polysome redistribution of global and individual mRNAs were restored upon re-expression of TSC1 and TSC2. Serum-responsive mRNAs that are sensitive to inhibition by rapamycin are highly enriched for terminal oligopyrimidine and for very short 5' and 3' untranslated regions. These data demonstrate that the TSC1/TSC2 complex regulates protein translation through mainly mTORC1-dependent mechanisms and implicates a discrete profile of deregulated mRNA translation in tuberous sclerosis pathology.
Collapse
Affiliation(s)
- Benoit Bilanges
- Cancer Research Institute, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Castellano S, Fiji HDG, Kinderman SS, Watanabe M, de Leon P, Tamanoi F, Kwon O. Small-molecule inhibitors of protein geranylgeranyltransferase type I. J Am Chem Soc 2007; 129:5843-5. [PMID: 17439124 PMCID: PMC2543057 DOI: 10.1021/ja070274n] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Abstract
The missed mark or hamartia underlying each hamartoma syndrome is a mutation in a tumor suppressor gene. This sets the stage for the development of frequent and early tumors in multiple organs. Loss of function of the tumor suppressor in neoplastic cells leads to dysregulation of signaling pathways and tumor growth. The convergence of these signaling pathways to the mTOR pathway suggests that rapamycin or rapamycin-like drugs have potential for treatment, perhaps in combination with drugs targeting other signaling pathways. Haploinsufficient cells also play significant roles in tumor formation. Disrupting interactions between neoplastic cells and surrounding haploinsufficient cells using antiangiogenesis therapies represent an additional approach for treatment. It is hoped that the debilitating effects of these syndromes soon will be alleviated or even reversed though targeted therapies.
Collapse
Affiliation(s)
- Thomas N Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
25
|
Juvet SC, McCormack FX, Kwiatkowski DJ, Downey GP. Molecular pathogenesis of lymphangioleiomyomatosis: lessons learned from orphans. Am J Respir Cell Mol Biol 2006; 36:398-408. [PMID: 17099139 PMCID: PMC2176113 DOI: 10.1165/rcmb.2006-0372tr] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare progressive cystic lung disease affecting young women. The pivotal observation that LAM occurs both spontaneously and as part of the tuberous sclerosis complex (TSC) led to the hypothesis that these disorders share common genetic and pathogenetic mechanisms. In this review we describe the evolution of our understanding of the molecular and cellular basis of LAM and TSC, beginning with the discovery of the TSC1 and TSC2 genes and the demonstration of their involvement in sporadic (non-TSC) LAM. This was followed by rapid delineation of the signaling pathways in Drosophila melanogaster with confirmation in mice and humans. This knowledge served as the foundation for novel therapeutic approaches that are currently being used in human clinical trials.
Collapse
Affiliation(s)
- Stephen C Juvet
- National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
26
|
Gelb MH, Brunsveld L, Hrycyna CA, Michaelis S, Tamanoi F, Van Voorhis WC, Waldmann H. Therapeutic intervention based on protein prenylation and associated modifications. Nat Chem Biol 2006; 2:518-28. [PMID: 16983387 PMCID: PMC2892741 DOI: 10.1038/nchembio818] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In eukaryotic cells, a specific set of proteins are modified by C-terminal attachment of 15-carbon farnesyl groups or 20-carbon geranylgeranyl groups that function both as anchors for fixing proteins to membranes and as molecular handles for facilitating binding of these lipidated proteins to other proteins. Additional modification of these prenylated proteins includes C-terminal proteolysis and methylation, and attachment of a 16-carbon palmitoyl group; these modifications augment membrane anchoring and alter the dynamics of movement of proteins between different cellular membrane compartments. The enzymes in the protein prenylation pathway have been isolated and characterized. Blocking protein prenylation is proving to be therapeutically useful for the treatment of certain cancers, infection by protozoan parasites and the rare genetic disease Hutchinson-Gilford progeria syndrome.
Collapse
Affiliation(s)
- Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Buerger C, DeVries B, Stambolic V. Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun 2006; 344:869-80. [PMID: 16631613 DOI: 10.1016/j.bbrc.2006.03.220] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 03/29/2006] [Indexed: 11/28/2022]
Abstract
Rheb, a small GTPase, has emerged as a key molecular switch that directly regulates the activity of the mammalian target of rapamycin (mTOR). Similar to other members of the Ras superfamily, Rheb has a C-terminal CaaX box that is subject to farnesylation. This study reports that farnesylation is a key determinant of Rheb's subcellular localization and directs its association with the endomembrane. Timed imaging of live cells expressing EGFP-Rheb reveals that following brief association with the ER, Rheb localizes to highly ordered, distinct structures within the cytoplasm that display characteristics of Golgi membranes. Failure of Rheb to localize to the endomembrane impairs its ability to interact with mTOR and activate downstream targets. Consistent with the notion that the endomembrane may serve as a platform for the assembly of a functional Rheb/mTOR complex, treatment of cells with brefeldin A interferes with transmission of Rheb signals to p70S6K.
Collapse
Affiliation(s)
- Claudia Buerger
- Division of Signaling Biology, Ontario Cancer Institute, University Health Network, 610 University Ave, Toronto, Ont., Canada M5G 2M9
| | | | | |
Collapse
|
28
|
Gilleron P, Millet R, Houssin R, Wlodarczyk N, Farce A, Lemoine A, Goossens JF, Chavatte P, Pommery N, Hénichart JP. Solid-phase synthesis and pharmacological evaluation of a library of peptidomimetics as potential farnesyltransferase inhibitors: an approach to new lead compounds. Eur J Med Chem 2006; 41:745-55. [PMID: 16647166 DOI: 10.1016/j.ejmech.2006.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/16/2006] [Accepted: 03/20/2006] [Indexed: 11/30/2022]
Abstract
Oncogenic Ras proteins whose activation is farnesylation by farnesyltransferase have been seen as important targets for novel anticancer drugs. Inhibitors of this enzyme have already been developed as potential anti-cancer drugs, particularly by rational design based on the structure of the CA(1)A(2)X carboxyl terminus of Ras. Synthesis of a peptidomimetics library via solid-phase synthesis using the Multipin method is described here. The most active hits on cellular assays were resynthesized and enzymatic activity was measured. Compounds A1, A5 and A7 present significant activity on the isolated enzyme (IC(50)=117, 57.3 and 28.5 nM) and their molecular docking in the active site of the enzyme provides details on key interactions with the protein.
Collapse
Affiliation(s)
- P Gilleron
- Institut de chimie pharmaceutique Albert-Lespagnol, EA 2692, université de Lille-II, rue du professeur-Laguesse, BP 83, 59006 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Urano J, Comiso MJ, Guo L, Aspuria PJ, Deniskin R, Tabancay AP, Kato-Stankiewicz J, Tamanoi F. Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol Microbiol 2006; 58:1074-86. [PMID: 16262791 DOI: 10.1111/j.1365-2958.2005.04877.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rheb GTPase is a key player in the control of growth, cell cycle and nutrient uptake that is conserved from yeast to humans. To further our understanding of the Rheb pathway, we sought to identify hyperactivating mutations in the Schizosaccharomyces pombe Rheb, Rhb1. Hyperactive forms of Rhb1 were found to result from single amino acid changes at valine-17, serine-21, lysine-120 or asparagine-153. Expression of these mutants confers resistance to canavanine and thialysine, phenotypes which are similar to phenotypes exhibited by cells lacking the Tsc1/Tsc2 complex that negatively regulates Rhb1. The thialysine-resistant phenotype of the hyperactive Rhb1 mutants is suppressed by a second mutation in the effector domain. Purified mutant proteins exhibit dramatically decreased binding of GDP, while their GTP binding is not drastically affected. In addition, some of the mutant proteins show significantly decreased GTPase activities. Thus the hyperactivating mutations are expected to result in an increase in the GTP-bound/GDP-bound ratio of Rhb1. By using the hyperactive mutant, Rhb1(K120R), we have been able to demonstrate that Rhb1 interacts with Tor2, one of the two S. pombe TOR (Target of Rapamycin) proteins. These fission yeast results provide the first evidence for a GTP-dependent association of Rheb with Tor.
Collapse
Affiliation(s)
- Jun Urano
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Basso AD, Kirschmeier P, Bishop WR. Thematic review series: Lipid Posttranslational Modifications. Farnesyl transferase inhibitors. J Lipid Res 2006; 47:15-31. [PMID: 16278491 DOI: 10.1194/jlr.r500012-jlr200] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Some proteins undergo posttranslational modification by the addition of an isoprenyl lipid (farnesyl- or geranylgeranyl-isoprenoid) to a cysteine residue proximal to the C terminus. Protein isoprenylation promotes membrane association and contributes to protein-protein interactions. Farnesylated proteins include small GTPases, tyrosine phosphatases, nuclear lamina, cochaperones, and centromere-associated proteins. Prenylation is required for the transforming activity of Ras. Because of the high frequency of Ras mutations in cancer, farnesyl transferase inhibitors (FTIs) were investigated as a means to antagonize Ras function. Evaluation of FTIs led to the finding that both K- and N-Ras are alternatively modified by geranylgeranyl prenyltransferase-1 in FTI-treated cells. Geranylgeranylated forms of Ras retain the ability to associate with the plasma membrane and activate substrates. Despite this, FTIs are effective at inhibiting the growth of human tumor cells in vitro, suggesting that activity is dependent on blocking the farnesylation of other proteins. FTIs also inhibit the in vivo growth of human tumor xenografts and sensitize these models to chemotherapeutics, most notably taxanes. Several FTIs have entered clinical trials for various cancer indications. In some clinical settings, primarily hematologic malignancies, FTIs have displayed evidence of single-agent activity. Clinical studies in progress are exploring the antitumor activity of FTIs as single agents and in combination. This review will summarize the basic biology of FTIs, their antitumor activity in preclinical models, and the current status of clinical studies with these agents.
Collapse
Affiliation(s)
- Andrea D Basso
- Schering-Plough Research Institute, Kenilworth, NJ 07033, USA.
| | | | | |
Collapse
|
31
|
Goncharova EA, Goncharov DA, Lim PN, Noonan D, Krymskaya VP. Modulation of cell migration and invasiveness by tumor suppressor TSC2 in lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2005; 34:473-80. [PMID: 16388022 PMCID: PMC2644208 DOI: 10.1165/rcmb.2005-0374oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The loss of TSC2 function is associated with the pathobiology of lymphangioleiomyomatosis (LAM), which is characterized by the abnormal proliferation, migration, and differentiation of smooth muscle-like cells within the lungs. Although the etiology of LAM remains unknown, clinical and genetic evidence provides support for the neoplastic nature of LAM. The goal of this study was to determine the role of tumor suppressor TSC2 in the neoplastic potential of LAM cells. We show that primary cultures of human LAM cells exhibit increased migratory activity and invasiveness, which is abolished by TSC2 re-expression. We found that TSC2 also inhibits cell migration through its N-terminus, independent of its GTPase-activating protein activity. LAM cells show increased stress fiber and focal adhesion formation, which is attenuated by TSC2 re-expression. The small GTPase RhoA is activated in LAM cells compared with normal human mesenchymal cells. Pharmacologic inhibition of Rho activity abrogates LAM cell migration; RhoA activity was also abolished by TSC2 re-expression or TSC1 knockdown with specific siRNA. These data demonstrate that TSC2 controls cell migration through its N-terminus by associating with TSC1 and regulating RhoA activity, suggesting that TSC2 may play a critical role in modulating cell migration and invasiveness, which contributes to the pathobiology of LAM.
Collapse
Affiliation(s)
- Elena A Goncharova
- Department of Medicine, University of Pennsylvania, BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
32
|
Pan J, Yeung SCJ. Recent advances in understanding the antineoplastic mechanisms of farnesyltransferase inhibitors. Cancer Res 2005; 65:9109-12. [PMID: 16230362 DOI: 10.1158/0008-5472.can-05-2635] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Farnesyltransferase (FTase) inhibitors (FTI) have broad antineoplastic actions targeting both cancer cells and mesenchymal cells involved in tumor angiogenesis. The small GTPases H-Ras, Rheb, and RhoB and the centromere proteins CENP-E and CENP-F are relevant targets of farnesylation inhibition; however, their relative importance in the antineoplastic effect of FTIs may vary in different cell types at different stages of the cell cycle and at different stages in oncogenesis. Three recent studies argue that Ras-independent and perhaps even FTase-independent properties are important to the antineoplastic action of this class of drugs. In mice, genetic ablation of FTase does not abolish the oncogenic activity of Ras, limiting the original conception of FTIs as an effective means to target Ras in cancer cells. FTase may not be the sole molecular target of these agents, and one study has suggested that FTIs act by targeting geranylgeranyl transferase II. Lastly, we have obtained evidence that induction of reactive oxygen species and reactive oxygen species-mediated DNA damage by FTIs may be critical for their antineoplastic action as a class. Together, these findings may alter thinking about how to apply FTIs in the clinic.
Collapse
Affiliation(s)
- Jingxuan Pan
- Department of Leukemia, General Internal Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|