1
|
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther 2023; 8:293. [PMID: 37544972 PMCID: PMC10404590 DOI: 10.1038/s41392-023-01536-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Dahua Fan
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China.
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China
| | | | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
2
|
Gampa SC, Garimella SV, Pandrangi S. Nano-TRAIL: a promising path to cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:78-102. [PMID: 37065863 PMCID: PMC10099604 DOI: 10.20517/cdr.2022.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 01/04/2023] [Indexed: 04/18/2023]
Abstract
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, also called apo-2 ligand (TRAIL/Apo-2L), is a cytokine that triggers apoptosis by binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors. Apoptosis occurs through either the extrinsic or intrinsic pathway. The administration of recombinant human TRAIL (rhTRAIL) or TRAIL-receptor (TRAIL-R) agonists promotes apoptosis preferentially in cancerous cells over normal cells in vitro; this phenomenon has also been observed in clinical studies. The limited efficacy of rhTRAIL in clinical trials could be attributed to drug resistance, short half-life, targeted delivery issues, and off-target toxicities. Nanoparticles are excellent drug and gene delivery systems characterized by improved permeability and retention, increased stability and biocompatibility, and precision targeting. In this review, we discuss resistance mechanisms to TRAIL and methods to overcome TRAIL resistance by using nanoparticle-based formulations developed for the delivery of TRAIL peptides, TRAIL-R agonists, and TRAIL genes to cancer cells. We also discuss combinatorial approaches of chemotherapeutic drugs with TRAIL. These studies demonstrate TRAIL's potential as an anticancer agent.
Collapse
Affiliation(s)
- Siri Chandana Gampa
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - Sireesha V. Garimella
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - SanthiLatha Pandrangi
- Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| |
Collapse
|
3
|
Yagolovich AV, Isakova AA, Artykov AA, Vorontsova YV, Mazur DV, Antipova NV, Pavlyukov MS, Shakhparonov MI, Gileva AM, Markvicheva EA, Plotnikova EA, Pankratov AA, Kirpichnikov MP, Gasparian ME, Dolgikh DA. DR5-Selective TRAIL Variant DR5-B Functionalized with Tumor-Penetrating iRGD Peptide for Enhanced Antitumor Activity against Glioblastoma. Int J Mol Sci 2022; 23:12687. [PMID: 36293545 PMCID: PMC9604365 DOI: 10.3390/ijms232012687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
TRAIL (TNF-related apoptosis-inducing ligand) and its derivatives are potentials for anticancer therapy due to the selective induction of apoptosis in tumor cells upon binding to death receptors DR4 or DR5. Previously, we generated a DR5-selective TRAIL mutant variant DR5-B overcoming receptor-dependent resistance of tumor cells to TRAIL. In the current study, we improved the antitumor activity of DR5-B by fusion with a tumor-homing iRGD peptide, which is known to enhance the drug penetration into tumor tissues. The obtained bispecific fusion protein DR5-B-iRGD exhibited dual affinity for DR5 and integrin αvβ3 receptors. DR5-B-iRGD penetrated into U-87 tumor spheroids faster than DR5-B and demonstrated an enhanced antitumor effect in human glioblastoma cell lines T98G and U-87, as well as in primary patient-derived glioblastoma neurospheres in vitro. Additionally, DR5-B-iRGD was highly effective in a xenograft mouse model of the U-87 human glioblastoma cell line in vivo. We suggest that DR5-B-iRGD may become a promising candidate for targeted therapy for glioblastoma.
Collapse
Affiliation(s)
- Anne V. Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
- Manebio LLC, 115280 Moscow, Russia
| | - Alina A. Isakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Artem A. Artykov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Manebio LLC, 115280 Moscow, Russia
| | | | - Diana V. Mazur
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Nadezhda V. Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Marat S. Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Anastasia M. Gileva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Elena A. Markvicheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Ekaterina A. Plotnikova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, P.A. Hertsen Moscow Oncology Research Institute, 125284 Moscow, Russia
| | - Andrey A. Pankratov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, P.A. Hertsen Moscow Oncology Research Institute, 125284 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Marine E. Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|
4
|
Yu X, Xue L, Zhao J, Zhao S, Wu D, Liu HY. Non-Cationic RGD-Containing Protein Nanocarrier for Tumor-Targeted siRNA Delivery. Pharmaceutics 2021; 13:pharmaceutics13122182. [PMID: 34959463 PMCID: PMC8703291 DOI: 10.3390/pharmaceutics13122182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the recent successes in siRNA therapeutics, targeted delivery beyond the liver remains the major hurdle for the widespread application of siRNA in vivo. Current cationic liposome or polymer-based delivery agents are restricted to the liver and suffer from off-target effects, poor clearance, low serum stability, and high toxicity. In this study, we genetically engineered a non-cationic non-viral tumor-targeted universal siRNA nanocarrier (MW 26 KDa). This protein nanocarrier consists of three function domains: a dsRNA binding domain (dsRBD) (from human protein kinase R) for any siRNA binding, 18-histidine for endosome escape, and two RGD peptides at the N- and C-termini for targeting tumor and tumor neovasculature. We showed that cloned dual-RGD-dsRBD-18his (dual-RGD) protein protects siRNA against RNases, induces effective siRNA endosomal escape, specifically targets integrin αvβ3 expressing cells in vitro, and homes siRNA to tumors in vivo. The delivered siRNA leads to target gene knockdown in the cell lines and tumor xenografts with low toxicity. This multifunctional and biomimetic siRNA carrier is biodegradable, has low toxicity, is suitable for mass production by fermentation, and is serum stable, holding great potential to provide a widely applicable siRNA carrier for tumor-targeted siRNA delivery.
Collapse
Affiliation(s)
- Xiaolin Yu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
| | - Lu Xue
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
- Department of Pediatrics Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China; (J.Z.); (S.Z.)
| | - Shuhua Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China; (J.Z.); (S.Z.)
| | - Daqing Wu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Hong Yan Liu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
- Dotquant LLC, CoMotion Labs at University of Washington, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-503-956-5302
| |
Collapse
|
5
|
Yoo JD, Bae SM, Seo J, Jeon IS, Vadevoo SMP, Kim SY, Kim IS, Lee B, Kim S. Designed ferritin nanocages displaying trimeric TRAIL and tumor-targeting peptides confer superior anti-tumor efficacy. Sci Rep 2020; 10:19997. [PMID: 33203916 PMCID: PMC7672110 DOI: 10.1038/s41598-020-77095-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
TRAIL is considered a promising target for cancer therapy because it mediates activation of the extrinsic apoptosis pathway in a tumor-specific manner by binding to and trimerizing its functional receptors, DR4 or DR5. Although recombinant human TRAIL has shown high potency and specificity for killing cancer cells in preclinical studies, it has failed in multiple clinical trials for several reasons, including a very short half-life mainly caused by instability of the monomeric form of TRAIL and rapid renal clearance of the off-targeted TRAIL. To overcome such obstacles, we developed a TRAIL-active trimer nanocage (TRAIL-ATNC) that presents the TRAIL ligand in its trimer-like conformation by connecting it to a triple helix sequence that links to the threefold axis of the ferritin nanocage. We also ligated the tumor-targeting peptide, IL4rP, to TRAIL-ATNC to enhance tumor targeting. The developed TRAIL-ATNCIL4rP showed enhanced agonistic activity compared with monomeric TRAIL. The in vivo serum half-life of TRAIL-ATNCIL4rP was ~ 16-times longer than that of native TRAIL. As a consequence of these properties, TRAIL-ATNCIL4rP exhibited efficacy as an anti-tumor agent in vivo against xenograft breast cancer as well as orthotopic pancreatic cancer models, highlighting the promise of this system for development as novel therapeutics against cancer.
Collapse
Affiliation(s)
- Jae Do Yoo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sang Mun Bae
- PrismCDX, Inc., 593-16, Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Junyoung Seo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - In Seon Jeon
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Soyoun Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
6
|
Tao Z, Liu Y, Yang H, Feng Y, Li H, Shi Q, Li S, Cheng J, Lu X. Customizing a Tridomain TRAIL Variant to Achieve Active Tumor Homing and Endogenous Albumin-Controlled Release of the Molecular Machine In Vivo. Biomacromolecules 2020; 21:4017-4029. [PMID: 32804484 DOI: 10.1021/acs.biomac.0c00785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive antitumor drug candidate for precision cancer therapy due to its superior selective cytotoxicity in a variety of tumor cells. However, the clinical application of TRAIL in cancer therapy has been limited by its poor tumor-homing capacities and short half-life. Herein, we designed a tridomain TRAIL variant, Z-ABD-TRAIL, by sequentially fusing the platelet-derived growth factor receptor beta (PDGFRβ)-specific affibody ZPDGFRβ and an albumin-binding domain (ABD) to the N-terminus of TRAIL. The fusion protein Z-ABD-TRAIL was produced as a soluble protein with high yield in Escherichia coli (E. coli). The ZPDGFRβ domain provided Z-ABD-TRAIL with PDGFRβ-binding properties and thus promoted its tumor homing via the engagement of PDGFRβ-expressing pericytes on tumor microvessels. ABD-mediated binding of Z-ABD-TRAIL to albumin in the blood endowed TRAIL with long-lasting (>72 h for Z-ABD-TRAIL vs <0.5 h for TRAIL) abilities to kill tumor cells. Although the in vitro cytotoxicity of Z-ABD-TRAIL in tumor cells was similar to that of the parent TRAIL, the in vivo tumor uptake, apoptosis-inducing ability, and antitumor effect of Z-ABD-TRAIL were much greater than those of TRAIL, indicating that ZPDGFRβ-mediated tumor homing and ABD-introduced albumin binding significantly improved the pharmacodynamics of TRAIL. In addition, repeated injection of high-dose Z-ABD-TRAIL showed no obvious acute toxicity in mice. These results demonstrate that the newly designed tridomain Z-ABD-TRAIL is a promising agent for precision cancer therapy.
Collapse
Affiliation(s)
- Ze Tao
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuehua Liu
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanru Feng
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Li
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuxiao Shi
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Lu
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Fan X, Yuan Z, Shou C, Fan G, Wang H, Gao F, Rui Y, Xu K, Yin P. cRGD-Conjugated Fe 3O 4@PDA-DOX Multifunctional Nanocomposites for MRI and Antitumor Chemo-Photothermal Therapy. Int J Nanomedicine 2019; 14:9631-9645. [PMID: 31824156 PMCID: PMC6901060 DOI: 10.2147/ijn.s222797] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/07/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Photothermal therapy (PTT) has great potential in the clinical treatment of tumors. However, most photothermal materials are difficult to apply due to their insufficient photothermal conversion efficiencies (PCEs), poor photostabilities and short circulation times. Furthermore, tumor recurrence is likely to occur using PTT only. In the present study, we prepared cyclo (Arg-Gly-Asp-d-Phe-Cys) [c(RGD)] conjugated doxorubicin (DOX)-loaded Fe3O4@polydopamine (PDA) nanoparticles to develop a multifunctional-targeted nanocomplex for integrated tumor diagnosis and treatment. MATERIALS AND METHODS Cytotoxicity of Fe3O4@PDA-PEG-cRGD-DOX against HCT-116 cells was determined by cck-8 assay. Cellular uptake was measured by confocal laser scanning microscope (CLSM). Pharmacokinetic performance of DOX was evaluated to compare the differences between free DOX and DOX in nanocarrier. Performance in magnetic resonance imaging (MRI) and antitumor activity of complex nanoparticles were evaluated in tumor-bearing nude mice. RESULTS Fe3O4@PDA-PEG-cRGD-DOX has a particle size of 200-300 nm and a zeta potential of 22.7 mV. Further studies in vitro and in vivo demonstrated their excellent capacity to target tumor cells and promote drug internalization, and significantly higher cytotoxicity with respect to that seen in a control group was shown for the nanoparticles. In addition, they have good thermal stability, photothermal conversion efficiencies (PCEs) and pH responsiveness, releasing more DOX in a mildly acidic environment, which is very conducive to their chemotherapeutic effectiveness in the tumor microenvironment. Fe3O4@PDA-PEG-cRGD-DOX NPs were used in a subcutaneous xenograft tumor model of nude mouse HCT-116 cells showed clear signal contrast in T2-weighted images and effective anti-tumor chemo-photothermal therapy under NIR irradiation. CONCLUSION According to our results, Fe3O4@PDA-PEG-cRGD-DOX had a satisfactory antitumor effect on colon cancer in nude mice and could be further developed as a potential integrated platform for the diagnosis and treatment of cancer to improve its antitumor activity against colon cancer.
Collapse
Affiliation(s)
- Xi Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Chenting Shou
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Guohua Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Hong Wang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yuanpeng Rui
- Department of Image, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ke Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Anhui, People’s Republic of China
| |
Collapse
|
8
|
Molecular Mode of Action of TRAIL Receptor Agonists-Common Principles and Their Translational Exploitation. Cancers (Basel) 2019; 11:cancers11070954. [PMID: 31284696 PMCID: PMC6678900 DOI: 10.3390/cancers11070954] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.
Collapse
|
9
|
Zhou A, Du J, Jiao M, Xie D, Wang Q, Xue L, Ju C, Hua Z, Zhang C. Co-delivery of TRAIL and siHSP70 using hierarchically modular assembly formulations achieves enhanced TRAIL-resistant cancer therapy. J Control Release 2019; 304:111-124. [DOI: 10.1016/j.jconrel.2019.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
|
10
|
Wu R, Min Q, Guo J, Zheng T, Jiang L, Zhu JJ. Sequential Delivery and Cascade Targeting of Peptide Therapeutics for Triplexed Synergistic Therapy with Real-Time Monitoring Shuttled by Magnetic Gold Nanostars. Anal Chem 2019; 91:4608-4617. [DOI: 10.1021/acs.analchem.8b05877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tingting Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Liping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Majumder P. Integrin-Mediated Delivery of Drugs and Nucleic Acids for Anti-Angiogenic Cancer Therapy: Current Landscape and Remaining Challenges. Bioengineering (Basel) 2018; 5:bioengineering5040076. [PMID: 30241287 PMCID: PMC6315429 DOI: 10.3390/bioengineering5040076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 01/19/2023] Open
Abstract
Angiogenesis, sprouting of new blood vessels from pre-existing vasculatures, plays a critical role in regulating tumor growth. Binding interactions between integrin, a heterodimeric transmembrane glycoprotein receptor, and its extracellular matrix (ECM) protein ligands govern the angiogenic potential of tumor endothelial cells. Integrin receptors are attractive targets in cancer therapy due to their overexpression on tumor endothelial cells, but not on quiescent blood vessels. These receptors are finding increasing applications in anti-angiogenic therapy via targeted delivery of chemotherapeutic drugs and nucleic acids to tumor vasculatures. The current article attempts to provide a retrospective account of the past developments, highlight important contemporary contributions and unresolved set-backs of this emerging field.
Collapse
Affiliation(s)
- Poulami Majumder
- Division of Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India.
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles St, Frederick, MD 21702, USA.
| |
Collapse
|
12
|
Cao XW, Yang XZ, Du X, Fu LY, Zhang TZ, Shan HW, Zhao J, Wang FJ. Structure optimisation to improve the delivery efficiency and cell selectivity of a tumour-targeting cell-penetrating peptide. J Drug Target 2018; 26:777-792. [PMID: 29303375 DOI: 10.1080/1061186x.2018.1424858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-penetrating peptide (CPP) is used for the delivery of biomacromolecules across the cell membrane and is limited in cancer therapy due to the lack of cell selectivity. Epidermal growth factor receptor (EGFR) has been widely used in clinical targeted therapy for tumours. Here, we reported a novel tumour targeting cell-penetrating peptide (TCPP), EHB (ELBD-C6H) with 20-fold and 3000-fold greater transmembrane ability and tumour cell selectivity than our previously reported S3-HBD and classic CPP TAT, respectively. In this new TCPP, a specific alpha helix structure was inserted into a repeated amino acid (AA) sequence formed by tandem multiple selected key AA residues of vaccinia growth factor (VGF), and this sequence was then fused to a tailored heparin binding domain sequence (C6H) derived from heparin-binding epidermal growth factor-like growth factor to intensify its targeting delivery ability. EHB could carry anticancer proteins such as MAP30 (Momordica Antiviral Protein 30 kDa) into EGFR-overexpressing cancer cell and inhibit cell growth, but it had a greatly reduced interaction with normal cells. These results indicated that EHB, as a novel efficient TCPP for the selective delivery of drug molecules into cancer cells, would help to improve the efficacy and safety of anti-tumour drugs.
Collapse
Affiliation(s)
- Xue-Wei Cao
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Xu-Zhong Yang
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Xuan Du
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Long-Yun Fu
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Tao-Zhu Zhang
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Han-Wen Shan
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Jian Zhao
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Fu-Jun Wang
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China.,c Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine , Shanghai , PR China
| |
Collapse
|
13
|
Chen L, Xie J, Wu H, Zang F, Ma M, Hua Z, Gu N, Zhang Y. Improving sensitivity of magnetic resonance imaging by using a dual-targeted magnetic iron oxide nanoprobe. Colloids Surf B Biointerfaces 2018; 161:339-346. [DOI: 10.1016/j.colsurfb.2017.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/19/2017] [Accepted: 10/21/2017] [Indexed: 12/11/2022]
|
14
|
Dubuisson A, Micheau O. Antibodies and Derivatives Targeting DR4 and DR5 for Cancer Therapy. Antibodies (Basel) 2017; 6:E16. [PMID: 31548531 PMCID: PMC6698863 DOI: 10.3390/antib6040016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
Developing therapeutics that induce apoptosis in cancer cells has become an increasingly attractive approach for the past 30 years. The discovery of tumor necrosis factor (TNF) superfamily members and more specifically TNF-related apoptosis-inducing ligand (TRAIL), the only cytokine of the family capable of eradicating selectively cancer cells, led to the development of numerous TRAIL derivatives targeting death receptor 4 (DR4) and death receptor 5 (DR5) for cancer therapy. With a few exceptions, preliminary attempts to use recombinant TRAIL, agonistic antibodies, or derivatives to target TRAIL agonist receptors in the clinic have been fairly disappointing. Nonetheless, a tremendous effort, worldwide, is being put into the development of novel strategic options to target TRAIL receptors. Antibodies and derivatives allow for the design of novel and efficient agonists. We summarize and discuss here the advantages and drawbacks of the soar of TRAIL therapeutics, from the first developments to the next generation of agonistic products, with a particular insight on new concepts.
Collapse
Affiliation(s)
- Agathe Dubuisson
- University Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079 Dijon, France.
- CovalAb, Research Department, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France.
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, F-21079 Dijon, France.
| | - Olivier Micheau
- University Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079 Dijon, France.
- CovalAb, Research Department, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France.
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, F-21079 Dijon, France.
| |
Collapse
|
15
|
Wu X, Wang S, Li M, Wang A, Zhou Y, Li P, Wang Y. Nanocarriers for TRAIL delivery: driving TRAIL back on track for cancer therapy. NANOSCALE 2017; 9:13879-13904. [PMID: 28914952 DOI: 10.1039/c7nr04959e] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Since its initial identification, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been shown to be capable of selectively inducing apoptosis in cancer cells. However, translation of the encouraging preclinical studies of this cytokine into the clinic has been restricted by its extremely short half-life, the presence of resistant cancer cell populations, and its inefficient in vivo delivery. Recently, there has been exceptional progress in developing novel formulations to increase the circulatory half-life of TRAIL and new combinations to treat cancers that are resistant to TRAIL. In particular, TRAIL-based nanotherapies offer the potential to improve the stability of TRAIL and prolong its half-life in plasma, to specifically deliver TRAIL to a particular target site, and to overcome resistance to TRAIL. The aim of this review is to provide an overview of the state-of-the art drug delivery systems that are currently being tested or developed to improve the biological attributes of TRAIL-based therapies.
Collapse
Affiliation(s)
- Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan Province, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190:64-83. [PMID: 28760499 DOI: 10.1016/j.imlet.2017.07.015] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Surgery, chemotherapy, radiotherapy, and hormone therapy are the main common anti-tumor therapeutic approaches. However, the non-specific targeting of cancer cells has made these approaches non-effective in the significant number of patients. Non-specific targeting of malignant cells also makes indispensable the application of the higher doses of drugs to reach the tumor region. Therefore, there are two main barriers in the way to reach the tumor area with maximum efficacy. The first, inhibition of drug delivery to healthy non-cancer cells and the second, the direct conduction of drugs into tumor site. Nanoparticles (NPs) are the new identified tools by which we can deliver drugs into tumor cells with minimum drug leakage into normal cells. Conjugation of NPs with ligands of cancer specific tumor biomarkers is a potent therapeutic approach to treat cancer diseases with the high efficacy. It has been shown that conjugation of nanocarriers with molecules such as antibodies and their variable fragments, peptides, nucleic aptamers, vitamins, and carbohydrates can lead to effective targeted drug delivery to cancer cells and thereby cancer attenuation. In this review, we will discuss on the efficacy of the different targeting approaches used for targeted drug delivery to malignant cells by NPs.
Collapse
|
17
|
Tao Z, Yang H, Shi Q, Fan Q, Wan L, Lu X. Targeted Delivery to Tumor-associated Pericytes via an Affibody with High Affinity for PDGFRβ Enhances the in vivo Antitumor Effects of Human TRAIL. Theranostics 2017; 7:2261-2276. [PMID: 28740549 PMCID: PMC5505058 DOI: 10.7150/thno.19091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/06/2017] [Indexed: 02/05/2023] Open
Abstract
Human tumor necrosis factor-related apoptosis-inducing ligand (hTRAIL) has exhibited superior in vitro cytotoxicity in a variety of tumor cells. However, hTRAIL showed a disappointing anticancer effect in clinical trials, although hTRAIL-based regimens were well tolerated. One important reason might be that hTRAIL was largely trapped by its decoy receptors, which are ubiquitously expressed on normal cells. Tumor-targeted delivery might improve the tumor uptake and thus enhance the antitumor effect of hTRAIL. Platelet-derived growth factor receptor β (PDGFRβ)-expressing pericytes are enriched in tumor tissues derived both from patients with colon cancer and from mice bearing colorectal tumor xenografts. A ZPDGFRβ affibody showed high affinity (nM) for PDGFRβ and was predominantly distributed on tumor-associated PDGFRβ-positive pericytes. Co-administration with the ZPDGFRβ affibody did not significantly enhance the antitumor effect of hTRAIL in mice bearing tumor xenografts. Fusion to the ZPDGFRβ affibody endows hTRAIL with PDGFRβ-binding ability but does not interfere with its death receptor binding and activation. The fused ZPDGFRβ affibody mediated PDGFRβ-dependent binding of hTRAIL to pericytes. In addition, hTRAIL bound on pericytes could kill tumor cells through juxtatropic activity or exhibit cytotoxicity in tumor cells after being released from pericytes. Intravenously injected hTRAIL fused to ZPDGFRβ affibody initially accumulated on tumor-associated pericytes and then diffused to the tumor parenchyma over time. Fusion to the ZPDGFRβ affibody increased the tumor uptake of hTRAIL, thus enhancing the antitumor effect of hTRAIL in mice bearing tumor xenografts. These results demonstrate that pericyte-targeted delivery mediated by a ZPDGFRβ affibody is an alternative strategy for tumor-targeted delivery of anticancer agents.
Collapse
Affiliation(s)
- Ze Tao
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
- Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuxiao Shi
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
- Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Fan
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
- Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Wan
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Lu
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Lu L, Qi H, Zhu J, Sun WX, Zhang B, Tang CY, Cheng Q. Vascular-homing peptides for cancer therapy. Biomed Pharmacother 2017; 92:187-195. [PMID: 28544932 DOI: 10.1016/j.biopha.2017.05.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022] Open
Abstract
In the past 30 years, a variety of phage libraries have been extensively utilized to identify and develop tumor homing peptides (THPs). THPs specifically bind to tumor cells or elements of the tumor microenvironment while no or low affinity to normal cells. In this regard, the efficacy of therapeutic agents in cancer therapy can be enhanced by targeting strategies based on coupling with THPs that recognize receptors expressed by tumor cells or tumor vasculature. Especially, vascular-homing peptides, targeting tumor vasculature, have their receptors expressed on or around the blood vessel including pro-angiogenic factors, metalloproteinase, integrins, fibrin-fibronectin complexes, etc. This review briefly summarizes recent studies on identification and therapeutic applications of vascular-homing peptides targeting common angiogenic markers or with unknown vascular targets in some certain types of cancers. These newly discovered vascular-homing peptides are promising candidates which could provide novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Lan Lu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, PR China.
| | - Huan Qi
- School of Life Science and Engineering, Southwest University of Science and Technology, PR China
| | - Jie Zhu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Wen Xia Sun
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Bin Zhang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Chun Yan Tang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Qiang Cheng
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China.
| |
Collapse
|
19
|
Belkahla H, Herlem G, Picaud F, Gharbi T, Hémadi M, Ammar S, Micheau O. TRAIL-NP hybrids for cancer therapy: a review. NANOSCALE 2017; 9:5755-5768. [PMID: 28443893 DOI: 10.1039/c7nr01469d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer is a worldwide health problem. It is now considered as a leading cause of morbidity and mortality in developed countries. In the last few decades, considerable progress has been made in anti-cancer therapies, allowing the cure of patients suffering from this disease, or at least helping to prolong their lives. Several cancers, such as those of the lung and pancreas, are still devastating in the absence of therapeutic options. In the early 90s, TRAIL (Tumor Necrosis Factor-related apoptosis-inducing ligand), a cytokine belonging to the TNF superfamily, attracted major interest in oncology owing to its selective anti-tumor properties. Clinical trials using soluble TRAIL or antibodies targeting the two main agonist receptors (TRAIL-R1 and TRAIL-R2) have, however, failed to demonstrate their efficacy in the clinic. TRAIL is expressed on the surface of natural killer or CD8+ T activated cells and contributes to tumor surveillance. Nanoparticles functionalized with TRAIL mimic membrane-TRAIL and exhibit stronger antitumoral properties than soluble TRAIL or TRAIL receptor agonist antibodies. This review provides an update on the association and the use of nanoparticles associated with TRAIL for cancer therapy.
Collapse
Affiliation(s)
- H Belkahla
- Nanomedicine Lab, EA 4662, Université de Bourgogne Franche-Comté, Besançon, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang X, Qiao X, Shang Y, Zhang S, Li Y, He H, Chen SZ. RGD and NGR modified TRAIL protein exhibited potent anti-metastasis effects on TRAIL-insensitive cancer cells in vitro and in vivo. Amino Acids 2017; 49:931-941. [PMID: 28236246 DOI: 10.1007/s00726-017-2395-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/15/2017] [Indexed: 01/28/2023]
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been considered to be a promising anti-tumor agent since the discovery of TRAIL-mediated apoptosis specifically on cancer cells. However, TRAIL resistance of tumor cells and patients remains to be an insurmountable obstacle for its clinical application. Here, we expressed TRAIL-related recombinant protein RGD-TRAIL, TRAIL-NGR, and RGD-TRAIL-NGR by fusing tumor targeting peptides RGD and (or) NGR at the N-terminus and C-terminus, respectively, to not only induce apoptosis of cancer cells but also inhibit metastasis. The fusion proteins possessed potent cytotoxicity with approximative IC50 in H460 and A549 cells, while TRAIL-NGR and RGD-TRAIL-NGR appeared to be more effective in HT1080 and PANC-1 cells which were relatively insensitive to TRAIL. A low concentration of fusion proteins, especially RGD-TRAIL-NGR, could inhibit migration of A549 and HT1080 cells in vitro and lung metastasis in HT1080LUC experimental model in vivo, indicating that the recombinant protein maintained the function of both TRAIL and targeting peptide RGD and NGR, which improved the sensitivity of tumor cells to TRAIL.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinran Qiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yue Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shenghua Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongwei He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shu-Zhen Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
21
|
Huang K, Duan N, Zhang C, Mo R, Hua Z. Improved antitumor activity of TRAIL fusion protein via formation of self-assembling nanoparticle. Sci Rep 2017; 7:41904. [PMID: 28225020 PMCID: PMC5320504 DOI: 10.1038/srep41904] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been known as a promising agent for cancer therapy due to its specific apoptosis-inducing effect on tumor cells rather than most normal cells. However, systemically delivered TRAIL suffers from a rapid clearance from the body with an extremely short half-life. Thermally responsive elastin-like polypeptides (ELPs) are a promising class of temperature sensitive biopolymers based on the structural motif found in mammalian tropoelastin and retain the advantages of polymeric drug delivery systems. We therefore expressed RGD-TRAIL fused with ELP (RGD-TRAIL-ELP) in E. coli. Purification of RGD-TRAIL-ELP was achieved by the conveniently inverse transition cycling (ITC). The purified RGD-TRAIL-ELP without any chemical conjugation was able to self-assemble into nanoparticle under physiological condition. Non-reducing SDS-PAGE results showed that trimer content of RGD-TRAIL-ELP increased 3.4-fold than RGD-TRAIL. Flow cytometry confirmed that RGD-TRAIL-ELP 3-fold enhanced apoptosis-inducing capacity than RGD-TRAIL. Single intraperitoneal injection of the RGD-TRAIL-ELP nanoparticle induced nearly complete tumor regression in the COLO-205 tumor xenograft model. Histological observation confirmed that RGD-TRAIL-ELP induced significant tumor cell apoptosis without apparent liver toxicity. These findings suggested that a great potential application of the RGD-TRAIL-ELP nanoparticle system as a safe and efficient delivery strategy for cancer therapy.
Collapse
Affiliation(s)
- Kaizong Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Affiliated Stomatological Hospital, Nanjing University, Nanjing, Jiangsu 210046, P.R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Ningjun Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Affiliated Stomatological Hospital, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Chunmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Affiliated Stomatological Hospital, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zichun Hua
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Affiliated Stomatological Hospital, Nanjing University, Nanjing, Jiangsu 210046, P.R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China.,Nanjing Industrial Innovation Center for Pharmaceutical Biotechnology, Nanjing, Jiangsu 210019, P.R. China.,Changzhou High-Tech Research Institute of Nanjing University, Changzhou, Jiangsu 213164, P.R. China
| |
Collapse
|
22
|
Fan LQ, Du GX, Li PF, Li MW, Sun Y, Zhao LM. Improved breast cancer cell-specific intracellular drug delivery and therapeutic efficacy by coupling decoration with cell penetrating peptide and SP90 peptide. Biomed Pharmacother 2016; 84:1783-1791. [DOI: 10.1016/j.biopha.2016.10.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 12/11/2022] Open
|
23
|
Cisterna BA, Kamaly N, Choi WI, Tavakkoli A, Farokhzad OC, Vilos C. Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond) 2016; 11:2443-56. [PMID: 27529192 DOI: 10.2217/nnm-2016-0194] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is highly prevalent worldwide, and despite notable progress in treatment still leads to significant morbidity and mortality. The use of nanoparticles as a drug delivery system has become one of the most promising strategies for cancer therapy. Targeted nanoparticles could take advantage of differentially expressed molecules on the surface of tumor cells, providing effective release of cytotoxic drugs. Several efforts have recently reported the use of diverse molecules as ligands on the surface of nanoparticles to interact with the tumor cells, enabling the effective delivery of antitumor agents. Here, we present recent advances in targeted nanoparticles against CRC and discuss the promising use of ligands and cellular targets in potential strategies for the treatment of CRCs.
Collapse
Affiliation(s)
- Bruno A Cisterna
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, & Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile
| | - Nazila Kamaly
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Department of Micro & Nanotechnology, Technical University of Denmark, DTU Nanotech, 2800 Kgs. Lyngby, Denmark
| | - Won Il Choi
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Ali Tavakkoli
- Department of Surgery, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cristian Vilos
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, & Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Center for the Development of Nanoscience & Nanotechnology, CEDENNA, 9170124 Santiago, Chile
| |
Collapse
|
24
|
Naoum GE, Tawadros F, Farooqi AA, Qureshi MZ, Tabassum S, Buchsbaum DJ, Arafat W. Role of nanotechnology and gene delivery systems in TRAIL-based therapies. Ecancermedicalscience 2016; 10:660. [PMID: 27594905 PMCID: PMC4990059 DOI: 10.3332/ecancer.2016.660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
Since its identification as a member of the tumour necrosis factor (TNF) family, TRAIL (TNF-related apoptosis-inducing ligand) has emerged as a new avenue in apoptosis-inducing cancer therapies. Its ability to circumvent the chemoresistance of conventional therapeutics and to interact with cancer stem cells (CSCs) self-renewal pathways, amplified its potential as a cancer apoptotic agent. Many recombinant preparations of this death ligand and monoclonal antibodies targeting its death receptors have been tested in monotherapy and combinational clinical trials. Gene therapy is a new approach for cancer treatment which implies viral or non-viral functional transgene induction of apoptosis in cancer cells or repair of the underlying genetic abnormality on a molecular level. The role of this approach in overcoming the traditional barriers of radiation and chemotherapeutics systemic toxicity, risk of recurrence, and metastasis made it a promising platform for cancer treatment. The recent first Food Drug Administration (FDA) approved oncolytic herpes virus for melanoma treatment brings forth the potency of the cancer gene therapy approach in the future. Many gene delivery systems have been studied for intratumoural TRAIL gene delivery alone or in combination with chemotherapeutic agents to produce synergistic cancer cytotoxicity. However, there still remain many obstacles to be conquered for this different gene delivery systems. Nanomedicine on the other hand offers a new frontier for clinical trials and biomedical research. The FDA approved nanodrugs motivates horizon exploration for other nanoscale designed particles’ implications in gene delivery. In this review we aim to highlight the molecular role of TRAIL in apoptosis and interaction with cancer stem cells (CSCs) self-renewal pathways. Finally, we also aim to discuss the different roles of gene delivery systems, mesenchymal cells, and nanotechnology designs in TRAIL gene delivery.
Collapse
Affiliation(s)
| | - Fady Tawadros
- East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN 37604, USA
| | | | | | - Sobia Tabassum
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Donald J Buchsbaum
- University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35233, USA
| | - Waleed Arafat
- University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35233, USA; University of Alexandria, El-Gaish Rd, Egypt, Alexandria, Egypt
| |
Collapse
|
25
|
Engineered adenovirus fiber shaft fusion homotrimer of soluble TRAIL with enhanced stability and antitumor activity. Cell Death Dis 2016; 7:e2274. [PMID: 27336718 PMCID: PMC5143403 DOI: 10.1038/cddis.2016.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/15/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
Successful cancer therapies aim to induce selective apoptosis in neoplastic cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered an attractive anticancer agent due to its tumor cell-specific cytotoxicity. However, earlier studies with recombinant TRAIL revealed many shortcomings, including a short half-life, off-target toxicity and existence of TRAIL-resistant tumor cells. In this study, we developed a novel engineering strategy for recombinant soluble TRAIL by redesigning its structure with the adenovirus knobless fiber motif to form a stable homotrimer with improved antitumor activity. The result is a highly stable fiber-TRAIL fusion protein that could form homotrimers similar to natural TRAIL. The recombinant fusion TRAIL developed here displayed high specific activity in both cell-based assays in vitro and animal tests in vivo. This construct will serve as a foundation for a new generation of recombinant proteins suitable for use in preclinical and clinical studies and for effective combination therapies to overcome tumor resistance to TRAIL.
Collapse
|
26
|
de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L. Onto better TRAILs for cancer treatment. Cell Death Differ 2016; 23:733-47. [PMID: 26943322 PMCID: PMC4832109 DOI: 10.1038/cdd.2015.174] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. By cross-linking TRAIL-Receptor (TRAIL-R) 1 or TRAIL-R2, also known as death receptors 4 and 5 (DR4 and DR5), TRAIL has the capability to induce apoptosis in a wide variety of tumor cells while sparing vital normal cells. The discovery of this unique property among TNF superfamily members laid the foundation for testing the clinical potential of TRAIL-R-targeting therapies in the cancer clinic. To date, two of these therapeutic strategies have been tested clinically: (i) recombinant human TRAIL and (ii) antibodies directed against TRAIL-R1 or TRAIL-R2. Unfortunately, however, these TRAIL-R agonists have basically failed as most human tumors are resistant to apoptosis induction by them. It recently emerged that this is largely due to the poor agonistic activity of these agents. Consequently, novel TRAIL-R-targeting agents with increased bioactivity are currently being developed with the aim of rendering TRAIL-based therapies more active. This review summarizes these second-generation novel formulations of TRAIL and other TRAIL-R agonists, which exhibit enhanced cytotoxic capacity toward cancer cells, thereby providing the potential of being more effective when applied clinically than first-generation TRAIL-R agonists.
Collapse
Affiliation(s)
- D de Miguel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - J Lemke
- UCL Cancer Institute, Faculty of Medical Sciences, University College London, London, UK
| | - A Anel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - H Walczak
- UCL Cancer Institute, Faculty of Medical Sciences, University College London, London, UK
| | - L Martinez-Lostao
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
- Instituto de Nanociencia de Aragón, Zaragoza, Spain
| |
Collapse
|
27
|
Sha H, Li R, Bian X, Liu Q, Xie C, Xin X, Kong W, Qian X, Jiang X, Hu W, Liu B. A tumor-penetrating recombinant protein anti-EGFR-iRGD enhance efficacy of paclitaxel in 3D multicellular spheroids and gastric cancer in vivo. Eur J Pharm Sci 2015; 77:60-72. [DOI: 10.1016/j.ejps.2015.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/02/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
|
28
|
Wang J, He L, Chen D, Pi Y, Zhou W, Xiong X, Ren Y, Lai Y, Hua Z. Quantitative analysis of annexin V-membrane interaction by flow cytometry. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:325-36. [PMID: 25921613 DOI: 10.1007/s00249-015-1026-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/03/2015] [Accepted: 04/08/2015] [Indexed: 01/12/2023]
Abstract
We constructed a green fluorescent phosphatidylserine (PS)-binding probe, which was generated by fusing enhanced green fluorescent protein (EGFP) to the C terminus of human annexin V (anxV). With this probe, we investigated anxV-membrane interaction under different calcium and anxV-EGFP concentrations through flow cytometry (FCM). A mathematical description of the binding characteristics is proposed and validated to quantify the relationship concerning the relative concentration of membrane-bound anxV (B), calcium concentration ([C]), and protein concentration ([P]). Further analyses reveal that [Formula: see text] is linear with [Formula: see text] or [Formula: see text] when [P] and [C] are fixed, respectively, which indicates that the anxV-membrane binding reaction may involve sequential multiple steps. Our study provides a reference for application of anxV in apoptosis detection. The mathematical expression facilitates exploration of the possible interactions between calcium, anxV, and membrane. The corresponding mathematical analysis strengthens the interpretation of the interaction data.
Collapse
Affiliation(s)
- Jie Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Room B211, College of Life Sciences, School of Stomatology and Affiliated Stomatological Hospital, Nanjing University, 163 Xianlin Road, 210046, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Enhancing tumor-specific intracellular delivering efficiency of cell-penetrating peptide by fusion with a peptide targeting to EGFR. Amino Acids 2015; 47:997-1006. [PMID: 25655386 DOI: 10.1007/s00726-015-1928-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
Abstract
Cell-penetrating peptides (CPPs) are well known as intracellular delivery vectors. However, unsatisfactory delivery efficiency and poor specificity are challenging barriers to CPP applications at the clinical trial stage. Here, we showed that S3, an EGFR-binding domain derived from vaccinia virus growth factor, when fused to a CPP such as HBD or TAT can substantially enhance its internalization efficiency and tumor selectivity. The uptake of S3-HBD (S3H) recombinant molecule by tumor cells was nearly 80 folds increased compared to HBD alone. By contrast, the uptake of S3H by non-neoplastic cells still remained at a low level. The specific recognition between S3 and its receptor, EGFR, as well as between HBD and heparan sulfate proteoglycans on the cell surface was essential for these improvements, suggesting a syngeneic effect between the two functional domains in conjugation. This syngeneic effect is likely similar to that of the heparin-binding epidermal growth factor, which is highly abundant particularly in metastatic tumors. The process that S3H entered cells was dependent on time, dosage, and energy, via macropinocytosis pathway. With excellent cell-penetrating efficacy and a novel tumor-targeting ability, S3H appears as a promising candidate vector for targeted anti-cancer drug delivery.
Collapse
|
30
|
Mitochondrial inhibitor sensitizes non-small-cell lung carcinoma cells to TRAIL-induced apoptosis by reactive oxygen species and Bcl-X(L)/p53-mediated amplification mechanisms. Cell Death Dis 2014; 5:e1579. [PMID: 25522273 PMCID: PMC4649849 DOI: 10.1038/cddis.2014.547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for anticancer therapy; however, non-small-cell lung carcinoma (NSCLC) cells are relatively TRAIL resistant. Identification of small molecules that can restore NSCLC susceptibility to TRAIL-induced apoptosis is meaningful. We found here that rotenone, as a mitochondrial respiration inhibitor, preferentially increased NSCLC cells sensitivity to TRAIL-mediated apoptosis at subtoxic concentrations, the mechanisms by which were accounted by the upregulation of death receptors and the downregulation of c-FLIP (cellular FLICE-like inhibitory protein). Further analysis revealed that death receptors expression by rotenone was regulated by p53, whereas c-FLIP downregulation was blocked by Bcl-XL overexpression. Rotenone triggered the mitochondria-derived reactive oxygen species (ROS) generation, which subsequently led to Bcl-XL downregulation and PUMA upregulation. As PUMA expression was regulated by p53, the PUMA, Bcl-XL and p53 in rotenone-treated cells form a positive feedback amplification loop to increase the apoptosis sensitivity. Mitochondria-derived ROS, however, promote the formation of this amplification loop. Collectively, we concluded that ROS generation, Bcl-XL and p53-mediated amplification mechanisms had an important role in the sensitization of NSCLC cells to TRAIL-mediated apoptosis by rotenone. The combined TRAIL and rotenone treatment may be appreciated as a useful approach for the therapy of NSCLC that warrants further investigation.
Collapse
|
31
|
Qiu F, Hu M, Tang B, Liu X, Zhuang H, Yang J, Hua ZC. Annexin V-TRAIL fusion protein is a more sensitive and potent apoptotic inducer for cancer therapy. Sci Rep 2013; 3:3565. [PMID: 24356445 PMCID: PMC3868960 DOI: 10.1038/srep03565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/04/2013] [Indexed: 11/17/2022] Open
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent, which kills cancer cells selectively, while leaving normal cells unharmed. However, the emerging resistance of tumor cells and patients to TRAIL-induced apoptosis limits its further application. In this study, we developed a chimeric protein Annexin V-TRAIL (designated as TP8) with higher efficacy than TRAIL both in vitro and in vivo. In vitro, the EC50 of TP8 on a series of tumor cells was much lower than wild-type TRAIL. Annexin V provided this recombinant protein with higher efficacy, while leaving tumor specificity of TRAIL unchanged since TP8 had no effects on normal cells. Invivo, TP8 effectively suppressed tumor growth and prolonged tumor doubling time and tumor growth delay time in mouse xenografts involving multiple cancer cell types including A549, Colo205 and Bel7402. This study provides a new rational strategy to treat TRAIL-resistant cancers.
Collapse
Affiliation(s)
- Fan Qiu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, P.R. China
| | - Minjin Hu
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, P.R. China
| | - Bo Tang
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, P.R. China
| | - Xiufeng Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, P.R. China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, P.R. China
| | - Jie Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, P.R. China
| | - Zi-Chun Hua
- 1] The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, P.R. China [2] Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, P.R. China
| |
Collapse
|
32
|
Johansson A, Hamzah J, Ganss R. License for destruction: tumor-specific cytokine targeting. Trends Mol Med 2013; 20:16-24. [PMID: 24169116 DOI: 10.1016/j.molmed.2013.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 12/28/2022]
Abstract
Stroma is an integral part of solid tumors and plays a key role in growth promotion and immune suppression. Most current therapies focus on destroying tumors and/or abnormal vasculature. However, evidence is emerging that anticancer efficacy improves with vessel normalization rather than destruction. Specific targeting of cytokines into tumors provides proof-of-concept that tumor stroma is dynamic and can be remodeled to increase drug access and alleviate immune suppression. Changing the inflammatory milieu 'opens' tumors for therapy and thus provides a license for destruction. This involves reprogramming of paracrine signaling networks between multiple stromal components to break the vicious cycle of angiogenesis and immune suppression. With active immunotherapy rapidly moving into the clinic, local cytokine delivery emerges as an attractive adjuvant.
Collapse
Affiliation(s)
- Anna Johansson
- Western Australian Institute for Medical Research, University of Western Australia, Centre for Medical Research, Perth, 6000, Australia
| | - Juliana Hamzah
- Western Australian Institute for Medical Research, University of Western Australia, Centre for Medical Research, Perth, 6000, Australia
| | - Ruth Ganss
- Western Australian Institute for Medical Research, University of Western Australia, Centre for Medical Research, Perth, 6000, Australia.
| |
Collapse
|
33
|
Pharmacokinetic considerations for targeted drug delivery. Adv Drug Deliv Rev 2013; 65:139-47. [PMID: 23280371 DOI: 10.1016/j.addr.2012.11.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023]
Abstract
Drug delivery systems involve technology designed to maximize therapeutic efficacy of drugs by controlling their biodistribution profile. In order to optimize a function of the delivery systems, their biodistribution characteristics should be systematically understood. Pharmacokinetic analysis based on the clearance concepts provides quantitative information of the biodistribution, which can be related to physicochemical properties of the delivery system. Various delivery systems including macromolecular drug conjugates, chemically or genetically modified proteins, and particulate drug carriers have been designed and developed so far. In this article, we review physiological and pharmacokinetic implications of the delivery systems.
Collapse
|
34
|
Zhang W, Huang Q, Hua Z. Galangin and TRAIL cooperate to suppress A549 lung cancer proliferation via apoptosis and p38 MAPK activation. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2012.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
35
|
Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 2012; 9:2961-73. [PMID: 22967287 DOI: 10.1021/mp3002733] [Citation(s) in RCA: 709] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The integrin α(v)β(3) plays an important role in angiogenesis. It is expressed on tumoral endothelial cells as well as on some tumor cells. RGD peptides are well-known to bind preferentially to the α(v)β(3) integrin. In this context, targeting tumor cells or tumor vasculature by RGD-based strategies is a promising approach for delivering anticancer drugs or contrast agents for cancer therapy and diagnosis. RGD-based strategies include antagonist drugs (peptidic or peptidomimetic) of the RGD sequence, RGD-conjugates, and the grafting of the RGD peptide or peptidomimetic, as targeting ligand, at the surface of nanocarriers. Although all strategies are overviewed, this review aims to particularly highlight the position of RGD-based nanoparticles in cancer therapy and imaging. This review is divided into three parts: the first one describes the context of angiogenesis, the role of the integrin α(v)β(3), and the binding of the RGD peptide to this integrin; the second one focuses on RGD-based strategies in cancer therapy; while the third one focuses on RGD-based strategies in cancer diagnosis.
Collapse
Affiliation(s)
- Fabienne Danhier
- Université catholique de Louvain, Pharmaceutics and Drug Delivery, Louvain Drug Research Institute, Avenue E. Mounier, 73 B1 73 12, B-1200, Brussels, Belgium
| | | | | |
Collapse
|
36
|
Zhuang H, Jiang W, Zhang X, Qiu F, Gan Z, Cheng W, Zhang J, Guan S, Tang B, Huang Q, Wu X, Huang X, Jiang W, Hu Q, Lu M, Hua ZC. Suppression of HSP70 expression sensitizes NSCLC cell lines to TRAIL-induced apoptosis by upregulating DR4 and DR5 and downregulating c-FLIP-L expressions. J Mol Med (Berl) 2012; 91:219-35. [DOI: 10.1007/s00109-012-0947-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/16/2012] [Accepted: 08/07/2012] [Indexed: 12/22/2022]
|
37
|
Ro52/SSA sensitizes cells to death receptor-induced apoptosis by down-regulating c-FLIP(L). Cell Biol Int 2012; 36:463-8. [PMID: 22288650 DOI: 10.1042/cbi20110322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ro52/SSA is an autoantigen that presents in patients with SS (Sjögren's syndrome) and SLE (systemic lupus erythematosus). It increases cell death and redistributes itself to apoptotic blebs, but its pro-apoptotic function has not been completely identified. Overexpression of Ro52/SSA promoted cell apoptosis induced by DR (death receptor) in caspase-8-dependent manner. Ro52/SSA expression down-regulated c-FLIP(L) [cellular (Fas-associated death domain)-like interleukin 1β-converting enzyme-inhibitory protein long form] expression, and Ro52/SSA siRNAs (small interfering RNAs) increased c-FLIP(L) production, indicating that Ro52/SSA plays a role in c-FLIP(L) regulation. Ro52/SSA negatively regulated c-FLIP(L) transcriptional level probably by suppressing NF-κB (nuclear factor κB) signalling. The data suggest that Ro52/SSA is involved in DR-mediated apoptosis by regulating c-FLIP(L).
Collapse
|
38
|
Jia LT, Chen SY, Yang AG. Cancer gene therapy targeting cellular apoptosis machinery. Cancer Treat Rev 2012; 38:868-76. [PMID: 22800735 DOI: 10.1016/j.ctrv.2012.06.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 01/14/2023]
Abstract
The unraveling of cellular apoptosis machinery provides novel targets for cancer treatment, and gene therapy targeting this suicidal system has been corroborated to cause inflammation-free autonomous elimination of neoplastic cells. The apoptotic machinery can be targeted by introduction of a gene encoding an inducer, mediator or executioner of apoptotic cell death or by inhibition of anti-apoptotic gene expression. Strategies targeting cancer cells, which are achieved by selective gene delivery, specific gene expression or secretion of target proteins via genetic modification of autologous cells, dictate the outcome of apoptosis-based cancer gene therapy. Despite so far limited clinical success, gene therapy targeting the apoptotic machinery has great potential to benefit patients with threatening malignancies provided the availability of efficient and specific gene delivery and administration systems.
Collapse
Affiliation(s)
- Lin-Tao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| | | | | |
Collapse
|
39
|
Goodman SL, Grote HJ, Wilm C. Matched rabbit monoclonal antibodies against αv-series integrins reveal a novel αvβ3-LIBS epitope, and permit routine staining of archival paraffin samples of human tumors. Biol Open 2012; 1:329-40. [PMID: 23213423 PMCID: PMC3509452 DOI: 10.1242/bio.2012364] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The relationship between integrin expression and function in pathologies is often contentious as comparisons between human pathological expression and expression in cell lines is difficult. In addition, the expression of even integrins αvβ6 and αvβ8 in tumor cell lines is not comprehensively documented. Here, we describe rabbit monoclonal antibodies (RabMabs) against the extracellular domains of αv integrins that react with both native integrins and formalin fixed, paraffin embedded (FFPE) human tissues. These RabMabs, against αvβ3 (EM22703), αvβ5 (EM09902), αvβ6 (EM05201), αvβ8 (EM13309), and pan-αv (EM01309), recognize individual integrin chains in Western blots and in flow cytometry. EM22703 detected a ligand-induced binding site (LIBS), reporting an epitope enhanced by the binding of an RGD-peptide to αvβ3. αvβ8 was rarely expressed in human tumor specimens, and weakly expressed in non-small-cell lung carcinoma (NSCLC). However, ovarian carcinoma cell lines expressed αvβ8, as did some melanoma cells, whereas U87MG glioma lacked αvβ8 expression. We observed an unexpected strong expression of αvβ6 in tumor samples of invasive ductal breast adenoma, colorectal carcinoma (CRC), and NSCLC. αvβ3 was strongly expressed in some invasive NSCLC cohorts. Interestingly, PC3 prostate cell and human prostate tumors did not express αvβ3. The RabMabs stained plasma membranes in FFPE-immunohistochemistry (IHC) samples of tumor cell lines from lung, ovary, colon, prostate, squamous cell carcinoma of head and neck (SCCHN), breast, and pancreas carcinomas. The RabMabs are unique tools for probing αv integrin biology, and suggest that especially αvβ6 and αvβ8 biologies still have much to reveal.
Collapse
|
40
|
Chen J, Yang B, Cheng X, Qiao Y, Tang B, Chen G, Wei J, Liu X, Cheng W, Du P, Huang X, Jiang W, Hu Q, Hu Y, Li J, Hua ZC. Salmonella-mediated tumor-targeting TRAIL gene therapy significantly suppresses melanoma growth in mouse model. Cancer Sci 2011; 103:325-33. [DOI: 10.1111/j.1349-7006.2011.02147.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
41
|
Kim TH, Youn YS, Jiang HH, Lee S, Chen X, Lee KC. PEGylated TNF-Related Apoptosis-Inducing Ligand (TRAIL) Analogues: Pharmacokinetics and Antitumor Effects. Bioconjug Chem 2011; 22:1631-7. [DOI: 10.1021/bc200187k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tae Hyung Kim
- College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea
| | - Yu Seok Youn
- College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea
| | - Hai Hua Jiang
- College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea
| | - Seulki Lee
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Kang Choon Lee
- College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea
| |
Collapse
|
42
|
Abstract
Targeted delivery of chemotherapeutics is defined in the sense, that is, to maximize the therapeutic index of a chemotherapeutic agent by strictly localizing its pharmacological activity to the site or tissue of action. Integrins are a family of heterodimeric transmembrane glycoproteins involved in a wide range of cell-to-extracellular matrix (ECM) and cell-to-cell interactions. As cell surface receptors, integrins readily interact with extracellular ligands and play a vital role in angiogenesis, leukocytes function and tumor development, which sets up integrins as an excellent target for chemotherapy treatment. The peptide ligands containing the arginine-glycine-aspartic acid (RGD), which displays a strong binding affinity and selectivity to integrins, particularly to integrin αvβ3, have been developed to conjugate with various conventional chemotherapeutic agents, such as small molecules, peptides and proteins, and nanoparticle-carried drugs for integtrin targeted therapeutic studies. This review highlights the recent advances in integrin targeted delivery of chemotherapeutic agents with emphasis on target of integrin αvβ3, and describes the considerations for the design of the diverse RGD peptide-chemotherapeutics conjugates and their major applications.
Collapse
|
43
|
Synthesis and evaluation of new iRGD peptide analogs for tumor optical imaging. Bioorg Med Chem Lett 2010; 21:1146-50. [PMID: 21251820 DOI: 10.1016/j.bmcl.2010.12.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/18/2010] [Accepted: 12/21/2010] [Indexed: 01/02/2023]
Abstract
Recently, a disulfide-based cyclic RGD peptide called iRGD, that is, c(CRGDKGPDC), has been reported to interact with both integrin and neuropilin-1 receptors for cellular and deep tissue penetration to improve the imaging sensitivity and therapeutic efficacy. In this study, two new near-infrared fluorescent iRGD conjugates, that is, Ac-Cys(IRDye®800CW)-iRGD (1), and its dual labeling analog DOTA-Cys(IRDye®800CW)-iRGD (2) were synthesized via the specific mercapto-maleimide reaction for tumor imaging. Both 1 and 2 showed significant tumor localization in optical imaging of MDA-MB-435 tumor-bearing mice. The potential of such iRGD compounds in tumor-targeted imaging and drug delivery deserves further exploration.
Collapse
|
44
|
Preparation and characterization of RGD tumour-homing-peptide-modified plasminogen K5. Biotechnol Appl Biochem 2010; 57:17-24. [PMID: 20718711 DOI: 10.1042/ba20100225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasminogen K5 (kringle 5) has strong inhibitory effects on endothelial-cell proliferation and migration. It was reported that K5 can reduce tumour neovascularization, resulting in clinically relevant antitumour effects. To determine whether addition of a tumour-targeting peptide could improve the tumour homing and antitumour activities of K5, we genetically modified K5 with an RGD (Arg-Gly-Asp) motif, which is a ligand with high affinity for αvβ₃ and αvβ₅ integrins. The fusion protein RGD-K5 was expressed in the Pichia pastoris system and the biological activity of RGD-K5 was assessed in vitro and in vivo. The results showed that the RGD-K5 exhibited a more potent effect of inhibiting endothelial cell proliferation and migration compared with that of traditional K5. RGD-K5 also displayed stronger anti-angiogenic activity in a CAM (chick chorioallantoic membrane) assay. Furthermore, RGD-K5 also showed stronger anti-angiogenic and antitumour effects in B16F10 melanoma-bearing mice compared with traditional K5. In conclusion, the biological activity of K5 can be further improved by the addition of a tumour-homing peptide, and the RGD-K5 may prove to be a promising novel candidate for cancer therapy.
Collapse
|
45
|
Chae SY, Kim TH, Park K, Jin CH, Son S, Lee S, Youn YS, Kim K, Jo DG, Kwon IC, Chen X, Lee KC. Improved antitumor activity and tumor targeting of NH(2)-terminal-specific PEGylated tumor necrosis factor-related apoptosis-inducing ligand. Mol Cancer Ther 2010; 9:1719-29. [PMID: 20515949 PMCID: PMC3629964 DOI: 10.1158/1535-7163.mct-09-1076] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered an attractive anticancer agent due to its tumor cell-specific cytotoxicity. However, its low stability, solubility, unexpected side effects, and weak pharmacokinetic profiles restrict its successful clinical application. To develop efficient TRAIL-based anticancer biotherapeutics, a new version of trimeric TRAIL was constructed by incorporating trimer-forming zipper sequences (HZ-TRAIL), and then NH(2)-terminal-specific PEGylation was done to produce PEGylated TRAIL (PEG-HZ-TRAIL). The biological, physicochemical, and pharmaceutical characteristics of PEG-HZ-TRAIL were then investigated using various in vitro and in vivo experiments, including a cell-based cytotoxicity test, a solubility test, pharmacokinetic analysis, and antitumor efficacy evaluations. Although slight activity loss occurred after PEGylation, PEG-HZ-TRAIL showed excellent tumor cell-specific cytotoxic effects via apoptotic pathways with negligible normal cell toxicity. The stability and pharmacokinetic problems of HZ-TRAIL were successfully overcome by PEGylation. Furthermore, in vivo antitumor tests revealed that PEG-HZ-TRAIL treatment enhanced therapeutic potentials compared with HZ-TRAIL in tumor xenograft animal models, and these enhancements were attributed to its better pharmacokinetic properties and tumor-targeting performance. These findings show that PEG-HZ-TRAIL administration provides an effective antitumor treatment, which exhibits superior tumor targeting and better inhibits tumor growth, and suggest that PEG-HZ-TRAIL should be considered a potential candidate for antitumor biotherapy.
Collapse
Affiliation(s)
- Su Young Chae
- College of Pharmacy, SungKyunKwan University, Suwon, Korea
| | - Tae Hyung Kim
- College of Pharmacy, SungKyunKwan University, Suwon, Korea
| | - Kyeongsoon Park
- Biomedical Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Cheng-Hao Jin
- College of Pharmacy, SungKyunKwan University, Suwon, Korea
| | - Sohee Son
- College of Pharmacy, SungKyunKwan University, Suwon, Korea
| | - Seulki Lee
- Laboratory for Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, Maryland
| | - Yu Seok Youn
- College of Pharmacy, Pusan National University, Busan, Korea
| | - Kwangmeyung Kim
- Biomedical Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Dong-Gyu Jo
- College of Pharmacy, SungKyunKwan University, Suwon, Korea
| | - Ick Chan Kwon
- Biomedical Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Xiaoyuan Chen
- Laboratory for Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, Maryland
| | - Kang Choon Lee
- College of Pharmacy, SungKyunKwan University, Suwon, Korea
| |
Collapse
|
46
|
Aguzzi MS, Fortugno P, Giampietri C, Ragone G, Capogrossi MC, Facchiano A. Intracellular targets of RGDS peptide in melanoma cells. Mol Cancer 2010; 9:84. [PMID: 20412563 PMCID: PMC2867821 DOI: 10.1186/1476-4598-9-84] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/22/2010] [Indexed: 11/11/2022] Open
Abstract
Background RGD-motif acts as a specific integrins-ligand and regulates a variety of cell-functions via extracellular action affecting cell-adhesion properties. However, increasing evidence identifies additional RGDS-functions at intracellular level. Previous reports show RGDS-internalization in endothelial cells, cardiomyocytes and lymphocytes, indicating intracellular targets such as caspase-8 and caspase-9, and suggest RGDS specific activity at cytoplasmic level. Given the role RGDS-peptides play in controlling proliferation and apoptosis in several cell types, investigating intracellular targets of RGDS in melanoma cells may un-reveal novel molecular targets and key pathways, potentially useful for a more effective approach to melanoma treatment. Results In the present study we show for the first time that RGDS-peptide is internalized in melanoma cells in a time-dependent way and exerts strong anti-proliferative and pro-apoptotic effects independently from its extracellular anti-adhesive action. RGES control-peptide did not show biological effects, as expected; nevertheless it is internalized, although with slower kinetics. Survivin, a known cell-cycle and survival-regulator is highly expressed in melanoma cells. Co-immunoprecipitation assays in cell lysates and overlay assays with the purified proteins showed that RGDS interacts with survivin, as well as with procaspase-3, -8 and -9. RGDS-peptide binding to survivin was found to be specific, at high affinity (Kd 27.5 μM) and located at the survivin C-terminus. RGDS-survivin interaction appeared to play a key role, since RGDS lost its anti-mitogenic effect in survivin-deprived cells with a specific siRNA. Conclusions RGDS inhibits melanoma growth with an adhesion-independent mechanism; it is internalized in melanoma cells and specifically interacts with survivin. The present data may indicate a novel role of RGDS-containing peptides physiologically released from the extracellular matrix and may suggest a possible novel anti-proliferation strategy in melanoma.
Collapse
Affiliation(s)
- Maria Simona Aguzzi
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Roma, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis. Lung Cancer 2010; 68:27-38. [DOI: 10.1016/j.lungcan.2009.05.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/30/2009] [Accepted: 05/09/2009] [Indexed: 02/07/2023]
|
48
|
Human CD34+ cells engineered to express membrane-bound tumor necrosis factor–related apoptosis-inducing ligand target both tumor cells and tumor vasculature. Blood 2010; 115:2231-40. [DOI: 10.1182/blood-2009-08-239632] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor–related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 105 tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell–derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling–stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.
Collapse
|
49
|
Abstract
The integrin family of cell adhesion receptors regulates a diverse array of cellular functions crucial to the initiation, progression and metastasis of solid tumours. The importance of integrins in several cell types that affect tumour progression has made them an appealing target for cancer therapy. Integrin antagonists, including the alphavbeta3 and alphavbeta5 inhibitor cilengitide, have shown encouraging activity in Phase II clinical trials and cilengitide is currently being tested in a Phase III trial in patients with glioblastoma. These exciting clinical developments emphasize the need to identify how integrin antagonists influence the tumour and its microenvironment.
Collapse
Affiliation(s)
- Jay S Desgrosellier
- Department of Pathology, Moores University of California at San Diego Cancer Center, La Jolla, 92093-0803, United States
| | | |
Collapse
|
50
|
Epithelial–mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta Rev Cancer 2009; 1796:75-90. [DOI: 10.1016/j.bbcan.2009.03.002] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/05/2009] [Accepted: 03/07/2009] [Indexed: 12/26/2022]
|