1
|
Li YC, Lin BH, Murakami M, Wu YS, Hung TH, Chen CC, Ambudkar SV, Wu CP. Vodobatinib overcomes cancer multidrug resistance by attenuating the drug efflux function of ABCB1 and ABCG2. Eur J Pharmacol 2025; 988:177231. [PMID: 39725134 DOI: 10.1016/j.ejphar.2024.177231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Multidrug resistance (MDR) remains a significant obstacle in cancer treatment, primarily attributable to the overexpression of ATP-binding cassette (ABC) transporters such as ABCB1 and ABCG2 within cancer cells. These transporters actively diminish the effectiveness of cytotoxic drugs by facilitating ATP hydrolysis-dependent drug efflux, thereby reducing intracellular drug accumulation. Given the absence of approved treatments for multidrug-resistant cancers and the established benefits of combining tyrosine kinase inhibitors (TKIs) with conventional anticancer drugs, we investigate the potential of vodobatinib, a potent c-Abl TKI presently in clinical trials, to restore sensitivity to chemotherapeutic agents in multidrug-resistant cancer cells overexpressing ABCB1 and ABCG2. Results indicate that vodobatinib, administered at sub-toxic concentrations, effectively restores the sensitivity of multidrug-resistant cancer cells to cytotoxic drugs in a concentration-dependent manner. Moreover, vodobatinib enhances drug-induced apoptosis in these cells by inhibiting the drug-efflux function of ABCB1 and ABCG2, while maintaining their expression levels. Moreover, we found that while vodobatinib enhances the ATPase activity of ABCB1 and ABCG2, the overexpression of these transporters does not induce resistance to vodobatinib. These results strongly suggest that increased levels of ABCB1 or ABCG2 are unlikely to play a significant role in the development of resistance to vodobatinib in cancer patients. Overall, our findings unveil an additional pharmacological facet of vodobatinib against ABCB1 and ABCG2 activity, suggesting its potential incorporation into combination therapy for a specific subset of patients with tumors characterized by high ABCB1 or ABCG2 levels. Further investigation is warranted to fully elucidate the clinical implications of this therapeutic approach.
Collapse
Affiliation(s)
- Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Bing-Huan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| |
Collapse
|
2
|
Lin BH, Li YC, Murakami M, Wu YS, Huang YH, Hung TH, Ambudkar SV, Wu CP. Epertinib counteracts multidrug resistance in cancer cells by antagonizing the drug efflux function of ABCB1 and ABCG2. Biomed Pharmacother 2024; 180:117542. [PMID: 39388999 DOI: 10.1016/j.biopha.2024.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
A significant hurdle in cancer treatment arises from multidrug resistance (MDR), often due to overexpression of ATP-binding cassette (ABC) transporters like ABCB1 and/or ABCG2 in cancer cells. These transporters actively diminish the efficacy of cytotoxic drugs by facilitating ATP hydrolysis-dependent drug efflux and reducing intracellular drug accumulation in cancer cells. Addressing multidrug-resistant cancers poses a significant challenge due to the lack of approved treatments, prompting the exploration of alternative avenues like drug repurposing (also referred to as drug repositioning) of molecularly targeted agents to reverse MDR-mediated by ABCB1 and/or ABCG2 in multidrug-resistant cancer cells. Epertinib, a potent inhibitor of EGFR and HER2 currently in clinical trials for solid tumors, was investigated for its potential to resensitize ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic agents. Our findings reveal that at sub-toxic, submicromolar concentrations, epertinib restores the sensitivity of multidrug-resistant cancer cells to cytotoxic drugs in a concentration-dependent manner. The results demonstrate that epertinib enhances drug-induced apoptosis in these cancer cells by impeding the drug-efflux function of ABCB1 and ABCG2 without altering their expression. ATPase activity and molecular docking were employed to reveal potential interaction sites between epertinib and the drug-binding pockets of ABCB1 and ABCG2. In summary, our study demonstrates an additional pharmacological capability of epertinib against the activity of ABCB1 and ABCG2. These findings suggest that incorporating epertinib into combination therapy could be advantageous for a specific patient subset with tumors exhibiting high levels of ABCB1 or ABCG2, warranting further exploration.
Collapse
Affiliation(s)
- Bing-Huan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
3
|
Radomska D, Szewczyk-Roszczenko OK, Marciniec K, Książek M, Kusz J, Roszczenko P, Szymanowska A, Radomski D, Bielawski K, Czarnomysy R. Evaluation of anticancer activity of novel platinum(II) bis(thiosemicarbazone) complex against breast cancer. Bioorg Chem 2024; 148:107486. [PMID: 38788367 DOI: 10.1016/j.bioorg.2024.107486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The study aims to synthesize a novel bis(thiosemicarbazone) derivative based on platinum (thioPt) and evaluate its anticancer properties against MFC-7 and MDA-MB-231 breast cancer cells. A new platinum complex was synthesised by reacting K2PtCl4 with 2,2'-(1,2-diphenylethane-1,2-diylidene)bis(hydrazine-1-carbothioamide) in ethanol in the presence of K2CO3. In the obtained complex, the platinum atom is coordinated by a conjugated system = N-NC-S-The structures of the new compound were characterised using NMR spectroscopy, HR MS, IR, and X-ray structural analysis. The obtained results of the cytotoxicity assay indicate that compound thioPt had potent anticancer activity (MCF-7: 61.03 ± 3.57 µM, MDA-MB-231: 60.05 ± 5.40 µM) with less toxicity against normal MCF-10A breast epithelial cells, even compared to the reference compound (cisplatin). In addition, subsequent experiments found that thioPt induces apoptosis through both an extrinsic (↑caspase 8 activity) and intrinsic (↓ΔΨm) pathway, which ultimately leads to an increase in active caspase 3/7 levels. The induction of autophagy and levels of proteins involved in this process (LC3A/B and Beclin-1) were examined in MCF-7 and MDA-MB-231 breast cancer cells exposed to tested compounds (thio, thioPt, cisPt) at a concentration of 50 µM for 24 h. Based on these results, it can be concluded that thio and thioPt do not significantly affect the autophagy process. This demonstrates their superiority over cisplatin, which can stimulate cancer cell survival through its effect on stimulation of autophagy.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | | | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41‑200 Sosnowiec, Poland
| | - Maria Książek
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland.
| |
Collapse
|
4
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
5
|
Li YC, Hsiao SH, Murakami M, Huang YH, Chang YT, Hung TH, Wu YS, Ambudkar SV, Wu CP. Epidermal Growth Factor Receptor Inhibitor Mobocertinib Resensitizes Multidrug-Resistant Cancer Cells by Attenuating the Human ATP-Binding Cassette Subfamily B Member 1 and Subfamily G Member 2. ACS Pharmacol Transl Sci 2024; 7:161-175. [PMID: 38230272 PMCID: PMC10789147 DOI: 10.1021/acsptsci.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
ATP-binding cassette (ABC) transporters, notably ABCB1 (P-glycoprotein) and ABCG2, play a crucial role in the development of multidrug resistance (MDR) during the administration of chemotherapy for cancer patients. With a lack of approved treatments for addressing multidrug-resistant cancers, MDR remains a substantial challenge to the effective management of cancer. Rather than focusing on developing novel synthetic inhibitors, a promising approach to combat MDR involves repurposing approved therapeutic agents to enhance the sensitivity to cytotoxic antiproliferative drugs of multidrug-resistant cancer cells with high expression of ABCB1 or ABCG2. In this investigation, we observed a substantial reversal of MDR conferred by ABCB1 and ABCG2 in multidrug-resistant cancer cells through the use of mobocertinib, an approved third-generation inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. Mobocertinib demonstrated the ability to hinder drug transport function without causing changes in protein expression. The interactions between mobocertinib and ABCB1, as well as ABCG2, were validated through ATPase assays. Furthermore, in silico docking simulations were utilized to substantiate the binding of mobocertinib within the drug-binding pockets of both ABCB1 and ABCG2. We conclude that further testing of mobocertinib in combination therapy is warranted for patients with tumors expressing elevated levels of the ABC drug transporters ABCB1 and ABCG2.
Collapse
Affiliation(s)
- Yen-Ching Li
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sung-Han Hsiao
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Yang-Hui Huang
- Department
of Obstetrics and Gynecology, Taipei Chang
Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Yu-Tzu Chang
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department
of Obstetrics and Gynecology, Taipei Chang
Gung Memorial Hospital, Taipei 10507, Taiwan
- Department
of Medicine, College of Medicine, Chang
Gung University, Taoyuan 33302, Taiwan
- Department
of Obstetrics and Gynecology, Keelung Chang
Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Shan Wu
- Department
of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh. V. Ambudkar
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Chung-Pu Wu
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department
of Obstetrics and Gynecology, Taipei Chang
Gung Memorial Hospital, Taipei 10507, Taiwan
- Department
of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular
Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
6
|
Wu CP, Murakami M, Li YC, Huang YH, Chang YT, Hung TH, Wu YS, Ambudkar SV. Imperatorin Restores Chemosensitivity of Multidrug-Resistant Cancer Cells by Antagonizing ABCG2-Mediated Drug Transport. Pharmaceuticals (Basel) 2023; 16:1595. [PMID: 38004460 PMCID: PMC10674403 DOI: 10.3390/ph16111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The high expression of the ATP-binding cassette (ABC) drug transporter ABCG2 in cancer cells contributes to the emergence of multidrug resistance (MDR) in individuals afflicted with either solid tumors or blood cancers. MDR poses a major impediment in the realm of clinical cancer chemotherapy. Recently, substantial endeavors have been dedicated to identifying bioactive compounds isolated from nature capable of counteracting ABCG2-mediated MDR in cancer cells. Imperatorin, a natural coumarin derivative renowned for its diverse pharmacological properties, has not previously been explored for its impact on cancer drug resistance. This study investigates the chemosensitizing potential of imperatorin in ABCG2-overexpressing cancer cells. Experimental results reveal that at sub-toxic concentrations, imperatorin significantly antagonizes the activity of ABCG2 and reverses ABCG2-mediated MDR in a concentration-dependent manner. Furthermore, biochemical data and in silico analysis of imperatorin docking to the inward-open conformation of human ABCG2 indicate that imperatorin directly interacts with multiple residues situated within the transmembrane substrate-binding pocket of ABCG2. Taken together, these results furnish substantiation that imperatorin holds promise for further evaluation as a potent inhibitor of ABCG2, warranting exploration in combination drug therapy to enhance the effectiveness of therapeutic agents for patients afflicted with tumors that exhibit high levels of ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan;
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
| | - Yu-Tzu Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan;
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan;
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
7
|
Wu CP, Li YC, Murakami M, Hsiao SH, Lee YC, Huang YH, Chang YT, Hung TH, Wu YS, Ambudkar SV. Furmonertinib, a Third-Generation EGFR Tyrosine Kinase Inhibitor, Overcomes Multidrug Resistance through Inhibiting ABCB1 and ABCG2 in Cancer Cells. Int J Mol Sci 2023; 24:13972. [PMID: 37762275 PMCID: PMC10531071 DOI: 10.3390/ijms241813972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
ATP-binding cassette transporters, including ABCB1 (P-glycoprotein) and ABCG2 (BCRP/MXR/ABCP), are pivotal in multidrug resistance (MDR) development in cancer patients undergoing conventional chemotherapy. The absence of approved therapeutic agents for multidrug-resistant cancers presents a significant challenge in effectively treating cancer. Researchers propose repurposing existing drugs to sensitize multidrug-resistant cancer cells, which overexpress ABCB1 or ABCG2, to conventional anticancer drugs. The goal of this study is to assess whether furmonertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor overcomes drug resistance mediated by ABCB1 and ABCG2 transporters. Furmonertinib stands out due to its ability to inhibit drug transport without affecting protein expression. The discovery of this characteristic was validated through ATPase assays, which revealed interactions between furmonertinib and ABCB1/ABCG2. Additionally, in silico docking of furmonertinib offered insights into potential interaction sites within the drug-binding pockets of ABCB1 and ABCG2, providing a better understanding of the underlying mechanisms responsible for the reversal of MDR by this repurposed drug. Given the encouraging results, we propose that furmonertinib should be explored as a potential candidate for combination therapy in patients with tumors that have high levels of ABCB1 and/or ABCG2. This combination therapy holds the potential to enhance the effectiveness of conventional anticancer drugs and presents a promising strategy for overcoming MDR in cancer treatment.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Chieh Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Yu-Tzu Chang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Wu CP, Hung CY, Hsieh YJ, Murakami M, Huang YH, Su TY, Hung TH, Yu JS, Wu YS, Ambudkar SV. ABCB1 and ABCG2 Overexpression Mediates Resistance to the Phosphatidylinositol 3-Kinase Inhibitor HS-173 in Cancer Cell Lines. Cells 2023; 12:cells12071056. [PMID: 37048130 PMCID: PMC10093605 DOI: 10.3390/cells12071056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Constitutive activation of the phosphoinositide-3-kinase (PI3K)/Akt signaling pathway is crucial for tumor growth and progression. As such, this pathway has been an enticing target for drug discovery. Although HS-173 is a potent PI3K inhibitor that halts cancer cell proliferation via G2/M cell cycle arrest, the resistance mechanisms to HS-173 have not been investigated. In this study, we investigated the susceptibility of HS-173 to efflux mediated by the multidrug efflux transporters ABCB1 and ABCG2, which are two of the most well-known ATP-binding cassette (ABC) transporters associated with the development of cancer multidrug resistance (MDR). We found that the overexpression of ABCB1 or ABCG2 significantly reduced the efficacy of HS-173 in human cancer cells. Our data show that the intracellular accumulation of HS-173 was substantially reduced by ABCB1 and ABCG2, affecting G2/M arrest and apoptosis induced by HS-173. More importantly, the efficacy of HS-173 in multidrug-resistant cancer cells could be recovered by inhibiting the drug-efflux function of ABCB1 and ABCG2. Taken together, our study has demonstrated that HS-173 is a substrate for both ABCB1 and ABCG2, resulting in decreased intracellular concentration of this drug, which may have implications for its clinical use.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Cheng-Yu Hung
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Tsung-Yao Su
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Investigation (IR, UV-visible, fluorescence, X-ray diffraction and thermogravimetric) studies of Mn(II), Fe(III) and Cr(III) complexes of thiosemicarbazone derived from 4- pyridyl thiosemicarbazide and monosodium 5-sulfonatosalicylaldehyde and evaluation of their biological applications. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Li YQ, Murakami M, Huang YH, Hung TH, Wang SP, Wu YS, Ambudkar SV, Wu CP. Hydroxygenkwanin Improves the Efficacy of Cytotoxic Drugs in ABCG2-Overexpressing Multidrug-Resistant Cancer Cells. Int J Mol Sci 2022; 23:ijms232112763. [PMID: 36361555 PMCID: PMC9658017 DOI: 10.3390/ijms232112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Hydroxygenkwanin, a flavonoid isolated from the leaves of the Daphne genkwa plant, is known to have pharmacological properties; however, its modulatory effect on multidrug resistance, which is (MDR) mediated by ATP-binding cassette (ABC) drug transporters, has not been investigated. In this study, we examine the interaction between hydroxygenkwanin, ABCB1, and ABCG2, which are two of the most well-characterized ABC transporters known to contribute to clinical MDR in cancer patients. Hydroxygenkwanin is not an efflux substrate of either ABCB1 or ABCG2. We discovered that, in a concentration-dependent manner, hydroxygenkwanin significantly reverses ABCG2-mediated resistance to multiple cytotoxic anticancer drugs in ABCG2-overexpressing multidrug-resistant cancer cells. Although it inhibited the drug transport function of ABCG2, it had no significant effect on the protein expression of this transporter in cancer cells. Experimental data showing that hydroxygenkwanin stimulates the ATPase activity of ABCG2, and in silico docking analysis of hydroxygenkwanin binding to the inward-open conformation of human ABCG2, further indicate that hydroxygenkwanin sensitizes ABCG2-overexpressing cancer cells by binding to the substrate-binding pocket of ABCG2 and attenuating the transport function of ABCG2. This study demonstrates the potential use of hydroxygenkwanin as an effective inhibitor of ABCG2 in drug combination therapy trials for patients with tumors expressing higher levels of ABCG2.
Collapse
Affiliation(s)
- Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung 40704, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| |
Collapse
|
11
|
Wu CP, Hsieh YJ, Tseng HY, Huang YH, Li YQ, Hung TH, Wang SP, Wu YS. The WD repeat-containing protein 5 (WDR5) antagonist WDR5-0103 restores the efficacy of cytotoxic drugs in multidrug-resistant cancer cells overexpressing ABCB1 or ABCG2. Biomed Pharmacother 2022; 154:113663. [PMID: 36081287 DOI: 10.1016/j.biopha.2022.113663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022] Open
Abstract
The development of multidrug resistance (MDR) is one of the major challenges in the treatment of cancer which is caused by the overexpression of the ATP-binding cassette (ABC) transporters ABCB1 (P-glycoprotein) and/or ABCG2 (BCRP/MXR/ABCP) in cancer cells. These transporters are capable of reducing the efficacy of cytotoxic drugs by actively effluxing them out of cancer cells. Since there is currently no approved treatment for patients with multidrug-resistant tumors, the drug repurposing approach provides an alternative route to identify agents to reverse MDR mediated by ABCB1 and/or ABCG2 in multidrug-resistant cancer cells. WDR5-0103 is a histone H3 lysine 4 (H3K4) methyltransferase inhibitor that disrupts the interaction between the WD repeat-containing protein 5 (WDR5) and mixed-lineage leukemia (MLL) protein. In this study, the effect of WDR5-0103 on MDR mediated by ABCB1 and ABCG2 was determined. We found that in a concentration-dependent manner, WDR5-0103 could sensitize ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to conventional cytotoxic drugs. Our results showed that WDR5-0103 reverses MDR and improves drug-induced apoptosis in multidrug-resistant cancer cells by inhibiting the drug-efflux function of ABCB1 and ABCG2, without altering the protein expression of ABCB1 or ABCG2. The potential sites of interactions of WDR5-0103 with the drug-binding pockets of ABCB1 and ABCG2 were predicted by molecular docking. In conclusion, the MDR reversal activity of WDR5-0103 demonstrated here indicates that it could be used in combination therapy to provide benefits to a subset of patients with tumor expressing high levels of ABCB1 or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | - Ya-Ju Hsieh
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Han-Yu Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan.
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
12
|
P-glycoprotein Mediates Resistance to the Anaplastic Lymphoma Kinase Inhiitor Ensartinib in Cancer Cells. Cancers (Basel) 2022; 14:cancers14092341. [PMID: 35565470 PMCID: PMC9104801 DOI: 10.3390/cancers14092341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ensartinib (X-396) is a promising second-generation small-molecule inhibitor of anaplastic lymphoma kinase (ALK) that was developed for the treatment of ALK-positive non-small-cell lung cancer. Preclinical and clinical trial results for ensartinib showed superior efficacy and a favorable safety profile compared to the first-generation ALK inhibitors that have been approved by the U.S. Food and Drug Administration. Although the potential mechanisms of acquired resistance to ensartinib have not been reported, the inevitable emergence of resistance to ensartinib may limit its therapeutic application in cancer. In this work, we investigated the interaction of ensartinib with P-glycoprotein (P-gp) and ABCG2, two ATP-binding cassette (ABC) multidrug efflux transporters that are commonly associated with the development of multidrug resistance in cancer cells. Our results revealed that P-gp overexpression, but not expression of ABCG2, was associated with reduced cancer cell susceptibility to ensartinib. P-gp directly decreased the intracellular accumulation of ensartinib, and consequently reduced apoptosis and cytotoxicity induced by this drug. The cytotoxicity of ensartinib could be significantly reversed by treatment with the P-gp inhibitor tariquidar. In conclusion, we report that ensartinib is a substrate of P-gp, and provide evidence that this transporter plays a role in the development of ensartinib resistance. Further investigation is needed.
Collapse
|
13
|
Wu CP, Murakami M, Wu YS, Lin CL, Li YQ, Huang YH, Hung TH, Ambudkar SV. The multi-targeted tyrosine kinase inhibitor SKLB610 resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Biomed Pharmacother 2022; 149:112922. [PMID: 36068781 PMCID: PMC10506422 DOI: 10.1016/j.biopha.2022.112922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
The overexpression of ATP-binding cassette (ABC) transporter ABCB1 (P-glycoprotein) or ABCG2 (BCRP/MXR/ABCP) in cancer cells is frequently associated with the development of multidrug resistance (MDR) in cancer patients, which remains a major obstacle to effective cancer treatment. By utilizing energy derived from ATP hydrolysis, both transporters have been shown to reduce the chemosensitivity of cancer cells by actively effluxing cytotoxic anticancer drugs out of cancer cells. Knowing that there are presently no approved drugs or other therapeutics for the treatment of multidrug-resistant cancers, in recent years, studies have investigated the repurposing of tyrosine kinase inhibitors (TKIs) to act as agents against MDR mediated by ABCB1 and/or ABCG2. SKLB610 is a multi-targeted TKI with potent activity against vascular endothelial growth factor receptor 2 (VEGFR2), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor 2 (FGFR2). In this study, we investigate the interaction of SKLB610 with ABCB1 and ABCG2. We discovered that neither ABCB1 nor ABCG2 confers resistance to SKLB610, but SKLB610 selectively sensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer agents in a concentration-dependent manner. Our data indicate that SKLB610 reverses ABCG2-mediated MDR by attenuating the drug-efflux function of ABCG2 without affecting its total cell expression. These findings are further supported by results of SKLB610-stimulated ABCG2 ATPase activity and in silico docking of SKLB610 in the drug-binding pocket of ABCG2. In summary, we reveal the potential of SKLB610 to overcome resistance to cytotoxic anticancer drugs, which offers an additional treatment option for patients with multidrug-resistant cancers and warrants further investigation.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Chun-Ling Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| |
Collapse
|
14
|
Wu CP, Li YQ, Hung TH, Chang YT, Huang YH, Wu YS. Sophoraflavanone G Resensitizes ABCG2-Overexpressing Multidrug-Resistant Non-Small-Cell Lung Cancer Cells to Chemotherapeutic Drugs. JOURNAL OF NATURAL PRODUCTS 2021; 84:2544-2553. [PMID: 34496204 DOI: 10.1021/acs.jnatprod.1c00584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elevated expression of the ATP-binding cassette (ABC) drug transporter ABCG2 in cancer cells contributes to the development of the multidrug resistance phenotype in patients with advanced non-small-cell lung cancer (NSCLC). Due to the lack of U.S. Food and Drug Administration (FDA)-approved synthetic inhibitors of ABCG2, significant efforts have been invested in discovering bioactive compounds of plant origin that are capable of reversing ABCG2-mediated multidrug resistance in cancer cells. Sophoraflavanone G (SFG), a phytoncide isolated from the plant species Sophora flavescens, is known to possess a wide spectrum of pharmacological activities, including antibacterial, anti-inflammatory, antimalarial, and antiproliferative effects. In the present study, the chemosensitizing effect of SFG in ABCG2-overexpressing NSCLC cells was investigated. Experimental results demonstrate that at subtoxic concentrations SFG significantly reversed ABCG2-mediated multidrug resistance in a concentration-dependent manner. Additional biochemical data and in silico docking analysis of SFG to the inward-open conformation of human ABCG2 indicate that SFG inhibited the drug transport function of ABCG2 by interacting with residues within the transmembrane substrate-binding pocket of ABCG2. Collectively, these findings provide evidence that SFG has the potential to be further tested as an effective inhibitor of ABCG2 to improve the efficacy of therapeutic drugs in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 33305, Taiwan
| | | | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 33305, Taiwan
| | | | | | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
15
|
Szafraniec MJ, Fiedor L. One ring is not enough to rule them all. Albumin-dependent ABCG2-mediated transport of chlorophyll-derived photosensitizers. Eur J Pharm Sci 2021; 167:106001. [PMID: 34517107 DOI: 10.1016/j.ejps.2021.106001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
Breast cancer resistance protein (BCRP, ABCG2) is a member of the ATP-binding-cassette (ABC) superfamily of membrane transporters. It is involved in the efflux of a broad range of xenobiotics of highly diverse structures. BCRP activity greatly influences drug distribution in vivo and is often associated with cancer multidrug resistance, which is observed in the case of both chemotherapy and photodynamic therapy. The set of ABCG2 substrates includes porphyrins and chlorins such as heme, hemin, protoporphyrin IX, chlorin e6, pheophorbide a, and their derivatives. Here we provide an evidence that magnesium- and zinc-substituted derivatives of pheophorbide a, which are very promising photosensitizers for use in photodynamic therapy, are also recognized and transported by ABCG2. Interestingly, despite minor structural differences, they clearly differ in the transport rate, both between each other and compared to pheophorbide a. In addition, their transport rate, like those of other structurally similar compounds, is strictly dependent on the level of serum albumin in the extracellular environment. The results that we present here are crucial for the use of metal-substituted pheophorbides in clinical practice but also provide an important insight into the mechanism of porphyrin transport by ABCG2.
Collapse
Affiliation(s)
- Milena J Szafraniec
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland.
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
16
|
The Second-Generation PIM Kinase Inhibitor TP-3654 Resensitizes ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Int J Mol Sci 2021; 22:ijms22179440. [PMID: 34502348 PMCID: PMC8431370 DOI: 10.3390/ijms22179440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
Human ATP-binding cassette (ABC) subfamily G member 2 (ABCG2) mediates the transport of a wide variety of conventional cytotoxic anticancer drugs and molecular targeted agents. Consequently, the overexpression of ABCG2 in cancer cells is linked to the development of the multidrug resistance (MDR) phenotype. TP-3654 is an experimental second-generation inhibitor of PIM kinase that is currently under investigation in clinical trials to treat advanced solid tumors and myelofibrosis. In this study, we discovered that by attenuating the drug transport function of ABCG2, TP-3654 resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic ABCG2 substrate drugs topotecan, SN-38 and mitoxantrone. Moreover, our results indicate that ABCG2 does not mediate resistance to TP-3654 and may not play a major role in the induction of resistance to TP-3654 in cancer patients. Taken together, our findings reveal that TP-3654 is a selective, potent modulator of ABCG2 drug efflux function that may offer an additional combination therapy option for the treatment of multidrug-resistant cancers.
Collapse
|
17
|
Wu CP, Murakami M, Wu YS, Chi YC, Hsiao SH, Huang YH, Hung TH, Ambudkar SV. Branebrutinib (BMS-986195), a Bruton's Tyrosine Kinase Inhibitor, Resensitizes P-Glycoprotein-Overexpressing Multidrug-Resistant Cancer Cells to Chemotherapeutic Agents. Front Cell Dev Biol 2021; 9:699571. [PMID: 34350184 PMCID: PMC8326665 DOI: 10.3389/fcell.2021.699571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
The overexpression of P-glycoprotein (P-gp/ABCB1), an ATP-binding cassette (ABC) drug transporter, often contributes to the development of multidrug resistance (MDR) in cancer cells. P-gp mediates the ATP hydrolysis-dependent efflux of a wide range of chemotherapeutic agents out of cancer cells, thereby reducing the intracellular drug accumulation and decreasing the chemosensitivity of these multidrug-resistant cancer cells. Studies with tyrosine kinase inhibitors (TKIs) in P-gp-overexpressing cells have shown that certain TKIs could reverse MDR mediated by P-gp, while some TKIs are transported by P-gp. In the present work, we explored the prospect of repositioning branebrutinib (BMS-986195), a highly selective inhibitor of Bruton’s tyrosine kinase (BTK), to resensitize P-gp-overexpressing multidrug-resistant cancer cells to chemotherapeutic agents. Our results demonstrated that branebrutinib is capable of reversing P-gp-mediated MDR at sub-toxic concentrations, most likely by directly inhibiting the drug transport function of P-gp. Our findings were supported by the result of branebrutinib stimulating the ATPase activity of P-gp in a concentration-dependent manner and the in silico study of branebrutinib binding to the substrate-binding pocket of P-gp. In addition, we found that branebrutinib is equally cytotoxic to drug-sensitive parental cell lines and the respective P-gp-overexpressing multidrug-resistant variants, suggesting that it is unlikely that the overexpression of P-gp in cancer cells plays a significant role in reduced susceptibility or resistance to branebrutinib. In summary, we discovered an additional pharmacological action of branebrutinib against the activity of P-gp, which should be investigated further in future drug combination studies.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Ya-Chen Chi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
18
|
Wu CP, Hung TH, Lusvarghi S, Chu YH, Hsiao SH, Huang YH, Chang YT, Ambudkar SV. The third-generation EGFR inhibitor almonertinib (HS-10296) resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Biochem Pharmacol 2021; 188:114516. [PMID: 33713643 DOI: 10.1016/j.bcp.2021.114516] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) drug transporter ABCB1 (P-glycoprotein, P-gp) or ABCG2 (breast cancer resistance protein, BCRP) in cancer cells often contributes significantly to the development of multidrug resistance (MDR) in cancer patients. Previous reports have demonstrated that some epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) could modulate the activity of ABCB1 and/or ABCG2 in human cancer cells, whereas some EGFR TKIs are transport substrates of these transporters. Almonertinib (HS-10296) is a promising, orally available third-generation EGFR TKI for the treatment of EGFR T790M mutation-positive non-small cell lung cancer (NSCLC) in patients who have progressed on or after other EGFR TKI therapies. Additional clinical trials are currently in progress to study almonertinib as monotherapy and in combination with other agents in patients with NSCLC. In the present work, we found that neither ABCB1 nor ABCG2 confers significant resistance to almonertinib. More importantly, we discovered that almonertinib was able to reverse MDR mediated by ABCB1, but not ABCG2, in multidrug-resistant cancer cells at submicromolar concentrations by inhibiting the drug transport activity of ABCB1 without affecting its expression level. These findings are further supported by in silico docking of almonertinib in the drug-binding pocket of ABCB1. In summary, our study revealed an additional activity of almonertinib to re-sensitize ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic drugs, which may be beneficial for cancer patients and warrant further investigation.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Yi-Hsuan Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Tzu Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
19
|
Overexpression of Human ABCB1 and ABCG2 Reduces the Susceptibility of Cancer Cells to the Histone Deacetylase 6-Specific Inhibitor Citarinostat. Int J Mol Sci 2021; 22:ijms22052592. [PMID: 33807514 PMCID: PMC7961520 DOI: 10.3390/ijms22052592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Citarinostat (ACY-241) is a promising oral histone deacetylase 6 (HDAC6)-selective inhibitor currently in clinical trials for the treatment of multiple myeloma (MM) and non-small-cell lung cancer (NSCLC). However, the inevitable emergence of resistance to citarinostat may reduce its clinical effectiveness in cancer patients and limit its clinical usefulness in the future. In this study, we investigated the potential role of the multidrug efflux transporters ABCB1 and ABCG2, which are two of the most common mechanisms of acquired resistance to anticancer drugs, on the efficacy of citarinostat in human cancer cells. We discovered that the overexpression of ABCB1 or ABCG2 significantly reduced the sensitivity of human cancer cells to citarinostat. We demonstrated that the intracellular accumulation of citarinostat and its activity against HDAC6 were substantially reduced by the drug transport function of ABCB1 and ABCG2, which could be restored by treatment with an established inhibitor of ABCB1 or ABCG2, respectively. In conclusion, our results revealed a novel mechanism by which ABCB1 and ABCG2 actively transport citarinostat away from targeting HDAC6 in cancer cells. Our results suggest that the co-administration of citarinostat with a non-toxic modulator of ABCB1 and ABCG2 may optimize its therapeutic application in the clinic.
Collapse
|
20
|
Wu CP, Hung CY, Lusvarghi S, Huang YH, Tseng PJ, Hung TH, Yu JS, Ambudkar SV. Overexpression of ABCB1 and ABCG2 contributes to reduced efficacy of the PI3K/mTOR inhibitor samotolisib (LY3023414) in cancer cell lines. Biochem Pharmacol 2020; 180:114137. [PMID: 32634436 DOI: 10.1016/j.bcp.2020.114137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
LY3023414 (samotolisib) is a promising new dual inhibitor of phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR). Currently, multiple clinical trials are underway to evaluate the efficacy of LY3023414 in patients with various types of cancer. However, the potential mechanisms underlying acquired resistance to LY3023414 in human cancer cells still remain elusive. In this study, we investigated whether the overexpression of ATP-binding cassette (ABC) drug transporters such as ABCB1 and ABCG2, one of the most common mechanisms for developing multidrug resistance, may potentially reduce the efficacy of LY3023414 in human cancer cells. We demonstrated that the intracellular accumulation of LY3023414 in cancer cells was significantly reduced by the drug efflux function of ABCB1 and ABCG2. Consequently, the cytotoxicity and efficacy of LY3023414 for inhibiting the activation of the PI3K pathway and induction of G0/G1 cell-cycle arrest were substantially reduced in cancer cells overexpressing ABCB1 or ABCG2, which could be restored using tariquidar or Ko143, respectively. Furthermore, stimulatory effect of LY3023414 on the ATPase activity of ABCB1 and ABCG2, as well as in silico molecular docking analysis of LY3023414 binding to the substrate-binding pockets of these transporters provided additional insight into the manner in which LY3023414 interacts with both transporters. In conclusion, we report that LY3023414 is a substrate for ABCB1 and ABCG2 transporters implicating their role in the development of resistance to LY3023414, which can have substantial clinical implications and should be further investigated.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, Taiwan; Department of Physiology and Pharmacology, Taiwan; Molecular Medicine Research Center, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | | | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | | | | | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, Taiwan; Molecular Medicine Research Center, Taiwan; Department of Biochemistry and Molecular Biology, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
21
|
Erdafitinib Resensitizes ABCB1-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Cancers (Basel) 2020; 12:cancers12061366. [PMID: 32466597 PMCID: PMC7352346 DOI: 10.3390/cancers12061366] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 01/17/2023] Open
Abstract
The development of multidrug resistance (MDR) in cancer patients, which is often associated with the overexpression of ABCB1 (MDR1, P-glycoprotein) in cancer cells, remains a significant problem in cancer chemotherapy. ABCB1 is one of the major adenosine triphosphate (ATP)-binding cassette (ABC) transporters that can actively efflux a range of anticancer drugs out of cancer cells, causing MDR. Given the lack of Food and Drug Administration (FDA)-approved treatment for multidrug-resistant cancers, we explored the prospect of repurposing erdafitinib, the first fibroblast growth factor receptor (FGFR) kinase inhibitor approved by the FDA, to reverse MDR mediated by ABCB1. We discovered that by reducing the function of ABCB1, erdafitinib significantly resensitized ABCB1-overexpressing multidrug-resistant cancer cells to therapeutic drugs at sub-toxic concentrations. Results of erdafitinib-stimulated ABCB1 ATPase activity and in silico docking analysis of erdafitinib binding to the substrate-binding pocket of ABCB1 further support the interaction between erdafitinib and ABCB1. Moreover, our data suggest that ABCB1 is not a major mechanism of resistance to erdafitinib in cancer cells. In conclusion, we revealed an additional action of erdafitinib as a potential treatment option for multidrug-resistant cancers, which should be evaluated in future drug combination trials.
Collapse
|
22
|
Wu CP, Lusvarghi S, Hsiao SH, Liu TC, Li YQ, Huang YH, Hung TH, Ambudkar SV. Licochalcone A Selectively Resensitizes ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Chemotherapeutic Drugs. JOURNAL OF NATURAL PRODUCTS 2020; 83:1461-1472. [PMID: 32347726 PMCID: PMC7402219 DOI: 10.1021/acs.jnatprod.9b01022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The overexpression of the ATP-binding cassette (ABC) transporter ABCG2 has been linked to clinical multidrug resistance in solid tumors and blood cancers, which remains a significant obstacle to successful cancer chemotherapy. For years, the potential modulatory effect of bioactive compounds derived from natural sources on ABCG2-mediated multidrug resistance has been investigated, as they are inherently well tolerated and offer a broad range of chemical scaffolds. Licochalcone A (LCA), a natural chalcone isolated from the root of Glycyrrhiza inflata, is known to possess a broad spectrum of biological and pharmacological activities, including pro-apoptotic and antiproliferative effects in various cancer cell lines. In this study, the chemosensitization effect of LCA was examined in ABCG2-overexpressing multidrug-resistant cancer cells. Experimental data demonstrated that LCA inhibits the drug transport function of ABCG2 and reverses ABCG2-mediated multidrug resistance in human multidrug-resistant cancer cell lines in a concentration-dependent manner. Results of LCA-stimulated ABCG2 ATPase activity and the in silico docking analysis of LCA to the inward-open conformation of human ABCG2 suggest that LCA binds ABCG2 in the transmembrane substrate-binding pocket. This study provides evidence that LCA should be further evaluated as a modulator of ABCG2 in drug combination therapy trials against ABCG2-expressing drug-resistant tumors.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Sabrina Lusvarghi
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Te-Chun Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Suresh. V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, United States
| |
Collapse
|
23
|
Alcaraz R, Muñiz P, Cavia M, Palacios Ó, Samper KG, Gil-García R, Jiménez-Pérez A, García-Tojal J, García-Girón C. Thiosemicarbazone-metal complexes exhibiting cytotoxicity in colon cancer cell lines through oxidative stress. J Inorg Biochem 2020; 206:110993. [PMID: 32088593 DOI: 10.1016/j.jinorgbio.2020.110993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is the third most common type of cancer and has a high incidence in developed countries. At present, specific treatments are being required to allow individualized therapy depending on the molecular alteration on which the drug may act. The aim of this project is to evaluate whether HPTSC and HPTSC* thiosemicarbazones (HPTSC = pyridine-2-carbaldehyde thiosemicarbazone and HPTSC* = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone), and their complexes with different transition metal ions as Cu(II), Fe(III) and Co(III), have antitumor activity in colon cancer cells (HT-29 and SW-480), that have different oncogenic characteristics. Cytotoxicity was evaluated and the involvement of oxidative stress in its mechanism of action was analyzed by quantifying the superoxide dismutase activity, redox state by quantification of the thioredoxin levels and reduced/oxidized glutathione rate and biomolecules damage. The apoptotic effect was evaluated by measurements of the levels of caspase 9 and 3 and the index of histones. All the metal-thiosemicarbazones have antitumor activity mediated by oxidative stress. The HPTSC*-Cu was the compound that showed the best antitumor and apoptotic characteristics for the cell line SW480, that is KRAS gene mutated.
Collapse
Affiliation(s)
- Raquel Alcaraz
- Unidad de Investigación, Hospital Universitario de Burgos, Avd Islas Baleares, 3, 09006 Burgos, Spain.
| | - Pilar Muñiz
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Mónica Cavia
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Óscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Katia G Samper
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Rubén Gil-García
- Departamento de Química, Universidad de Burgos, 09001 Burgos, Spain
| | | | | | - Carlos García-Girón
- Servicio de Oncología Médica, Hospital Universitario de Burgos, Avd Islas Baleares, 3, 09006 Burgos, Spain
| |
Collapse
|
24
|
Sitravatinib Sensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Chemotherapeutic Drugs. Cancers (Basel) 2020; 12:cancers12010195. [PMID: 31941029 PMCID: PMC7017071 DOI: 10.3390/cancers12010195] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
The development of multidrug resistance (MDR) in cancer patients driven by the overexpression of ATP-binding cassette (ABC) transporter ABCB1 or ABCG2 in cancer cells presents one of the most daunting therapeutic complications for clinical scientists to resolve. Despite many novel therapeutic strategies that have been tested over the years, there is still no approved treatment for multidrug-resistant cancers to date. We have recently adopted a drug repurposing approach to identify therapeutic agents that are clinically active and at the same time, capable of reversing multidrug resistance mediated by ABCB1 and ABCG2. In the present study, we investigated the effect of sitravatinib, a novel multitargeted receptor tyrosine kinase inhibitor, on human ABCB1 and ABCG2 in multidrug-resistant cancer cell lines. We discovered that at submicromolar concentrations, sitravatinib re-sensitizes ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. We found that sitravatinib blocks the drug efflux function of ABCB1 and ABCG2 in a concentration-dependent manner but does not significantly alter the protein expression of ABCB1 or ABCG2 in multidrug-resistant cancer cells. In conclusion, we reveal a potential drug repositioning treatment option for multidrug-resistant cancers by targeting ABCB1 and ABCG2 with sitravatinib and should be further investigated in future clinical trials.
Collapse
|
25
|
Wu CP, Lusvarghi S, Tseng PJ, Hsiao SH, Huang YH, Hung TH, Ambudkar SV. MY-5445, a phosphodiesterase type 5 inhibitor, resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer drugs. Am J Cancer Res 2020; 10:164-178. [PMID: 32064159 PMCID: PMC7017726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023] Open
Abstract
The overexpression of one or multiple ATP-binding cassette (ABC) transporters such as ABCB1, ABCC1 or ABCG2 in cancer cells often leads to the development of multidrug resistance phenotype and consequent treatment failure. Therefore, these transporters constitute an important target to improve the therapeutic outcome in cancer patients. In this study, we employed a drug repurposing approach to identify MY-5445, a known phosphodiesterase type 5 inhibitor, as a selective modulator of ABCG2. We discovered that by inhibiting the drug transport function of ABCG2, MY-5445 potentiates drug-induced apoptosis in ABCG2-overexpressing multidrug-resistant cancer cells and resensitizes these cells to chemotherapeutic drugs. Our data of MY-5445 stimulating the ATPase activity of ABCG2 and molecular docking analysis of its binding to the substrate-binding pocket of ABCG2 provide additional insight into the manner in which MY-5445 interacts with ABCG2. Furthermore, we found that ABCG2 does not confer resistance to MY-5445 in human cancer cells. Overall, our study revealed an additional action of MY-5445 to resensitize ABCG2-overexpressing multidrug-resistant cancer cells to conventional anticancer drugs, and this should be evaluated in future drug combination trials.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial HospitalTaipei, Taiwan
| | | | - Pin-Jung Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial HospitalTaipei, Taiwan
| | | |
Collapse
|
26
|
Huseynova M, Farzaliyev V, Medjidov A, Aliyeva M, Taslimi P, Sahin O, Yalçın B. Novel zinc compound with thiosemicarbazone of glyoxylic acid: Synthesis, crystal structure, and bioactivity properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Efferth T, Saeed ME, Kadioglu O, Seo EJ, Shirooie S, Mbaveng AT, Nabavi SM, Kuete V. Collateral sensitivity of natural products in drug-resistant cancer cells. Biotechnol Adv 2020; 38:107342. [DOI: 10.1016/j.biotechadv.2019.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 01/25/2023]
|
28
|
The Selective Class IIa Histone Deacetylase Inhibitor TMP195 Resensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Int J Mol Sci 2019; 21:ijms21010238. [PMID: 31905792 PMCID: PMC6981391 DOI: 10.3390/ijms21010238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance caused by the overexpression of the ATP-binding cassette (ABC) proteins in cancer cells remains one of the most difficult challenges faced by drug developers and clinical scientists. The emergence of multidrug-resistant cancers has driven efforts from researchers to develop innovative strategies to improve therapeutic outcomes. Based on the drug repurposing approach, we discovered an additional action of TMP195, a potent and selective inhibitor of class IIa histone deacetylase. We reveal that in vitro TMP195 treatment significantly enhances drug-induced apoptosis and sensitizes multidrug-resistant cancer cells overexpressing ABCB1 or ABCG2 to anticancer drugs. We demonstrate that TMP195 inhibits the drug transport function, but not the protein expression of ABCB1 and ABCG2. The interaction between TMP195 with these transporters was supported by the TMP195-stimulated ATPase activity of ABCB1 and ABCG2, and by in silico docking analysis of TMP195 binding to the substrate-binding pocket of these transporters. Furthermore, we did not find clear evidence of TMP195 resistance conferred by ABCB1 or ABCG2, suggesting that these transporters are unlikely to play a significant role in the development of resistance to TMP195 in cancer patients.
Collapse
|
29
|
Wu CP, Lusvarghi S, Wang JC, Hsiao SH, Huang YH, Hung TH, Ambudkar SV. Avapritinib: A Selective Inhibitor of KIT and PDGFRα that Reverses ABCB1 and ABCG2-Mediated Multidrug Resistance in Cancer Cell Lines. Mol Pharm 2019; 16:3040-3052. [PMID: 31117741 DOI: 10.1021/acs.molpharmaceut.9b00274] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The frequent occurrence of multidrug resistance (MDR) conferred by the overexpression of ATP-binding cassette (ABC) transporters ABCB1 and ABCG2 in cancer cells remains a therapeutic obstacle for scientists and clinicians. Consequently, developing or identifying modulators of ABCB1 and ABCG2 that are suitable for clinical practice is of great importance. Therefore, we have explored the drug repositioning approach to identify candidate modulators of ABCB1 and ABCG2 from tyrosine kinase inhibitors with known pharmacological properties and anticancer activities. In this study, we discovered that avapritinib (BLU-285), a potent, selective, and orally bioavailable tyrosine kinase inhibitor against mutant forms of KIT and platelet-derived growth factor receptor alpha (PDGFRA), attenuates the transport function of both ABCB1 and ABCG2. Moreover, avapritinib restores the chemosensitivity of ABCB1- and ABCG2-overexpressing MDR cancer cells at nontoxic concentrations. These findings were further supported by results of apoptosis induction assays, ATP hydrolysis assays, and docking of avapritinib in the drug-binding pockets of ABCB1 and ABCG2. Altogether, our study highlights an additional action of avapritinib on ABC drug transporters, and a combination of avapritinib with conventional chemotherapy should be further investigated in patients with MDR tumors.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Obstetrics and Gynecology , Taipei Chang Gung Memorial Hospital , Taipei 105 , Taiwan
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research , National Cancer Institute , Bethesda , Maryland 20892 , United States
| | | | | | | | - Tai-Ho Hung
- Department of Obstetrics and Gynecology , Taipei Chang Gung Memorial Hospital , Taipei 105 , Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research , National Cancer Institute , Bethesda , Maryland 20892 , United States
| |
Collapse
|
30
|
Heffeter P, Pape VFS, Enyedy ÉA, Keppler BK, Szakacs G, Kowol CR. Anticancer Thiosemicarbazones: Chemical Properties, Interaction with Iron Metabolism, and Resistance Development. Antioxid Redox Signal 2019; 30:1062-1082. [PMID: 29334758 DOI: 10.1089/ars.2017.7487] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE During the past decades, thiosemicarbazones were clinically developed for a variety of diseases, including tuberculosis, viral infections, malaria, and cancer. With regard to malignant diseases, the class of α-N-heterocyclic thiosemicarbazones, and here especially 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine), was intensively developed in multiple clinical phase I/II trials. Recent Advances: Very recently, two new derivatives, namely COTI-2 and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) have entered phase I evaluation. Based on the strong metal-chelating/metal-interacting properties of thiosemicarbazones, interference with the cellular iron (and copper) homeostasis is assumed to play an important role in their biological activity. CRITICAL ISSUES In this review, we summarize and analyze the data on the interaction of (α-N-heterocyclic) thiosemicarbazones with iron, with the special aim of bridging the current knowledge on their mode of action from chemistry to (cell) biology. In addition, we highlight the difference to classical iron(III) chelators such as desferrioxamine (DFO), which are used for the treatment of iron overload. FUTURE DIRECTIONS We want to emphasize that thiosemicarbazones are not solely removing iron from the cells/organism. In contrast, they should be considered as iron-interacting drugs influencing diverse biological pathways in a complex and multi-faceted mode of action. Consequently, in addition to the discussion of physicochemical properties (e.g., complex stability, redox activity), this review contains an overview on the diversity of cellular thiosemicarbazone targets and drug resistance mechanisms.
Collapse
Affiliation(s)
- Petra Heffeter
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria
| | - Veronika F S Pape
- 3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary .,4 Department of Physiology, Faculty of Medicine, Semmelweis University , Budapest, Hungary
| | - Éva A Enyedy
- 5 Department of Inorganic and Analytical Chemistry, University of Szeged , Szeged, Hungary
| | - Bernhard K Keppler
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| | - Gergely Szakacs
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Christian R Kowol
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| |
Collapse
|
31
|
Hsiao SH, Lusvarghi S, Huang YH, Ambudkar SV, Hsu SC, Wu CP. The FLT3 inhibitor midostaurin selectively resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Cancer Lett 2019; 445:34-44. [PMID: 30639533 DOI: 10.1016/j.canlet.2019.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/28/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
The occurrence of multidrug resistance (MDR) associated with the overexpression of the ATP-binding cassette (ABC) protein ABCB1 in cancer cells remains a significant obstacle to successful cancer chemotherapy. Therefore, discovering modulators that are capable of inhibiting the drug efflux function or expression of ABCB1 and re-sensitizing multidrug-resistant cancer cells to anticancer agents is of great clinical importance. Regrettably, due to potential adverse events associated with drug-drug interactions and toxicity in patients, researchers have struggled to develop a synthetic inhibitor of ABCB1 that is clinically applicable to improve the effectiveness of chemotherapy. Alternatively, through drug repositioning of approved drugs, we discovered that the FMS-like tyrosine kinase-3 (FLT3) inhibitor midostaurin blocks the drug transport function of ABCB1 and re-sensitizes ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic drugs. Our findings were further supported by results demonstrating that midostaurin potentiates drug-induced apoptosis in ABCB1-overexpressing cancer cells and inhibits the ATPase activity of ABCB1. Considering that midostaurin is a clinically approved anticancer agent, our findings revealed an additional action of midostaurin and that patients with multidrug-resistant tumors may benefit from a combination therapy of midostaurin with standard chemotherapy, which should be further investigated.
Collapse
Affiliation(s)
- Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States.
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States.
| | - Sheng-Chieh Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
32
|
Hsiao SH, Murakami M, Yeh N, Li YQ, Hung TH, Wu YS, Ambudkar SV, Wu CP. The positive inotropic agent DPI-201106 selectively reverses ABCB1-mediated multidrug resistance in cancer cell lines. Cancer Lett 2018; 434:81-90. [PMID: 30031116 DOI: 10.1016/j.canlet.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
The overexpression of ABCB1 in cancer cells is a major factor contributing to the development of multidrug resistance (MDR) and treatment failure in cancer patients. Therefore, re-sensitization of MDR cancer cells to anticancer drugs remains an important aspect in chemotherapy. The progress in developing clinically applicable synthetic inhibitors of ABCB1 has been slow, mostly due to complications associated with intrinsic toxicities and unforeseen drug-drug interactions. Here, we explored the drug-repositioning approach for cancer therapy by targeting ABCB1-mediated MDR in human cancer cells. We found that DPI-201106, a positive inotropic agent, selectively inhibits the drug efflux function of ABCB1, and in doing so, re-sensitizes ABCB1-overexpressing MDR cancer cells to conventional anticancer drugs. Furthermore, the ATPase activity of ABCB1 and docking analysis of DPI-201106 in the drug-binding pocket of ABCB1 were determined to confirm the interaction between DPI-201106 and ABCB1 protein. In summary, we revealed an additional action and a potential clinical application of DPI-201106 to reverse ABCB1-mediated MDR in human cancer cells, which may be beneficial for cancer patients who have developed multidrug resistance and no longer respond to conventional chemotherapy, and should be further investigated.
Collapse
Affiliation(s)
- Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, United States.
| | - Ni Yeh
- Department of Chemistry, Tunghai University, Taichung, Taiwan.
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan.
| | | | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
33
|
Human ATP-binding cassette transporters ABCB1 and ABCG2 confer resistance to histone deacetylase 6 inhibitor ricolinostat (ACY-1215) in cancer cell lines. Biochem Pharmacol 2018; 155:316-325. [PMID: 30028995 DOI: 10.1016/j.bcp.2018.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Ricolinostat is the first orally available, selective inhibitor of histone deacetylase 6 (HDAC6), currently under evaluation in clinical trials in patients with various malignancies. It is likely that the inevitable emergence of resistance to ricolinostat is likely to reduce its clinical effectiveness in cancer patients. In this study, we investigated the potential impact of multidrug resistance-linked ATP-binding cassette (ABC) transporters ABCB1 and ABCG2 on the efficacy of ricolinostat, which may present a major hurdle to its development as an anticancer drug in the future. We demonstrated that the overexpression of ABCB1 or ABCG2 reduces the intracellular accumulation of ricolinostat, resulting in reduced efficacy of ricolinostat to inhibit the activity of HDAC6 in cancer cells. Moreover, the efficacy of ricolinostat can be fully restored by inhibiting the drug efflux function of ABCB1 and ABCG2 in drug-resistant cancer cells. In conclusion, our results provide some insights into the basis for the development of resistance to ricolinostat and suggest that co-administration of ricolinostat with a modulator of ABCB1 or ABCG2 could overcome ricolinostat resistance in human cancer cells, which may be relevant to its use in the clinic.
Collapse
|
34
|
Wu CP, Murakami M, Hsiao SH, Liu TC, Yeh N, Li YQ, Hung TH, Wu YS, Ambudkar SV. SIS3, a specific inhibitor of Smad3 reverses ABCB1- and ABCG2-mediated multidrug resistance in cancer cell lines. Cancer Lett 2018; 433:259-272. [PMID: 30026175 DOI: 10.1016/j.canlet.2018.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 01/05/2023]
Abstract
One of the major challenges in cancer chemotherapy is the development of multidrug resistance phenomenon attributed to the overexpression of ATP-binding cassette (ABC) transporter ABCB1 or ABCG2 in cancer cells. Therefore, re-sensitizing MDR cancer cells to chemotherapy by directly inhibiting the activity of ABC transporters has clinical relevance. Unfortunately, previous attempts of developing clinically applicable synthetic inhibitors have failed, mostly due to problems associated with toxicity and unforeseen drug-drug interactions. An alternative approach is by repositioning drugs with known pharmacological properties as modulators of ABCB1 and ABCG2. In this study, we discovered that the transport function of ABCB1 and ABCG2 is strongly inhibited by SIS3, a specific inhibitor of Smad3. More importantly, SIS3 enhances drug-induced apoptosis and resensitizes ABCB1- and ABCG2-overexpressing cancer cells to chemotherapeutic drugs at non-toxic concentrations. These findings are further supported by ATPase assays and by a docking analysis of SIS3 in the drug-binding pockets of ABCB1 and ABCG2. In summary, we revealed an additional action of SIS3 that re-sensitizes MDR cancer cells and a combination therapy with this drug and other chemotherapeutic agents may be beneficial for patients with MDR tumors.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, United States.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | - Te-Chun Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | - Ni Yeh
- Department of Chemistry, Tunghai University, Taichung, Taiwan.
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan.
| | | |
Collapse
|
35
|
Milunović MNM, Dobrova A, Novitchi G, Gligorijević N, Radulović S, Kožišek J, Rapta P, Enyedy EA, Arion VB. Effects of Terminal Substitution and Iron Coordination on Antiproliferative Activity of l
-Proline-salicylaldehyde-Thiosemicarbazone Hybrids. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Miljan N. M. Milunović
- Institute of Inorganic Chemistry; University of Vienna; Faculty of Chemistry; Währinger Strasse 42 1090 Austria
- Institute of Physical Chemistry and Chemical Physics; Slovak University of Technology; Faculty of Chemical and Food Technology; Radlinského 9 81237 Bratislava Slovakia
| | - Aliona Dobrova
- Institute of Inorganic Chemistry; University of Vienna; Faculty of Chemistry; Währinger Strasse 42 1090 Austria
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnetiques Intenses-CNRS; 25 Avenue des Martyrs 38042 Grenoble Cedex 9 France
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia; University of Belgrade; Pasterova 14 11000 Belgrade Serbia
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia; University of Belgrade; Pasterova 14 11000 Belgrade Serbia
| | - Jozef Kožišek
- Institute of Physical Chemistry and Chemical Physics; Slovak University of Technology; Faculty of Chemical and Food Technology; Radlinského 9 81237 Bratislava Slovakia
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics; Slovak University of Technology; Faculty of Chemical and Food Technology; Radlinského 9 81237 Bratislava Slovakia
| | - Eva A. Enyedy
- Department of Inorganic and Analytical Chemistry; University of Szeged; Dom ter 7 6720 Szeged Hungary
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry; University of Vienna; Faculty of Chemistry; Währinger Strasse 42 1090 Austria
| |
Collapse
|
36
|
Elsayed HE, Ebrahim HY, Haggag EG, Kamal AM, El Sayed KA. Rationally designed hecogenin thiosemicarbazone analogs as novel MEK inhibitors for the control of breast malignancies. Bioorg Med Chem 2017; 25:6297-6312. [PMID: 29066046 DOI: 10.1016/j.bmc.2017.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 12/29/2022]
Abstract
Natural products have documented oncology success history as valuable scaffolds for selective target modulation. Herein, the sapogenin hecogenin (1) was screened for its anti-breast cancer inhibitory capacity using in vitro assays, including proliferation, cytotoxicity, migration, invasion assays, and Western blotting. The results identified 1 as a propitious hit with modest activities attributed to the concurrent down-regulation of mitogen activated protein kinase kinase/extracellular signal-regulated kinase (MEK) distinctive downstream effectors. Guided by in silico 3D-structural insights of MAPK kinase domain, an extension strategy was adopted at 1's C-3 and C-12 aimed at the design of novel hecogenin-based analogs with improved target binding affinity. Thirty-three analogs were prepared and tested, among which hecogenin 12-(3'-methylphenyl thiosemicarbazone) (30) displayed the most potent selective anticancer effects. Analog 30 demonstrated antiproliferative, antimigratory and anti-invasive activities at low μM level, compared to the negligible effect on the non-tumorigenic MCF-10A mammary epithelial cells. Durable regression of breast tumor xenografts in athymic nude mice was observed after treatments with 30, compared to its parent hecogenin at the same dose regimen, confirmed the hit-to-lead promotion of this analog. Hecogenin-12-thiosemicarbazones, represented by 30, is a novel MEK inhibitory lead class to control breast neoplasms.
Collapse
Affiliation(s)
- Heba E Elsayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Hassan Y Ebrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Eman G Haggag
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Amel M Kamal
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
37
|
Wu CP, Hsiao SH, Murakami M, Lu MJ, Li YQ, Hsieh CH, Ambudkar SV, Wu YS. Tyrphostin RG14620 selectively reverses ABCG2-mediated multidrug resistance in cancer cell lines. Cancer Lett 2017; 409:56-65. [PMID: 28893612 DOI: 10.1016/j.canlet.2017.08.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
The multidrug resistance (MDR) phenotype associated with the overexpression of ATP-binding cassette (ABC) drug transporters ABCB1, ABCC1 and ABCG2 is a major obstacle in cancer chemotherapy. Numerous epidermal growth factor receptor (EGFR) inhibitors have previously been shown capable of reversing MDR in ABCG2-overexpressing cancer cells. However, most of them are not transporter-specific due to the substantial overlapping substrate specificity among the transporters. In this study, we investigated the interaction between ABCG2 and tyrphostin RG14620, an EGFR inhibitor of the tyrphostin family, in multidrug-resistant cancer cell lines. We found that at nontoxic concentrations, tyrphostin RG14620 enhances drug-induced apoptosis and restores chemosensitivity to ABCG2-overexpressing multidrug-resistant cancer cells. More importantly, tyrphostin RG14620 is selective to ABCG2 relative to ABCB1 and ABCC1. Our findings were further supported by biochemical assays demonstrating that tyrphostin RG14620 stimulates ATP hydrolysis and inhibits photoaffinity labeling of ABCG2 with IAAP, and by a docking analysis of tyrphostin RG14620 in the drug-binding pocket of this transporter. Taken together, our findings indicate that tyrphostin RG14620 is a potent and selective modulator of ABCG2 that may be useful to overcome chemoresistance in patients with drug-resistant tumors.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States
| | - Ming-Jie Lu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Biomedical Informatics, Asia University, Taichung, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
38
|
Wu CP, Hsiao SH, Murakami M, Lu YJ, Li YQ, Huang YH, Hung TH, Ambudkar SV, Wu YS. Alpha-Mangostin Reverses Multidrug Resistance by Attenuating the Function of the Multidrug Resistance-Linked ABCG2 Transporter. Mol Pharm 2017. [PMID: 28641010 DOI: 10.1021/acs.molpharmaceut.7b00334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ATP-binding cassette (ABC) drug transporter ABCG2 can actively efflux a wide variety of chemotherapeutic agents out of cancer cells and subsequently reduce the intracellular accumulation of these drugs. Therefore, the overexpression of ABCG2 often contributes to the development of multidrug resistance (MDR) in cancer cells, which is one of the major obstacles to successful cancer chemotherapy. Moreover, ABCG2 is highly expressed in various tissues including the intestine and blood-brain barrier (BBB), limiting the absorption and bioavailability of many therapeutic agents. For decades, the task of developing a highly effective synthetic inhibitor of ABCG2 has been hindered mostly by the intrinsic toxicity, the lack of specificity, and complex pharmacokinetics. Alternatively, considering the wide range of diversity and relatively nontoxic nature of natural products, developing potential modulators of ABCG2 from natural sources is particularly valuable. α-Mangostin is a natural xanthone derived from the pericarps of mangosteen (Garcinia mangostana L.) with various pharmacological purposes, including suppressing angiogenesis and inducing cancer cell growth arrest. In this study, we demonstrated that at nontoxic concentrations, α-mangostin effectively and selectively inhibits ABCG2-mediated drug transport and reverses MDR in ABCG2-overexpressing MDR cancer cells. Direct interactions between α-mangostin and the ABCG2 drug-binding site(s) were confirmed by stimulation of ATPase activity and by inhibition of photolabeling of the substrate-binding site(s) of ABCG2 with [125I]iodoarylazidoprazosin. In summary, our findings show that α-mangostin has great potential to be further developed into a promising modulator of ABCG2 for reversing MDR and for its use in combination therapy for patients with MDR tumors.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 333, Taiwan
| | | | - Megumi Murakami
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20850, United States
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 333, Taiwan
| | | | - Yang-Hui Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 333, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital , Taipei 105, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20850, United States
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University , Taichung 407, Taiwan
| |
Collapse
|
39
|
Wu CP, Murakami M, Hsiao SH, Chou AW, Li YQ, Huang YH, Hung TH, Ambudkar SV. Overexpression of ATP-Binding Cassette Subfamily G Member 2 Confers Resistance to Phosphatidylinositol 3-Kinase Inhibitor PF-4989216 in Cancer Cells. Mol Pharm 2017; 14:2368-2377. [PMID: 28597653 DOI: 10.1021/acs.molpharmaceut.7b00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deregulated activation of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently found in human cancers, which plays a key role in promoting cancer proliferation and resistance to anticancer therapies. Therefore, developing inhibitors targeting key components of the PI3K/Akt/mTOR signaling pathway has great clinical significance. PF-4989216 is a novel, orally available small-molecule drug that was developed to selectively inhibit the PI3K/Akt/mTOR signaling pathway and subsequent cancer cell proliferation. PF-4989216 exhibited potent and selective inhibition against PI3K kinase activity in preclinical small-cell lung cancer (SCLC) models, and was especially effective against the proliferation of SCLCs harboring PIK3CA mutation. Unfortunately, in addition to innate resistance mechanisms, drug extrusion by the efflux pumps may also contribute to the development of acquired resistance to PI3K inhibitors in cancer cells. The overexpression of ATP-binding cassette (ABC) drug transporters ABCB1 and ABCG2 is one of the most common mechanisms for reducing intracellular drug concentration and developing multidrug resistance, which remains a substantial challenge to the effective treatment of cancer. In this study, we report the discovery of ABCG2 overexpression as a mechanism of resistance to PI3K inhibitor PF-4989216 in human cancer cells. We demonstrated that the inhibition of Akt and downstream S6RP phosphorylation by PF-4989216 were significantly reduced in ABCG2-overexpressing human cancer cells. Moreover, overexpression of ABCG2 in various cancer cell lines confers significant resistance to PF-4989216, which can be reversed by an inhibitor or competitive substrate of ABCG2, indicating that ABCG2-mediated transport alone can sufficiently reduce the intracellular concentration of PF-4989216.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 105, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20892, United States
| | | | | | - Yan-Qing Li
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 105, Taiwan
| | | | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital , Taipei 105, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20892, United States
| |
Collapse
|
40
|
Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes. J Chem Biol 2017; 10:91-104. [PMID: 28684996 DOI: 10.1007/s12154-017-0167-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/09/2017] [Indexed: 01/10/2023] Open
Abstract
2-Butanone thiosemicarbazone ligand was prepared by condensation reaction between thiosemicarbazide and butanone. The ligand was characterized by 1H NMR, 13C NMR, FT-IR, mass spectrometry and UV spectroscopic studies. Docking studies were performed to study inhibitory action against topoisomerase II (Topo II) and ribonucleoside diphosphate reductase (RR) enzymes. Inhibition constants (Ki ) of the ligand were 437.87 and 327.4 μM for the two enzymes, respectively. The ligand was tested for its potential anticancer activity against two cancer cell lines MDA-MB-231 and A549 using MTT assay and was found to exhibit good activity at higher doses with an IC50 = 80 μM against human breast cancer cell line MDA-MB-231. On the other hand, no significant activity was obtained against the lung carcinoma cell line A549. Antibacterial activity of the ligand was tested against Staphylococcus aureus and E. coli using the disc diffusion method. Ligand did not exhibit any significant antibacterial activity. Four complexes of Co(III), Fe(II), Cu(II), and Zn(II) were prepared with the ligand and characterized by various spectroscopic studies. Low molar conductance values were obtained for all complexes displaying non-electrolyte nature except in Co(III) complex. As expected, complexation with metal ions significantly increased the cytotoxicity of the ligand against the tested cell lines viz. IC50 values of <20 μM for Co, Fe, and Zn complexes and approx. 80 μM against MDA cells versus IC50 value of <20 μM for Co and Cu complexes and that of 30 and 50 μM for Fe and Zn complexes, respectively, against A549 cells. The Cu complex was found to be active against E. coli and S. aureus with MIC values in the range of 6-10 mg/mL. Other than Cu, only Co complex was found to possess antibacterial activity with MIC values of 5-10 mg/mL when tested against S. aureus. Bioactivity score and Prediction of Activity Spectra for Substances (PASS) analysis also depicted the drug-like nature of ligand and complexes.
Collapse
|
41
|
Synthesis, characterization and in vitro biological activities of new water-soluble copper(II), zinc(II), and nickel(II) complexes with sulfonato-substituted Schiff base ligand. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Hosseini-Yazdi SA, Mirzaahmadi A, Khandar AA, Eigner V, Dušek M, Mahdavi M, Soltani S, Lotfipour F, White J. Reactions of copper(II), nickel(II), and zinc(II) acetates with a new water-soluble 4-phenylthiosemicarbazone Schiff base ligand: Synthesis, characterization, unexpected cyclization, antimicrobial, antioxidant, and anticancer activities. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Peña-Solórzano D, Stark SA, König B, Sierra CA, Ochoa-Puentes C. ABCG2/BCRP: Specific and Nonspecific Modulators. Med Res Rev 2016; 37:987-1050. [PMID: 28005280 DOI: 10.1002/med.21428] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) in cancer cells is the development of resistance to a variety of structurally and functionally nonrelated anticancer drugs. This phenomenon has become a major obstacle to cancer chemotherapy seriously affecting the clinical outcome. MDR is associated with increased drug efflux from cells mediated by an energy-dependent mechanism involving the ATP-binding cassette (ABC) transporters, mainly P-glycoprotein (ABCB1), the MDR-associated protein-1 (ABCC1), and the breast cancer resistance protein (ABCG2). The first two transporters have been widely studied already and reviews summarized the results. The ABCG2 protein has been a subject of intense study since its discovery as its overexpression has been detected in resistant cell lines in numerous types of human cancers. To date, a long list of modulators of ABCG2 exists and continues to increase. However, little is known about the clinical consequences of ABCG2 modulation. This makes the design of novel, potent, and nontoxic inhibitors of this efflux protein a major challenge to reverse MDR and thereby increase the success of chemotherapy. The aim of the present review is to describe and highlight specific and nonspecific modulators of ABCG2 reported to date based on the selectivity of the compounds, as many of them are effective against one or more ABC transport proteins.
Collapse
Affiliation(s)
- Diana Peña-Solórzano
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | | | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Cesar Augusto Sierra
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | - Cristian Ochoa-Puentes
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| |
Collapse
|
44
|
Hsiao SH, Lu YJ, Yang CC, Tuo WC, Li YQ, Huang YH, Hsieh CH, Hung TH, Wu CP. Hernandezine, a Bisbenzylisoquinoline Alkaloid with Selective Inhibitory Activity against Multidrug-Resistance-Linked ATP-Binding Cassette Drug Transporter ABCB1. JOURNAL OF NATURAL PRODUCTS 2016; 79:2135-2142. [PMID: 27504669 DOI: 10.1021/acs.jnatprod.6b00597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 (P-glycoprotein, MDR1) is the most studied mechanism of multidrug resistance (MDR), which remains a major obstacle in clinical cancer chemotherapy. Consequently, resensitizing MDR cancer cells by inhibiting the efflux function of ABCB1 has been considered as a potential strategy to overcome ABCB1-mediated MDR in cancer patients. However, the task of developing a suitable modulator of ABCB1 has been hindered mostly by the lack of selectivity and high intrinsic toxicity of candidate compounds. Considering the wide range of diversity and relatively nontoxic nature of natural products, developing a potential modulator of ABCB1 from natural sources is particularly valuable. Through screening of a large collection of purified bioactive natural products, hernandezine was identified as a potent and selective reversing agent for ABCB1-mediated MDR in cancer cells. Experimental data demonstrated that the bisbenzylisoquinoline alkaloid hernandezine is selective for ABCB1, effectively inhibits the transport function of ABCB1, and enhances drug-induced apoptosis in cancer cells. More importantly, hernandezine significantly resensitizes ABCB1-overexpressing cancer cells to multiple chemotherapeutic drugs at nontoxic, nanomolar concentrations. Collectively, these findings reveal that hernandezine has great potential to be further developed into a novel reversal agent for combination therapy in MDR cancer patients.
Collapse
Affiliation(s)
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan, Taiwan
| | | | | | | | | | | | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital , Taipei, Taiwan
| | - Chung-Pu Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan, Taiwan
| |
Collapse
|
45
|
Hsiao SH, Lu YJ, Li YQ, Huang YH, Hsieh CH, Wu CP. Osimertinib (AZD9291) Attenuates the Function of Multidrug Resistance-Linked ATP-Binding Cassette Transporter ABCB1 in Vitro. Mol Pharm 2016; 13:2117-25. [PMID: 27169328 DOI: 10.1021/acs.molpharmaceut.6b00249] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effectiveness of cancer chemotherapy is often circumvented by multidrug resistance (MDR) caused by the overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 (MDR1, P-glycoprotein). Several epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been shown previously capable of modulating the function of ABCB1 and reversing ABCB1-mediated MDR in human cancer cells. Furthermore, some TKIs are transported by ABCB1, which results in low oral bioavailability, reduced distribution, and the development of acquired resistance to these TKIs. In this study, we investigated the interaction between ABCB1 and osimertinib, a novel selective, irreversible third-generation EGFR TKI that has recently been approved by the U.S. Food and Drug Administration. We also evaluated the potential impact of ABCB1 on the efficacy of osimertinib in cancer cells, which can present a therapeutic challenge to clinicians in the future. We revealed that although osimertinib stimulates the ATPase activity of ABCB1, overexpression of ABCB1 does not confer resistance to osimertinib. Our results suggest that it is unlikely that the overexpression of ABCB1 can be a major contributor to the development of osimertinib resistance in cancer patients. More significantly, we revealed an additional action of osimertinib that directly inhibits the function of ABCB1 without affecting the expression level of ABCB1, enhances drug-induced apoptosis, and reverses the MDR phenotype in ABCB1-overexpressing cancer cells. Considering that osimertinib is a clinically approved third-generation EGFR TKI, our findings suggest that a combination therapy with osimertinib and conventional anticancer drugs may be beneficial to patients with MDR tumors.
Collapse
Affiliation(s)
- Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, ‡Department of Neurosurgery, Chang Gung Memorial Hospital, §Department of Physiology and Pharmacology, and ⊥Molecular Medicine Research Center, College of Medicine, Chang Gung University , Tao-Yuan 33302, Taiwan.,Graduate Institute of Basic Medical Science and ∥Department of Medical Research, China Medical University Hospital , Taichung 40402, Taiwan
| | - Yu-Jen Lu
- Graduate Institute of Biomedical Sciences, ‡Department of Neurosurgery, Chang Gung Memorial Hospital, §Department of Physiology and Pharmacology, and ⊥Molecular Medicine Research Center, College of Medicine, Chang Gung University , Tao-Yuan 33302, Taiwan.,Graduate Institute of Basic Medical Science and ∥Department of Medical Research, China Medical University Hospital , Taichung 40402, Taiwan
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, ‡Department of Neurosurgery, Chang Gung Memorial Hospital, §Department of Physiology and Pharmacology, and ⊥Molecular Medicine Research Center, College of Medicine, Chang Gung University , Tao-Yuan 33302, Taiwan.,Graduate Institute of Basic Medical Science and ∥Department of Medical Research, China Medical University Hospital , Taichung 40402, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, ‡Department of Neurosurgery, Chang Gung Memorial Hospital, §Department of Physiology and Pharmacology, and ⊥Molecular Medicine Research Center, College of Medicine, Chang Gung University , Tao-Yuan 33302, Taiwan.,Graduate Institute of Basic Medical Science and ∥Department of Medical Research, China Medical University Hospital , Taichung 40402, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, ‡Department of Neurosurgery, Chang Gung Memorial Hospital, §Department of Physiology and Pharmacology, and ⊥Molecular Medicine Research Center, College of Medicine, Chang Gung University , Tao-Yuan 33302, Taiwan.,Graduate Institute of Basic Medical Science and ∥Department of Medical Research, China Medical University Hospital , Taichung 40402, Taiwan
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, ‡Department of Neurosurgery, Chang Gung Memorial Hospital, §Department of Physiology and Pharmacology, and ⊥Molecular Medicine Research Center, College of Medicine, Chang Gung University , Tao-Yuan 33302, Taiwan.,Graduate Institute of Basic Medical Science and ∥Department of Medical Research, China Medical University Hospital , Taichung 40402, Taiwan
| |
Collapse
|
46
|
Wu CP, Hsieh YJ, Hsiao SH, Su CY, Li YQ, Huang YH, Huang CW, Hsieh CH, Yu JS, Wu YS. Human ATP-Binding Cassette Transporter ABCG2 Confers Resistance to CUDC-907, a Dual Inhibitor of Histone Deacetylase and Phosphatidylinositol 3-Kinase. Mol Pharm 2016; 13:784-94. [PMID: 26796063 DOI: 10.1021/acs.molpharmaceut.5b00687] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CUDC-907 is a novel, dual-acting small molecule compound designed to simultaneously inhibit the activity of histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K). Treatment with CUDC-907 led to sustained inhibition of HDAC and PI3K activity, inhibition of RAF-MEK-MAPK signaling pathway, and inhibition of cancer cell growth. CUDC-907 is currently under evaluation in phase I clinical trials in patients with lymphoma or multiple myeloma, and in patients with advanced solid tumors. However, the risk of developing acquired resistance to CUDC-907 can present a significant therapeutic challenge to clinicians in the future and should be investigated. The overexpression of ATP-binding cassette (ABC) drug transporter ABCB1, ABCC1, or ABCG2 is one of the most common mechanisms of developing multidrug resistance (MDR) in cancers and a major obstacle in chemotherapy. In this study, we reveal that ABCG2 reduces the intracellular accumulation of CUDC-907 and confers significant resistance to CUDC-907, which leads to reduced activity of CUDC-907 to inhibit HDAC and PI3K in human cancer cells. Moreover, although CUDC-907 affects the transport function of ABCG2, it was not potent enough to reverse drug resistance mediated by ABCG2 or affect the expression level of ABCG2 in human cancer cells. Taken together, our findings indicate that ABCG2-mediated CUDC-907 resistance can have serious clinical implications and should be further investigated. More importantly, we demonstrate that the activity of CUDC-907 in ABCG2-overexpressing cancer cells can be restored by inhibiting the function of ABCG2, which provides support for the rationale of combining CUDC-907 with modulators of ABCG2 to improve the pharmacokinetics and efficacy of CUDC-907 in future treatment trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chiun-Wei Huang
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital , Tao-Yuan, Taiwan
| | | | | | - Yu-Shan Wu
- Department of Chemistry, Tunghai University , Taichung, Taiwan
| |
Collapse
|
47
|
Overcoming Multidrug Resistance in Cancer Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:635745. [PMID: 26649310 PMCID: PMC4663294 DOI: 10.1155/2015/635745] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/09/2015] [Accepted: 10/19/2015] [Indexed: 01/03/2023]
Abstract
The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC) transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.
Collapse
|
48
|
Wu CP, Hsieh CH, Hsiao SH, Luo SY, Su CY, Li YQ, Huang YH, Huang CW, Hsu SC. Human ATP-Binding Cassette Transporter ABCB1 Confers Resistance to Volasertib (BI 6727), a Selective Inhibitor of Polo-like Kinase 1. Mol Pharm 2015; 12:3885-95. [PMID: 26412161 DOI: 10.1021/acs.molpharmaceut.5b00312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The overexpression of the serine/threonine specific polo-like kinase 1 (Plk1) is associated with poor prognosis in many types of cancer. Consequently, Plk1 has emerged as a valid therapeutic target for anticancer drug design. Volasertib is a potent inhibitor of Plk1 that inhibits the proliferation of multiple human cancer cell lines by promoting cell cycle arrest at nanomolar concentrations. However, the risk of developing drug resistance, which is often associated with the overexpression of the ATP-binding cassette (ABC) transporter ABCB1 (P-glycoprotein), can present a therapeutic challenge for volasertib and many other therapeutic drugs. Although volasertib is highly effective against the proliferation of numerous cancer cell lines, we found that the overexpression of ABCB1 in cancer cells leads to cellular resistance to volasertib and reduces the level of volasertib-stimulated G2/M cell cycle arrest and subsequent onset of apoptosis. Furthermore, we demonstrate that volasertib competitively inhibits the function of ABCB1 and stimulates the basal ATPase activity of ABCB1 in a concentration-dependent manner, which is consistent with substrate transport by ABCB1. More importantly, we discovered that the coadministration of an inhibitor or drug substrate of ABCB1 restored the anticancer activity of volasertib in ABCB1-overexpressing cancer cells. In conclusion, the results of our study reveal that ABCB1 negatively affects the efficacy of volasertib and supports its combination with a modulator of ABCB1 to improve clinical responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chiun-Wei Huang
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital , Tao-Yuan, Taiwan
| | | |
Collapse
|
49
|
de Oliveira JF, da Silva AL, Vendramini-Costa DB, da Cruz Amorim CA, Campos JF, Ribeiro AG, Olímpio de Moura R, Neves JL, Ruiz ALTG, Ernesto de Carvalho J, Alves de Lima MDC. Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities. Eur J Med Chem 2015; 104:148-56. [DOI: 10.1016/j.ejmech.2015.09.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023]
|
50
|
Sarkar T, Banerjee S, Hussain A. Significant photocytotoxic effect of an iron(iii) complex of a Schiff base ligand derived from vitamin B6and thiosemicarbazide in visible light. RSC Adv 2015. [DOI: 10.1039/c5ra04207k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An iron(iii)–Schiff base complex derived from vitamin B6and thiosemicarbazide is significantly photocytotoxic to HeLa cancer cells in visible light (400 nm–700 nm) but non-toxic in the absence of light.
Collapse
Affiliation(s)
- Tukki Sarkar
- Department of Chemistry
- Handique Girls' College
- Guwahati 781001
- India
| | - Samya Banerjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Akhtar Hussain
- Department of Chemistry
- Handique Girls' College
- Guwahati 781001
- India
| |
Collapse
|