1
|
Liu N, Kattan WE, Mead BE, Kummerlowe C, Cheng T, Ingabire S, Cheah JH, Soule CK, Vrcic A, McIninch JK, Triana S, Guzman M, Dao TT, Peters JM, Lowder KE, Crawford L, Amini AP, Blainey PC, Hahn WC, Cleary B, Bryson B, Winter PS, Raghavan S, Shalek AK. Scalable, compressed phenotypic screening using pooled perturbations. Nat Biotechnol 2024:10.1038/s41587-024-02403-z. [PMID: 39375446 DOI: 10.1038/s41587-024-02403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/26/2024] [Indexed: 10/09/2024]
Abstract
High-throughput phenotypic screens using biochemical perturbations and high-content readouts are constrained by limitations of scale. To address this, we establish a method of pooling exogenous perturbations followed by computational deconvolution to reduce required sample size, labor and cost. We demonstrate the increased efficiency of compressed experimental designs compared to conventional approaches through benchmarking with a bioactive small-molecule library and a high-content imaging readout. We then apply compressed screening in two biological discovery campaigns. In the first, we use early-passage pancreatic cancer organoids to map transcriptional responses to a library of recombinant tumor microenvironment protein ligands, uncovering reproducible phenotypic shifts induced by specific ligands distinct from canonical reference signatures and correlated with clinical outcome. In the second, we identify the pleotropic modulatory effects of a chemical compound library with known mechanisms of action on primary human peripheral blood mononuclear cell immune responses. In sum, our approach empowers phenotypic screens with information-rich readouts to advance drug discovery efforts and basic biological inquiry.
Collapse
Affiliation(s)
- Nuo Liu
- Institute for Medical Engineering and Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Walaa E Kattan
- Institute for Medical Engineering and Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Benjamin E Mead
- Institute for Medical Engineering and Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Conner Kummerlowe
- Institute for Medical Engineering and Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Cheng
- Institute for Medical Engineering and Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sarah Ingabire
- Institute for Medical Engineering and Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jaime H Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christian K Soule
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anita Vrcic
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jane K McIninch
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sergio Triana
- Institute for Medical Engineering and Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Manuel Guzman
- Institute for Medical Engineering and Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tyler T Dao
- Institute for Medical Engineering and Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua M Peters
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristen E Lowder
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Lorin Crawford
- Microsoft Research, Cambridge, MA, USA
- Center for Computational Biology, Brown University, Providence, RI, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
| | | | - Paul C Blainey
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian Cleary
- Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Bryan Bryson
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Srivatsan Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alex K Shalek
- Institute for Medical Engineering and Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Immunology, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
2
|
Melia E, Parsons JL. The Potential for Targeting G 2/M Cell Cycle Checkpoint Kinases in Enhancing the Efficacy of Radiotherapy. Cancers (Basel) 2024; 16:3016. [PMID: 39272874 PMCID: PMC11394570 DOI: 10.3390/cancers16173016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Radiotherapy is one of the main cancer treatments being used for ~50% of all cancer patients. Conventional radiotherapy typically utilises X-rays (photons); however, there is increasing use of particle beam therapy (PBT), such as protons and carbon ions. This is because PBT elicits significant benefits through more precise dose delivery to the cancer than X-rays, but also due to the increases in linear energy transfer (LET) that lead to more enhanced biological effectiveness. Despite the radiotherapy type, the introduction of DNA damage ultimately drives the therapeutic response through stimulating cancer cell death. To combat this, cells harbour cell cycle checkpoints that enables time for efficient DNA damage repair. Interestingly, cancer cells frequently have mutations in key genes such as TP53 and ATM that drive the G1/S checkpoint, whereas the G2/M checkpoint driven through ATR, Chk1 and Wee1 remains intact. Therefore, targeting the G2/M checkpoint through specific inhibitors is considered an important strategy for enhancing the efficacy of radiotherapy. In this review, we focus on inhibitors of Chk1 and Wee1 kinases and present the current biological evidence supporting their utility as radiosensitisers with different radiotherapy modalities, as well as clinical trials that have and are investigating their potential for cancer patient benefit.
Collapse
Affiliation(s)
- Emma Melia
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jason L Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Jadav R, Weiland F, Noordermeer SM, Carroll T, Gao Y, Wang J, Zhou H, Lamoliatte F, Toth R, Macartney T, Brown F, Hastie CJ, Alabert C, van Attikum H, Zenke F, Masson JY, Rouse J. Chemo-Phosphoproteomic Profiling with ATR Inhibitors Berzosertib and Gartisertib Uncovers New Biomarkers and DNA Damage Response Regulators. Mol Cell Proteomics 2024; 23:100802. [PMID: 38880245 PMCID: PMC11338954 DOI: 10.1016/j.mcpro.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
The ATR kinase protects cells against DNA damage and replication stress and represents a promising anti-cancer drug target. The ATR inhibitors (ATRi) berzosertib and gartisertib are both in clinical trials for the treatment of advanced solid tumors as monotherapy or in combination with genotoxic agents. We carried out quantitative phospho-proteomic screening for ATR biomarkers that are highly sensitive to berzosertib and gartisertib, using an optimized mass spectrometry pipeline. Screening identified a range of novel ATR-dependent phosphorylation events, which were grouped into three broad classes: (i) targets whose phosphorylation is highly sensitive to ATRi and which could be the next generation of ATR biomarkers; (ii) proteins with known genome maintenance roles not previously known to be regulated by ATR; (iii) novel targets whose cellular roles are unclear. Class iii targets represent candidate DNA damage response proteins and, with this in mind, proteins in this class were subjected to secondary screening for recruitment to DNA damage sites. We show that one of the proteins recruited, SCAF1, interacts with RNAPII in a phospho-dependent manner and recruitment requires PARP activity and interaction with RNAPII. We also show that SCAF1 deficiency partly rescues RAD51 loading in cells lacking the BRCA1 tumor suppressor. Taken together these data reveal potential new ATR biomarkers and new genome maintenance factors.
Collapse
Affiliation(s)
- Rathan Jadav
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Florian Weiland
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Sylvie M Noordermeer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Genetics, Oncode Institute, Utrecht, The Netherlands
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Yuandi Gao
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - Jianming Wang
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Fiona Brown
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Constance Alabert
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Zenke
- EMD Serono, Research Unit Oncology, Billerica, Massachusetts, USA
| | - Jean-Yves Masson
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK.
| |
Collapse
|
4
|
Dwivedi D, Harry D, Meraldi P. Mild replication stress causes premature centriole disengagement via a sub-critical Plk1 activity under the control of ATR-Chk1. Nat Commun 2023; 14:6088. [PMID: 37773176 PMCID: PMC10541884 DOI: 10.1038/s41467-023-41753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
A tight synchrony between the DNA and centrosome cycle is essential for genomic integrity. Centriole disengagement, which licenses centrosomes for duplication, occurs normally during mitotic exit. We recently demonstrated that mild DNA replication stress typically seen in cancer cells causes premature centriole disengagement in untransformed mitotic human cells, leading to transient multipolar spindles that favour chromosome missegregation. How mild replication stress accelerates the centrosome cycle at the molecular level remained, however, unclear. Using ultrastructure expansion microscopy, we show that mild replication stress induces premature centriole disengagement already in G2 via the ATR-Chk1 axis of the DNA damage repair pathway. This results in a sub-critical Plk1 kinase activity that primes the pericentriolar matrix for Separase-dependent disassembly but is insufficient for rapid mitotic entry, causing premature centriole disengagement in G2. We postulate that the differential requirement of Plk1 activity for the DNA and centrosome cycles explains how mild replication stress disrupts the synchrony between both processes and contributes to genomic instability.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
| |
Collapse
|
5
|
Marcelino TDP, Fala AM, da Silva MM, Souza-Melo N, Malvezzi AM, Klippel AH, Zoltner M, Padilla-Mejia N, Kosto S, Field MC, Burle-Caldas GDA, Teixeira SMR, Couñago RM, Massirer KB, Schenkman S. Identification of inhibitors for the transmembrane Trypanosoma cruzi eIF2α kinase relevant for parasite proliferation. J Biol Chem 2023; 299:104857. [PMID: 37230387 PMCID: PMC10300260 DOI: 10.1016/j.jbc.2023.104857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
The TcK2 protein kinase of Trypanosoma cruzi, the causative agent of Chagas disease, is structurally similar to the human kinase PERK, which phosphorylates the initiation factor eIF2α and, in turn, inhibits translation initiation. We have previously shown that absence of TcK2 kinase impairs parasite proliferation within mammalian cells, positioning it as a potential target for treatment of Chagas disease. To better understand its role in the parasite, here we initially confirmed the importance of TcK2 in parasite proliferation by generating CRISPR/Cas9 TcK2-null cells, albeit they more efficiently differentiate into infective forms. Proteomics indicates that the TcK2 knockout of proliferative forms expresses proteins including trans-sialidases, normally restricted to infective and nonproliferative trypomastigotes explaining decreased proliferation and better differentiation. TcK2 knockout cells lost phosphorylation of eukaryotic initiation factor 3 and cyclic AMP responsive-like element, recognized to promote growth, likely explaining both decreased proliferation and augmented differentiation. To identify specific inhibitors, a library of 379 kinase inhibitors was screened by differential scanning fluorimetry using a recombinant TcK2 encompassing the kinase domain and selected molecules were tested for kinase inhibition. Only Dasatinib and PF-477736, inhibitors of Src/Abl and ChK1 kinases, showed inhibitory activity with IC50 of 0.2 ± 0.02 mM and 0.8 ± 0.1, respectively. In infected cells Dasatinib inhibited growth of parental amastigotes (IC50 = 0.6 ± 0.2 mM) but not TcK2 of depleted parasites (IC50 > 34 mM) identifying Dasatinib as a potential lead for development of therapeutics for Chagas disease targeting TcK2.
Collapse
Affiliation(s)
- Tiago de Paula Marcelino
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Angela Maria Fala
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Matheus Monteiro da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Normanda Souza-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Amaranta Muniz Malvezzi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Angélica Hollunder Klippel
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil; Departamento de Ciências Biológicas da Faculdade de Ciências Farmacêuticas da Universidade Estadual Paulista "Júlio de Mesquita Filho"-Unesp, Araraquara, SP, Brazil
| | - Martin Zoltner
- Drug Discovery and Evaluation Unit, Department of Parasitology, Faculty of Science, Charles University in Prague, BIOCEV, Vestec, Czech Republic
| | | | - Samantha Kosto
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | | | - Rafael Miguez Couñago
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Luo D, Mladenov E, Soni A, Stuschke M, Iliakis G. The p38/MK2 Pathway Functions as Chk1-Backup Downstream of ATM/ATR in G 2-Checkpoint Activation in Cells Exposed to Ionizing Radiation. Cells 2023; 12:1387. [PMID: 37408221 DOI: 10.3390/cells12101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
We have recently reported that in G2-phase cells (but not S-phase cells) sustaining low loads of DNA double-strand break (DSBs), ATM and ATR regulate the G2-checkpoint epistatically, with ATR at the output-node, interfacing with the cell cycle through Chk1. However, although inhibition of ATR nearly completely abrogated the checkpoint, inhibition of Chk1 using UCN-01 generated only partial responses. This suggested that additional kinases downstream of ATR were involved in the transmission of the signal to the cell cycle engine. Additionally, the broad spectrum of kinases inhibited by UCN-01 pointed to uncertainties in the interpretation that warranted further investigations. Here, we show that more specific Chk1 inhibitors exert an even weaker effect on G2-checkpoint, as compared to ATR inhibitors and UCN-01, and identify the MAPK p38α and its downstream target MK2 as checkpoint effectors operating as backup to Chk1. These observations further expand the spectrum of p38/MK2 signaling to G2-checkpoint activation, extend similar studies in cells exposed to other DNA damaging agents and consolidate a role of p38/MK2 as a backup kinase module, adding to similar backup functions exerted in p53 deficient cells. The results extend the spectrum of actionable strategies and targets in current efforts to enhance the radiosensitivity in tumor cells.
Collapse
Affiliation(s)
- Daxian Luo
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aashish Soni
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
7
|
Tsuchiya M, Tachibana N, Nagao K, Tamura T, Hamachi I. Organelle-selective click labeling coupled with flow cytometry allows pooled CRISPR screening of genes involved in phosphatidylcholine metabolism. Cell Metab 2023:S1550-4131(23)00050-5. [PMID: 36917984 DOI: 10.1016/j.cmet.2023.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Cellular lipid synthesis and transport are governed by intricate protein networks. Although genetic screening should contribute to deciphering the regulatory networks of lipid metabolism, technical challenges remain-especially for high-throughput readouts of lipid phenotypes. Here, we coupled organelle-selective click labeling of phosphatidylcholine (PC) with flow cytometry-based CRISPR screening technologies to convert organellar PC phenotypes into a simple fluorescence readout for genome-wide screening. This technique, named O-ClickFC, was successfully applied in genome-scale CRISPR-knockout screens to identify previously reported genes associated with PC synthesis (PCYT1A, ACACA), vesicular membrane trafficking (SEC23B, RAB5C), and non-vesicular transport (PITPNB, STARD7). Moreover, we revealed previously uncharacterized roles of FLVCR1 as a choline uptake facilitator, CHEK1 as a post-translational regulator of the PC-synthetic pathway, and CDC50A as responsible for the translocation of PC to the outside of the plasma membrane bilayer. These findings demonstrate the versatility of O-ClickFC as an unprecedented platform for genetic dissection of cellular lipid metabolism.
Collapse
Affiliation(s)
- Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; PRESTO (Precursory Research for Embryonic Science and Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Nobuhiko Tachibana
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; PRESTO (Precursory Research for Embryonic Science and Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Kohjiro Nagao
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; ERATO (Exploratory Research for Advanced Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan.
| |
Collapse
|
8
|
Abuetabh Y, Wu HH, Chai C, Al Yousef H, Persad S, Sergi CM, Leng R. DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities. Exp Mol Med 2022; 54:1658-1669. [PMID: 36207426 PMCID: PMC9636249 DOI: 10.1038/s12276-022-00863-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Antitumor therapeutic strategies that fundamentally rely on the induction of DNA damage to eradicate and inhibit the growth of cancer cells are integral approaches to cancer therapy. Although DNA-damaging therapies advance the battle with cancer, resistance, and recurrence following treatment are common. Thus, searching for vulnerabilities that facilitate the action of DNA-damaging agents by sensitizing cancer cells is an active research area. Therefore, it is crucial to decipher the detailed molecular events involved in DNA damage responses (DDRs) to DNA-damaging agents in cancer. The tumor suppressor p53 is active at the hub of the DDR. Researchers have identified an increasing number of genes regulated by p53 transcriptional functions that have been shown to be critical direct or indirect mediators of cell fate, cell cycle regulation, and DNA repair. Posttranslational modifications (PTMs) primarily orchestrate and direct the activity of p53 in response to DNA damage. Many molecules mediating PTMs on p53 have been identified. The anticancer potential realized by targeting these molecules has been shown through experiments and clinical trials to sensitize cancer cells to DNA-damaging agents. This review briefly acknowledges the complexity of DDR pathways/networks. We specifically focus on p53 regulators, protein kinases, and E3/E4 ubiquitin ligases and their anticancer potential.
Collapse
Affiliation(s)
- Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Chengsen Chai
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Habib Al Yousef
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Sujata Persad
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Consolato M Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| |
Collapse
|
9
|
Tu Q, Liu X, Yao X, Li R, Liu G, Jiang H, Li K, Chen Q, Huang X, Chang Q, Xu G, Zhu H, Shi P, Zhao B. RETSAT associates with DDX39B to promote fork restarting and resistance to gemcitabine based chemotherapy in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2022; 41:274. [PMID: 36109793 PMCID: PMC9476698 DOI: 10.1186/s13046-022-02490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Severe hypoxia is a prominent character of pancreatic ductal adenocarcinoma (PDAC) microenvironment. In the process of gemcitabine based chemotherapy, PDAC cells are insulted from replication stresses co-induced by hypoxia and gemcitabine. However, PDAC cells get outstanding abilities to resist to such harsh conditions and keep proliferating, causing a major obstacle for current therapy. RETSAT (Retinol Saturase) is defined as a hypoxia convergent gene recently, with high expression in PDAC hypoxic sectors. This study aimed to explore the roles of RETSAT in replication stress resistance and hypoxia adaptation in PDAC cells, and decipher the underlying mechanism.
Methods
The expression of RETSAT was examined in TCGA (The Cancer Genome Atlas), human pancreatic cancer microarray, clinical specimens and cell lines. Functions of RETSAT were studied by means of DNA fiber assay and comet assay in monolayer cultured PDAC cell lines, three dimensional spheroids, patient derived organoids and cell derived xenograft mouse models. Mechanism was investigated by using iPOND (isolate proteins on nascent DNA) combined with mass spectrometry, immunoprecipitation and immunoblotting.
Results
First, we found the converse relationship of RETSAT expression and PDAC chemotherapy. That is, PDAC patients with high RETSAT expression correlated with poor survival, while ones holding low RETSAT expression were benefitted more in Gemcitabine based chemotherapy. Second, we identified RETSAT as a novel replication fork associated protein. HIF-1α signaling promotes RETSAT expression under hypoxia. Functionally, RETSAT promoted fork restarting under replication stress and maintained genomic stability. Third, we uncovered the interaction of RETSAT and R-loop unwinding helicase DDX39B. RETSAT detained DDX39B on forks to resolve R-loops, through which avoided fork damage and CHK1 initiated apoptosis. Targeting DDX39B using chemical CCT018159 sensitized PDAC cells and organoids to gemcitabine induced apoptosis, highlighting the synergetic application of CCT018159 and gemcitabine in PDAC chemotherapy.
Conclusions
This study identified RETSAT as a novel replication fork protein, which functions through interacting with DDX39B mediated R-loop clearance to promote fork restarting, leading to cellular resistance to replication stresses co-induced by tumor environmental hypoxia and gemcitabine in pancreatic ductal adenocarcinoma.
Collapse
|
10
|
Hu W, Wang Z, Zhang H, Mahaman YAR, Huang F, Meng D, Zhou Y, Wang S, Jiang N, Xiong J, Westermarck J, Lu Y, Wang J, Wang X, Shentu Y, Liu R. Chk1 Inhibition Ameliorates Alzheimer's Disease Pathogenesis and Cognitive Dysfunction Through CIP2A/PP2A Signaling. Neurotherapeutics 2022; 19:570-591. [PMID: 35286657 PMCID: PMC9226264 DOI: 10.1007/s13311-022-01204-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease with limited therapeutic strategies. Cell cycle checkpoint protein kinase 1 (Chk1) is a Ser/Thr protein kinase which is activated in response to DNA damage, the latter which is an early event in AD. However, whether DNA damage-induced Chk1 activation participates in the development of AD and Chk1 inhibition ameliorates AD-like pathogenesis remain unclarified. Here, we demonstrate that Chk1 activity and the levels of protein phosphatase 2A (PP2A) inhibitory protein CIP2A are elevated in AD human brains, APP/PS1 transgenic mice, and primary neurons with Aβ treatment. Chk1 overexpression induces CIP2A upregulation, PP2A inhibition, tau and APP hyperphosphorylation, synaptic impairments, and cognitive memory deficit in mice. Moreover, Chk1 inhibitor (GDC0575) effectively increases PP2A activity, decreases tau phosphorylation, and inhibits Aβ overproduction in AD cell models. GDC0575 also reverses AD-like cognitive deficits and prevents neuron loss and synaptic impairments in APP/PS1 mice. In conclusion, our study uncovers a mechanism by which DNA damage-induced Chk1 activation promotes CIP2A-mediated tau and APP hyperphosphorylation and cognitive dysfunction in Alzheimer's disease and highlights the therapeutic potential of Chk1 inhibitors in AD.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoqun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiliang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Huang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongli Meng
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shiyi Wang
- Wenzhou Medical University, Wenzhou, China
| | - Nan Jiang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Youming Lu
- Collaborative Innovation Center for Brain Science, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jianzhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Collaborative Innovation Center for Brain Science, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Shift in G1-Checkpoint from ATM-Alone to a Cooperative ATM Plus ATR Regulation with Increasing Dose of Radiation. Cells 2021; 11:cells11010063. [PMID: 35011623 PMCID: PMC8750242 DOI: 10.3390/cells11010063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
The current view of the involvement of PI3-kinases in checkpoint responses after DNA damage is that ATM is the key regulator of G1-, S- or G2-phase checkpoints, that ATR is only partly involved in the regulation of S- and G2-phase checkpoints and that DNA-PKcs is not involved in checkpoint regulation. However, further analysis of the contributions of these kinases to checkpoint responses in cells exposed to ionizing radiation (IR) recently uncovered striking integrations and interplays among ATM, ATR and DNA-PKcs that adapt not only to the phase of the cell cycle in which cells are irradiated, but also to the load of DNA double-strand breaks (DSBs), presumably to optimize their processing. Specifically, we found that low IR doses in G2-phase cells activate a G2-checkpoint that is regulated by epistatically coupled ATM and ATR. Thus, inhibition of either kinase suppresses almost fully its activation. At high IR doses, the epistatic ATM/ATR coupling relaxes, yielding to a cooperative regulation. Thus, single-kinase inhibition suppresses partly, and only combined inhibition suppresses fully G2-checkpoint activation. Interestingly, DNA-PKcs integrates with ATM/ATR in G2-checkpoint control, but functions in its recovery in a dose-independent manner. Strikingly, irradiation during S-phase activates, independently of dose, an exclusively ATR-dependent G2 checkpoint. Here, ATM couples with DNA-PKcs to regulate checkpoint recovery. In the present work, we extend these studies and investigate organization and functions of these PI3-kinases in the activation of the G1 checkpoint in cells irradiated either in the G0 or G1 phase. We report that ATM is the sole regulator of the G1 checkpoint after exposure to low IR doses. At high IR doses, ATM remains dominant, but contributions from ATR also become detectable and are associated with limited ATM/ATR-dependent end resection at DSBs. Under these conditions, only combined ATM + ATR inhibition fully abrogates checkpoint and resection. Contributions of DNA-PKcs and CHK2 to the regulation of the G1 checkpoint are not obvious in these experiments and may be masked by the endpoint employed for checkpoint analysis and perturbations in normal progression through the cell cycle of cells exposed to DNA-PKcs inhibitors. The results broaden our understanding of organization throughout the cell cycle and adaptation with increasing IR dose of the ATM/ATR/DNA-PKcs module to regulate checkpoint responses. They emphasize notable similarities and distinct differences between G1-, G2- and S-phase checkpoint regulation that may guide DSB processing decisions.
Collapse
|
12
|
Synthetic Heterocyclic Derivatives as Kinase Inhibitors Tested for the Treatment of Neuroblastoma. Molecules 2021; 26:molecules26237069. [PMID: 34885651 PMCID: PMC8658969 DOI: 10.3390/molecules26237069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the last few years, small molecules endowed with different heterocyclic scaffolds have been developed as kinase inhibitors. Some of them are being tested at preclinical or clinical levels for the potential treatment of neuroblastoma (NB). This disease is the most common extracranial solid tumor in childhood and is responsible for 10% to 15% of pediatric cancer deaths. Despite the availability of some treatments, including the use of very toxic cytotoxic chemotherapeutic agents, high-risk (HR)-NB patients still have a poor prognosis and a survival rate below 50%. For these reasons, new pharmacological options are urgently needed. This review focuses on synthetic heterocyclic compounds published in the last five years, which showed at least some activity on this severe disease and act as kinase inhibitors. The specific mechanism of action, selectivity, and biological activity of these drug candidates are described, when established. Moreover, the most remarkable clinical trials are reported. Importantly, kinase inhibitors approved for other diseases have shown to be active and endowed with lower toxicity compared to conventional cytotoxic agents. The data collected in this article can be particularly useful for the researchers working in this area.
Collapse
|
13
|
Davidson K, Grevitt P, Contreras-Gerenas MF, Bridge KS, Hermida M, Shah KM, Mardakheh FK, Stubbs M, Burke R, Casado P, Cutillas PR, Martin SA, Sharp TV. Targeted therapy for LIMD1-deficient non-small cell lung cancer subtypes. Cell Death Dis 2021; 12:1075. [PMID: 34764236 PMCID: PMC8586256 DOI: 10.1038/s41419-021-04355-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
An early event in lung oncogenesis is loss of the tumour suppressor gene LIMD1 (LIM domains containing 1); this encodes a scaffold protein, which suppresses tumorigenesis via a number of different mechanisms. Approximately 45% of non-small cell lung cancers (NSCLC) are deficient in LIMD1, yet this subtype of NSCLC has been overlooked in preclinical and clinical investigations. Defining therapeutic targets in these LIMD1 loss-of-function patients is difficult due to a lack of 'druggable' targets, thus alternative approaches are required. To this end, we performed the first drug repurposing screen to identify compounds that confer synthetic lethality with LIMD1 loss in NSCLC cells. PF-477736 was shown to selectively target LIMD1-deficient cells in vitro through inhibition of multiple kinases, inducing cell death via apoptosis. Furthermore, PF-477736 was effective in treating LIMD1-/- tumours in subcutaneous xenograft models, with no significant effect in LIMD1+/+ cells. We have identified a novel drug tool with significant preclinical characterisation that serves as an excellent candidate to explore and define LIMD1-deficient cancers as a new therapeutic subgroup of critical unmet need.
Collapse
Affiliation(s)
- Kathryn Davidson
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Paul Grevitt
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Maria F Contreras-Gerenas
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Katherine S Bridge
- York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Miguel Hermida
- Department of Bioengineering, Imperial College, London, UK
| | - Kunal M Shah
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Mark Stubbs
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Pedro Casado
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Pedro R Cutillas
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Sarah A Martin
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK.
| | - Tyson V Sharp
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK.
| |
Collapse
|
14
|
Peled M, Adam K, Mor A. Data on the identification of VRK2 as a mediator of PD-1 function. Data Brief 2021; 37:107168. [PMID: 34113705 PMCID: PMC8170101 DOI: 10.1016/j.dib.2021.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/15/2022] Open
Abstract
Therapeutic programmed cell death protein 1 (PD-1) blockade enhances T cell mediated anti-tumor immunity, but many patients do not respond, and a significant proportion develops inflammatory toxicities. To develop better therapeutics and to understand the signaling pathways downstream of PD-1 we performed phosphoproteomic interrogation of PD-1 to identify key mediators of PD-1 signaling. Hereby, supporting data of the research article "VRK2 inhibition synergizes with PD-1 blockade to improve T cell responses" are presented. In the primary publication, we proposed that VRK2 is a unique therapeutic target and that combination of VRK2 inhibitors with PD-1 blockade may improve cancer immunotherapy. Here, we provide data on the effect of other kinases on PD-1 signaling utilizing shRNA knockdown of the different kinases in Jurkat T cells. In addition, we used VRK2 inhibition by a pharmacologic approach in the MC38 tumor mouse model, to show the combined outcome of anti PD-1 treatment with VRK2 inhibition. These data provide additional targets downstream PD-1 and point toward methods of testing the effect of the inhibition of these targets on tumor progression in vivo.
Collapse
Affiliation(s)
- Michael Peled
- Institute of Pulmonary Medicine, Chaim Sheba Medical Center, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kieran Adam
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, United States
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, United States.,Division of Rheumatology, Columbia University Medical Center, New York, NY 10032, United States
| |
Collapse
|
15
|
Barnaba N, LaRocque JR. Targeting cell cycle regulation via the G2-M checkpoint for synthetic lethality in melanoma. CELL CYCLE (GEORGETOWN, TEX.) 2021; 20:1041-1051. [PMID: 33966611 DOI: 10.1080/15384101.2021.1922806] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Disruption of cell cycle checkpoints has been well established as a hallmark of cancer. In particular, the G1-S transition mediated by the cyclin D-cyclin-dependent kinase 4/6 (CDK4/6) pathway is dysregulated in more than 90% of melanoma cases. Therefore, tumor cells mainly rely on the G2-M checkpoint to halt the cell cycle in order to repair DNA damage. Here, we review the promising method of cell cycle-mediated synthetic lethality for melanoma treatment, which entails exploiting somatically acquired mutations in the G1-S transition with inhibitors of the G2-M transition in order to specifically kill melanoma cells. The idea stems from the theory that melanoma cells lacking G1-S checkpoints are particularly vulnerable to mitotic catastrophe when presented with G2-M checkpoint inhibition in addition to DNA damage, whereas normal cells with intact G1-S checkpoints should theoretically be spared. This review explores the link between cell cycle dysregulation and synthetic lethality in melanoma cells and discusses potential future applications for this treatment.
Collapse
Affiliation(s)
- Nicholas Barnaba
- Biology Department, Georgetown University, Washington, DC, USA.,Georgetown University School of Medicine, Georgetown University, Washington, DC, USA
| | | |
Collapse
|
16
|
Peled M, Tocheva AS, Adam K, Mor A. VRK2 inhibition synergizes with PD-1 blockade to improve T cell responses. Immunol Lett 2021; 233:42-47. [PMID: 33741379 DOI: 10.1016/j.imlet.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/11/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
Therapeutic programmed cell death protein 1 (PD-1) blockade enhances T cell mediated anti-tumor immunity but many patients do not respond and a significant proportion develops inflammatory toxicities. To develop better therapeutics and to understand the signaling pathways downstream of PD-1 we performed phosphoproteomic analysis of PD-1 and identified vaccinia related kinase 2 (VRK2) as a key mediator of PD-1 signaling. Using genetic and pharmacological approaches, we discovered that VRK2 is required for PD-1-induced phosphorylation of the protein p21 activated kinase 2 (PAK2), and for the inhibition of IL-2, IL-8, and IFN-γ secretion. Moving into in vivo syngeneic tumor models, pharmacologic inhibition of VRK2 in combination with PD-1 blockade enhanced tumor clearance through T cell activation. This study suggests that VRK2 is a unique therapeutic target and that combination of VRK2 inhibitors with PD-1 blockade may improve cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Peled
- Institute of Pulmonary Medicine, Chaim Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna S Tocheva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kieran Adam
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA; Division of Rheumatology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
17
|
Jin T, Wang P, Long X, Jiang K, Song P, Wu W, Xu G, Zhou Y, Li J, Liu T. Design, Synthesis, and Biological Evaluation of Orally Bioavailable CHK1 Inhibitors Active against Acute Myeloid Leukemia. ChemMedChem 2021; 16:1477-1487. [PMID: 33591599 DOI: 10.1002/cmdc.202000882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/02/2021] [Indexed: 11/06/2022]
Abstract
Checkpoint kinase 1 (CHK1) is a central component in DNA damage response and has emerged as a target for antitumor therapeutics. Herein, we describe the design, synthesis, and biological evaluation of a novel series of potent diaminopyrimidine CHK1 inhibitors. The compounds exhibited moderate to potent CHK1 inhibition and could suppress the proliferation of malignant hematological cell lines. The optimized compound 13 had a CHK1 IC50 value of 7.73±0.74 nM, and MV-4-11 cells were sensitive to it (IC50 =0.035±0.007 μM). Furthermore, compound 13 was metabolically stable in mouse liver microsomes in vitro and displayed moderate oral bioavailability in vivo. Moreover, treatment of MV-4-11 cells with compound 13 for 2 h led to robust inhibition of CHK1 autophosphorylation on serine 296. Based on these biochemical results, we consider compound 13 to be a promising CHK1 inhibitor and potential anticancer therapeutic agent.
Collapse
Affiliation(s)
- Tingting Jin
- College of Pharmaceutical Sciences, ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peipei Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Xiubing Long
- College of Pharmaceutical Sciences, ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Kailong Jiang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Pinrao Song
- Shanghai Jemincare Pharmaceuticals Co. Ltd, Jemincare Group Research Institute, 1118 Halei Road, Shanghai, 201203, P. R. China
| | - Wenbiao Wu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Gaoya Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, P. R. China
| | - Tao Liu
- College of Pharmaceutical Sciences, ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
18
|
Lessons from LIMK1 enzymology and their impact on inhibitor design. Biochem J 2020; 476:3197-3209. [PMID: 31652302 PMCID: PMC6835155 DOI: 10.1042/bcj20190517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022]
Abstract
LIM domain kinase 1 (LIMK1) is a key regulator of actin dynamics. It is thereby a potential therapeutic target for the prevention of fragile X syndrome and amyotrophic lateral sclerosis. Herein, we use X-ray crystallography and activity assays to describe how LIMK1 accomplishes substrate specificity, to suggest a unique ‘rock-and-poke’ mechanism of catalysis and to explore the regulation of the kinase by activation loop phosphorylation. Based on these findings, a differential scanning fluorimetry assay and a RapidFire mass spectrometry activity assay were established, leading to the discovery and confirmation of a set of small-molecule LIMK1 inhibitors. Interestingly, several of the inhibitors were inactive towards the closely related isoform LIMK2. Finally, crystal structures of the LIMK1 kinase domain in complex with inhibitors (PF-477736 and staurosporine, respectively) are presented, providing insights into LIMK1 plasticity upon inhibitor binding.
Collapse
|
19
|
Yang CY, Liu CR, Chang IYF, OuYang CN, Hsieh CH, Huang YL, Wang CI, Jan FW, Wang WL, Tsai TL, Liu H, Tseng CP, Chang YS, Wu CC, Chang KP. Cotargeting CHK1 and PI3K Synergistically Suppresses Tumor Growth of Oral Cavity Squamous Cell Carcinoma in Patient-Derived Xenografts. Cancers (Basel) 2020; 12:cancers12071726. [PMID: 32610557 PMCID: PMC7408003 DOI: 10.3390/cancers12071726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/27/2023] Open
Abstract
Oral cavity squamous cell carcinomas (OSCCs) are aggressive tumors, and their recurrence leads to poor prognosis and reduced survival rates. This study aimed to identify therapeutic targets and to evaluate the efficacy of targeted inhibitors in OSCC patient-derived xenograft (PDX) models. Herein, we reported that OSCC PDXs recapitulated the genomic signatures of their paired primary tumors and the expression of CHEK1, PIK3CA, and PIK3CD was significantly upregulated in OSCC. The antitumor efficacy of CHK1 inhibitors (PF477736, AZD7762, LY2606368) and PI3K inhibitors (BYL719, GDC0941, GSK1059615) was investigated in OSCC cell lines and PDX models. Targeting either CHK1 or PI3K effectively inhibited cell proliferation and colony formation by inducing cell cycle arrest and apoptosis in in vitro cell-based assays. Cisplatin-based chemotherapy combined with CHK1 inhibitor treatment synergistically inhibited cell proliferation by suppressing CHK1 phosphorylation and inducing PARP cleavage. Furthermore, compared with monotherapy, cotreatment with CHK1 and PI3K inhibitors exerted synergistic anticancer effects by suppressing CHK1, AKT, and 4E-BP1 phosphorylation. In summary, our study identified CHK1 and PI3K as promising targets, especially in a dual treatment strategy combining a CHK1 inhibitor with cisplatin or a PI3K inhibitor as a novel therapeutic approach for OSCC patients with aberrant cell cycle regulation and PI3K signaling activation.
Collapse
Affiliation(s)
- Chia-Yu Yang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.Y.); (C.-R.L.); (F.-W.J.); (W.-L.W.); (T.-L.T.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (H.L.); (Y.-S.C.)
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
| | - Chiao-Rou Liu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.Y.); (C.-R.L.); (F.-W.J.); (W.-L.W.); (T.-L.T.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chun-I Wang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Fei-Wen Jan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.Y.); (C.-R.L.); (F.-W.J.); (W.-L.W.); (T.-L.T.)
| | - Wan-Ling Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.Y.); (C.-R.L.); (F.-W.J.); (W.-L.W.); (T.-L.T.)
| | - Ting-Lin Tsai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.Y.); (C.-R.L.); (F.-W.J.); (W.-L.W.); (T.-L.T.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (H.L.); (Y.-S.C.)
| | - Hsuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (H.L.); (Y.-S.C.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (H.L.); (Y.-S.C.)
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
| | - Chih-Ching Wu
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Correspondence: (C.-C.W.); or (K.-P.C.)
| | - Kai-Ping Chang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (C.-C.W.); or (K.-P.C.)
| |
Collapse
|
20
|
Evangelisti G, Barra F, Moioli M, Sala P, Stigliani S, Gustavino C, Costantini S, Ferrero S. Prexasertib: an investigational checkpoint kinase inhibitor for the treatment of high-grade serous ovarian cancer. Expert Opin Investig Drugs 2020; 29:779-792. [PMID: 32539469 DOI: 10.1080/13543784.2020.1783238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction Patients with high-grade serous ovarian cancer (HGSOC) have a poor prognosis, and current chemotherapy regimens for treating advanced disease are far from satisfactory. Prexasertib (LY2606368) is a novel checkpoint kinase inhibitor (CHK) under investigation for the treatment of HGSOC. Data from a recent phase II trial showed promising efficacy and safety results for treating wild-type BRCA HGSOC. Areas covered This article reviews the available data on the pharmacokinetics, pharmacodynamics, clinical efficacy, and safety of prexasertib in the treatment of HGSOC. Expert opinion Until now, prexasertib demonstrated clinical activity in phase I and II clinical trial for treating wild-type BRCA HGSOC, whereas its promising efficacy as monotherapy and combined with olaparib in BRCA-mutated HGSOC has been preliminary evidenced only in phase I studies. Compared to other drugs of the same class, prexasertib showed a better tolerability profile, causing moderate hematological toxicity. Further studies are needed to confirm efficacy and safety profiles of prexasertib in combined regimens. New early clinical trials may investigate prexasertib administered with programmed cell death ligand 1 (PD-L1) and PI3 K inhibitors due to the preclinical evidence of a synergic action.
Collapse
Affiliation(s)
- Giulio Evangelisti
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| | - Melita Moioli
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| | - Paolo Sala
- Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,LILT - Lega Italiana per la Lotta contro i Tumori, Rome, Italy
| | - Sara Stigliani
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| | - Claudio Gustavino
- Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Sergio Costantini
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| |
Collapse
|
21
|
Abstract
DNA damage response (DDR) pathway prevents high level endogenous and environmental DNA damage being replicated and passed on to the next generation of cells via an orchestrated and integrated network of cell cycle checkpoint signalling and DNA repair pathways. Depending on the type of damage, and where in the cell cycle it occurs different pathways are involved, with the ATM-CHK2-p53 pathway controlling the G1 checkpoint or ATR-CHK1-Wee1 pathway controlling the S and G2/M checkpoints. Loss of G1 checkpoint control is common in cancer through TP53, ATM mutations, Rb loss or cyclin E overexpression, providing a stronger rationale for targeting the S/G2 checkpoints. This review will focus on the ATM-CHK2-p53-p21 pathway and the ATR-CHK1-WEE1 pathway and ongoing efforts to target these pathways for patient benefit.
Collapse
|
22
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer. J Hematol Oncol 2020; 13:39. [PMID: 32316968 PMCID: PMC7175546 DOI: 10.1186/s13045-020-00874-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecologic malignancies reported throughout the world. The initial, standard-of-care, adjuvant chemotherapy in epithelial ovarian cancer is usually a platinum drug, such as cisplatin or carboplatin, combined with a taxane. However, despite surgical removal of the tumor and initial high response rates to first-line chemotherapy, around 80% of women will develop cancer recurrence. Effective strategies, including chemotherapy and new research models, are necessary to improve the prognosis. The replication stress response (RSR) is characteristic of the development of tumors, including ovarian cancer. Hence, RSR pathway and DNA repair proteins have emerged as a new area for anticancer drug development. Although clinical trials have shown poly (ADP-ribose) polymerase inhibitors (PARPi) response rates of around 40% in women who carry a mutation in the BRCA1/2 genes, PARPi is responsible for tumor suppression, but not for complete tumor regression. Recent reports suggest that cells with impaired homologous recombination (HR) activities due to mutations in TP53 gene or specific DNA repair proteins are specifically sensitive to ataxia telangiectasia and Rad3-related protein (ATR) inhibitors. Replication stress activates DNA repair checkpoint proteins (ATR, CHK1), which prevent further DNA damage. This review describes the use of DNA repair checkpoint inhibitors as single agents and strategies combining these inhibitors with DNA-damaging compounds for ovarian cancer therapy, as well as the new platforms used for optimizing ovarian cancer therapy.
Collapse
Affiliation(s)
- Patrycja Gralewska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Aneta Rogalska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
23
|
Chen Z, Wang C, Lei C, Feng X, Li C, Jung SY, Qin J, Chen J. Phosphoproteomics Analysis Reveals a Potential Role of CHK1 in Regulation of Innate Immunity through IRF3. J Proteome Res 2020; 19:2264-2277. [DOI: 10.1021/acs.jproteome.9b00829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Caoqi Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Chen Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jun Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
24
|
Karim RM, Chan A, Zhu JY, Schönbrunn E. Structural Basis of Inhibitor Selectivity in the BRD7/9 Subfamily of Bromodomains. J Med Chem 2020; 63:3227-3237. [PMID: 32091206 DOI: 10.1021/acs.jmedchem.9b01980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhibition of the bromodomain containing protein 9 (BRD9) by small molecules is an attractive strategy to target mutated SWI/SNF chromatin-remodeling complexes in cancer. However, reported BRD9 inhibitors also inhibit the closely related bromodomain-containing protein 7 (BRD7), which has different biological functions. The structural basis for differential potency and selectivity of BRD9 inhibitors is largely unknown because of the lack of structural information on BRD7. Here, we biochemically and structurally characterized diverse inhibitors with varying degrees of potency and selectivity for BRD9 over BRD7. Novel cocrystal structures of BRD7 liganded with new and previously reported inhibitors of five different chemical scaffolds were determined alongside BRD9 and BRD4. We also report the discovery of first-in-class dual bromodomain-kinase inhibitors outside the bromodomain and extraterminal family targeting BRD7 and BRD9. Combined, the data provide a new framework for the development of BRD7/9 inhibitors with improved selectivity or additional polypharmacologic properties.
Collapse
Affiliation(s)
- Rezaul Md Karim
- Department of Drug Discovery, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, United States.,Department of Molecular Medicine, USF Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Alice Chan
- Department of Drug Discovery, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Jin-Yi Zhu
- Department of Drug Discovery, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Ernst Schönbrunn
- Department of Drug Discovery, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, United States.,Department of Molecular Medicine, USF Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|
25
|
Dent P. Investigational CHK1 inhibitors in early phase clinical trials for the treatment of cancer. Expert Opin Investig Drugs 2019; 28:1095-1100. [PMID: 31783714 DOI: 10.1080/13543784.2019.1694661] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction: Checkpoint kinase 1 (CHK1) inhibitors have been in development for two decades. The initial CHK1 inhibitor staurosporine analog, UCN01, entered clinical trials whilst it was still considered to act via PKC inhibition; only later were trials performed in a more focused fashion to determine whether CHK1 inhibition could dysregulate cell cycle checkpoints. Many of the subsequently synthesized more specific CHK1 inhibitors have failed because of poor PK/PD or cumulative normal tissue toxicities in patients. CHK1 inhibitor monotherapy often demonstrates limited efficacy and in general, must be combined with other agents. The combination of CHK1 inhibitors with modern signaling regulators may be a better therapeutic strategy.Areas covered: This review discusses the history of, and translational use of CHK1 inhibitors; the latest generation of CHK1 inhibitors to enter clinic development are also examined.Expert opinion: Some CHK1 inhibitors can be administered safely, but that when they are combined with traditional cytotoxic DNA damaging agents, the normal tissue toxicities outweigh the very modest gains in therapeutic efficacy. Researchers need to think outside of the box and consider how CHK1 inhibitors can be combined with other signal transduction modulators such as MEK1/2 and PARP1 inhibitors to kill tumor cells.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
26
|
Burdova K, Yang H, Faedda R, Hume S, Chauhan J, Ebner D, Kessler BM, Vendrell I, Drewry DH, Wells CI, Hatch SB, Dianov GL, Buffa FM, D'Angiolella V. E2F1 proteolysis via SCF-cyclin F underlies synthetic lethality between cyclin F loss and Chk1 inhibition. EMBO J 2019; 38:e101443. [PMID: 31424118 PMCID: PMC6792013 DOI: 10.15252/embj.2018101443] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Cyclins are central engines of cell cycle progression in conjunction with cyclin-dependent kinases (CDKs). Among the different cyclins controlling cell cycle progression, cyclin F does not partner with a CDK, but instead forms via its F-box domain an SCF (Skp1-Cul1-F-box)-type E3 ubiquitin ligase module. Although various substrates of cyclin F have been identified, the vulnerabilities of cells lacking cyclin F are not known. Thus, we assessed viability of cells lacking cyclin F upon challenging them with more than 180 different kinase inhibitors. The screen revealed a striking synthetic lethality between Chk1 inhibition and cyclin F loss. Chk1 inhibition in cells lacking cyclin F leads to DNA replication catastrophe. Replication catastrophe depends on accumulation of the transcription factor E2F1 in cyclin F-depleted cells. We find that SCF-cyclin F controls E2F1 ubiquitylation and degradation during the G2/M phase of the cell cycle and upon challenging cells with Chk1 inhibitors. Thus, Cyclin F restricts E2F1 activity during the cell cycle and upon checkpoint inhibition to prevent DNA replication stress. Our findings pave the way for patient selection in the clinical use of checkpoint inhibitors.
Collapse
Affiliation(s)
- Kamila Burdova
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Hongbin Yang
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Roberta Faedda
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Samuel Hume
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Jagat Chauhan
- Nuffield Department of Clinical MedicineLudwig Institute for Cancer ResearchUniversity of OxfordHeadington, OxfordUK
| | - Daniel Ebner
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - Benedikt M Kessler
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - Iolanda Vendrell
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - David H Drewry
- Structural Genomics ConsortiumUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Carrow I Wells
- Structural Genomics ConsortiumUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Stephanie B Hatch
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - Grigory L Dianov
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
- Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussian Federation
- Novosibirsk State UniversityNovosibirskRussian Federation
| | - Francesca M Buffa
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Vincenzo D'Angiolella
- Department of OncologyMedical Research Council Institute for Radiation OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
27
|
Ultrasound-assisted synthesis and anticancer evaluation of new pyrazole derivatives as cell cycle inhibitors. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Co-Inhibition of the DNA Damage Response and CHK1 Enhances Apoptosis of Neuroblastoma Cells. Int J Mol Sci 2019; 20:ijms20153700. [PMID: 31362335 PMCID: PMC6696225 DOI: 10.3390/ijms20153700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/25/2023] Open
Abstract
Checkpoint kinase 1 (CHK1) is a central mediator of the DNA damage response (DDR) at the S and G2/M cell cycle checkpoints, and plays a crucial role in preserving genomic integrity. CHK1 overexpression is thought to contribute to cancer aggressiveness, and several selective inhibitors of this kinase are in clinical development for various cancers, including neuroblastoma (NB). Here, we examined the sensitivity of MYCN-amplified NB cell lines to the CHK1 inhibitor PF-477736 and explored mechanisms to increase its efficacy. PF-477736 treatment of two sensitive NB cell lines, SMS-SAN and CHP134, increased the expression of two pro-apoptotic proteins, BAX and PUMA, providing a mechanism for the effect of the CHK1 inhibitor. In contrast, in NB-39-nu and SK-N-BE cell lines, PF-477736 induced DNA double-strand breaks and activated the ataxia telangiectasia mutated serine/threonine kinase (ATM)-p53-p21 axis of the DDR pathway, which rendered the cells relatively insensitive to the antiproliferative effects of the CHK1 inhibitor. Interestingly, combined treatment with PF-477736 and the ATM inhibitor Ku55933 overcame the insensitivity of NB-39-nu and SK-N-BE cells to CHK1 inhibition and induced mitotic cell death. Similarly, co-treatment with PF-477736 and NU7441, a pharmacological inhibitor of DNA-PK, which is also essential for the DDR pathway, rendered the cells sensitive to CHK1 inhibition. Taken together, our results suggest that synthetic lethality between inhibitors of CHK1 and the DDR drives G2/M checkpoint abrogation and could be a novel potential therapeutic strategy for NB.
Collapse
|
29
|
de Boussac H, Bruyer A, Jourdan M, Maes A, Robert N, Gourzones C, Vincent L, Seckinger A, Cartron G, Hose D, De Bruyne E, Kassambara A, Pasero P, Moreaux J. Kinome expression profiling to target new therapeutic avenues in multiple myeloma. Haematologica 2019; 105:784-795. [PMID: 31289205 PMCID: PMC7049359 DOI: 10.3324/haematol.2018.208306] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) account for approximately 10% of hematological malignancies and is the second most common hematological disorder. Kinases inhibitors are widely used and their efficiency for the treatment of cancers has been demonstrated. Here, in order to identify kinases of potential therapeutic interest for the treatment of MM, we investigated the prognostic impact of the kinome expression profile in large cohorts of patients. We identified 36 kinome-related genes significantly linked with a prognostic value to MM, and built a kinome index based on their expression. The Kinome Index (KI) is linked to prognosis, proliferation, differentiation, and relapse in MM. We then tested inhibitors targeting seven of the identified protein kinas-es (PBK, SRPK1, CDC7-DBF4, MELK, CHK1, PLK4, MPS1/TTK) in human myeloma cell lines. All tested inhibitors significantly reduced the viability of myeloma cell lines, and we confirmed the potential clinical interest of three of them on primary myeloma cells from patients. In addition, we demonstrated their ability to potentialize the toxicity of conventional treatments, including Melphalan and Lenalidomide. This highlights their potential beneficial effect in myeloma therapy. Three kinases inhibitors (CHK1i, MELKi and PBKi) overcome resistance to Lenalidomide, while CHK1, PBK and DBF4 inhibitors re-sensitize Melphalan resistant cell line to this conventional therapeutic agent. Altogether, we demonstrate that kinase inhibitors could be of therapeutic interest especially in high-risk myeloma patients defined by the KI. CHEK1, MELK, PLK4, SRPK1, CDC7-DBF4, MPS1/TTK and PBK inhibitors could represent new treatment options either alone or in combination with Melphalan or IMiD for refractory/relapsing myeloma patients.
Collapse
Affiliation(s)
| | | | - Michel Jourdan
- IGH, CNRS, Université de Montpellier, Montpellier, France
| | - Anke Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nicolas Robert
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France
| | | | - Laure Vincent
- CHU Montpellier, Department of Clinical Hematology, Montpellier, France
| | - Anja Seckinger
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg , Germany
| | - Guillaume Cartron
- CHU Montpellier, Department of Clinical Hematology, Montpellier, France.,Université de Montpellier, UMR CNRS 5235, Montpellier, France.,Université de Montpellier, UFR de Médecine, Montpellier, France
| | - Dirk Hose
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg , Germany
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Jérôme Moreaux
- IGH, CNRS, Université de Montpellier, Montpellier, France .,CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France.,Université de Montpellier, UFR de Médecine, Montpellier, France
| |
Collapse
|
30
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
31
|
Das K, Datta A, Massera C, Roma-Rodrigues C, Barroso M, Baptista PV, Fernandes AR. Structural aspects of a trimetallic CuII derivative: cytotoxicity and anti-proliferative activity on human cancer cell lines. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1597973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kuheli Das
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Amitabha Datta
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Chiara Massera
- Dipartimento di Chimica, Universita degli Studi di Parma, Parma, Italy
| | - Catarina Roma-Rodrigues
- UCIBO, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Mariana Barroso
- UCIBO, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBO, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBO, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
32
|
Nagel R, Avelar AT, Aben N, Proost N, van de Ven M, van der Vliet J, Cozijnsen M, de Vries H, Wessels LFA, Berns A. Inhibition of the Replication Stress Response Is a Synthetic Vulnerability in SCLC That Acts Synergistically in Combination with Cisplatin. Mol Cancer Ther 2019; 18:762-770. [PMID: 30872379 DOI: 10.1158/1535-7163.mct-18-0972] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/20/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Abstract
Small cell lung cancer (SCLC) is generally regarded as very difficult to treat, mostly due to the development of metastases early in the disease and a quick relapse with resistant disease. SCLC patients initially show a good response to treatment with the DNA damaging agents cisplatin and etoposide. This is, however, quickly followed by the development of resistant disease, which urges the development of novel therapies for this type of cancer. In this study, we set out to compile a comprehensive overview of the vulnerabilities of SCLC. A functional genome-wide screen where all individual genes were knocked out was performed to identify novel vulnerabilities of SCLC. By analysis of the knockouts that were lethal to these cancer cells, we identified several processes to be synthetic vulnerabilities in SCLC. We were able to validate the vulnerability to inhibition of the replication stress response machinery by use of Chk1 and ATR inhibitors. Strikingly, SCLC cells were more sensitive to these inhibitors than nontransformed cells. In addition, these inhibitors work synergistically with either etoposide and cisplatin, where the interaction is largest with the latter. ATR inhibition by VE-822 treatment in combination with cisplatin also outperforms the combination of cisplatin with etoposide in vivo Altogether, our study uncovered a critical dependence of SCLC on the replication stress response and urges the validation of ATR inhibitors in combination with cisplatin in a clinical setting.
Collapse
Affiliation(s)
- Remco Nagel
- Oncode Institute, Amsterdam, the Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ana Teresa Avelar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nanne Aben
- Oncode Institute, Amsterdam, the Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit of the Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit of the Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan van der Vliet
- Oncode Institute, Amsterdam, the Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Miranda Cozijnsen
- Oncode Institute, Amsterdam, the Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hilda de Vries
- Oncode Institute, Amsterdam, the Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Amsterdam, the Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anton Berns
- Oncode Institute, Amsterdam, the Netherlands.
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
33
|
A New phenoxido/trifluoroacetato bridged heterometallic NiII2CuII derivative: Structure, EPR interpretation and DFT computation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Narayan S, Ramisetti S, Jaiswal AS, Law BK, Singh-Pillay A, Singh P, Amin S, Sharma AK. ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells. Eur J Med Chem 2019; 161:456-467. [PMID: 30384048 PMCID: PMC7115410 DOI: 10.1016/j.ejmech.2018.10.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/07/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
Despite new agent development and short-term benefits in patients with colorectal cancer (CRC), metastatic CRC cure rates have not improved due to high rates of 5-fluorouracil (5-FU)/leucovorin/oxaliplatin (FOLFOX)-resistance and a clinical therapeutic plateau. At the same time, this treatment regime leads to significant toxicity, cost, and patient inconvenience. Drug-resistance is linked to CRC stem cells, which are associated with the epidermal-to-mesenchymal transition (EMT) pathway. Thus, to optimally treat CRC, a therapy that can target the cell survival and EMT pathways in both CRC bulk and stem cell populations is critical. We recently identified a novel small molecule NSC30049 (7a) that is effective alone, and in combination potentiates 5-FU-mediated growth inhibition of CRC bulk, FOLFOX-resistant, and CRC stem cells both in vitro and in vivo models. In the present study, we report the synthesis and anti-CRC evaluation of several stable and effective 7a analogs. ASR352 (7b) was identified as one of the equipotent 7a analogs that inhibited the growth of CRC bulk cells, sensitized FOLFOX-resistant cells, and reduced the sphere formation capacity of CRC stem cells. It appears that the complex mechanism of cytotoxicity for 7b includes abrogation of 5-FU-induced the S phase, reduction of the phosphorylation of Chk1 at S317P, S345P and S296P, increased γH2AX staining, activation of caspase 3/PARP1 cleavage, and enhancement of Bax/Bcl2 ratio. Further 7b-mediated reduced phosphorylation of Chk1 was an indirect effect, since it did not inhibit Chk1 activity in an in vitro kinase assay. Our findings suggest that 7b as a single agent, or in combination with 5-FU can be developed as a therapeutic agent in CRC bulk, FOLFOX-resistant, and CRC stem cell populations for unmanageable metastatic CRC conditions.
Collapse
Affiliation(s)
- Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610, USA.
| | - Srinivasa Ramisetti
- Department of Pharmacology, Penn State University College of Medicine, Penn State Cancer Institute, Hershey, PA, 17033, USA
| | - Aruna S Jaiswal
- Department of Hematology and Oncology, University of Florida, Gainesville, FL, 32610, USA
| | - Brian K Law
- Department of Pharmacology and Experimental Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Ashona Singh-Pillay
- School of Chemistry and Physics, University of Kwa-Zulu Natal (UKZN), Westville Campus, Durban, 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of Kwa-Zulu Natal (UKZN), Westville Campus, Durban, 4000, South Africa
| | - Shantu Amin
- Department of Pharmacology, Penn State University College of Medicine, Penn State Cancer Institute, Hershey, PA, 17033, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State University College of Medicine, Penn State Cancer Institute, Hershey, PA, 17033, USA.
| |
Collapse
|
35
|
Ebili HO, Iyawe VO, Adeleke KR, Salami BA, Banjo AA, Nolan C, Rakha E, Ellis I, Green A, Agboola AOJ. Checkpoint Kinase 1 Expression Predicts Poor Prognosis in Nigerian Breast Cancer Patients. Mol Diagn Ther 2018; 22:79-90. [PMID: 29075961 DOI: 10.1007/s40291-017-0302-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Checkpoint kinase 1 (CHEK1), a DNA damage sensor and cell death pathway stimulator, is regarded as an oncogene in tumours, where its activities are considered essential for tumourigenesis and the survival of cancer cells treated with chemotherapy and radiotherapy. In breast cancer, CHEK1 expression has been associated with an aggressive tumour phenotype, the triple-negative breast cancer subtype, an aberrant response to tamoxifen, and poor prognosis. However, the relevance of CHEK1 expression has, hitherto, not been investigated in an indigenous African population. We therefore aimed to investigate the clinicopathological, biological, and prognostic significance of CHEK1 expression in a cohort of Nigerian breast cancer cases. MATERIAL AND METHODS Tissue microarrays of 207 Nigerian breast cancer cases were tested for CHEK1 expression using immunohistochemistry. The clinicopathological, molecular, and prognostic characteristics of CHEK1-positive tumours were determined using the Chi-squared test and Kaplan-Meier and Cox regression analyses in SPSS Version 16. RESULTS Nuclear expression of CHEK1 was present in 61% of breast tumours and was associated with tumour size, triple-negative cancer, basal-like phenotype, the epithelial-mesenchymal transition, p53 over-expression, DNA homologous repair pathway dysfunction, and poor prognosis. CONCLUSIONS The rate expression of CHEK1 is high in Nigerian breast cancer cases and is associated with an aggressive phenotype and poor prognosis.
Collapse
Affiliation(s)
- Henry Okuchukwu Ebili
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria.
| | - Victoria O Iyawe
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| | - Kikelomo Rachel Adeleke
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| | | | - Adekunbiola Aina Banjo
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| | - Chris Nolan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Emad Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ayodeji Olayinka Johnson Agboola
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| |
Collapse
|
36
|
Shapiro P. Chk-mate on resistance to kinase inhibitors. Oncotarget 2018; 9:31560-31561. [PMID: 30167074 PMCID: PMC6114960 DOI: 10.18632/oncotarget.25802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
37
|
Hwang BJ, Adhikary G, Eckert RL, Lu AL. Chk1 inhibition as a novel therapeutic strategy in melanoma. Oncotarget 2018; 9:30450-30464. [PMID: 30100999 PMCID: PMC6084399 DOI: 10.18632/oncotarget.25765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Melanoma patients respond poorly to chemotherapies because they acquire drug resistance. Therapies that can overcome the resistance to inhibitors of the mutated BRAF protein kinase in melanoma are urgently needed. Chk1 protein kinase is a central component of the DNA damage response and plays a crucial role in controlling cell cycle progression. Analyses indicate that low mRNA expression of Chk1 is significantly associated with good overall survival of melanoma patients. To evaluate the effectiveness of Chk1 inhibitors in melanoma therapy, we have generated BRAF inhibitor (PLX4032 or vemurafenib) resistant melanoma cell lines (A375-PLX-R and WM9-PLX-R) from A375 and WM9, respectively. We observe that AKT (protein kinase B) is constitutively activated in A375-PLX-R, but not in WM9-PLX-R cells, suggesting that these cells develop resistance to PLX4032 through different mechanisms. We show that a potent and specific inhibitor of Chk1 (PF477736) is effective in reducing cell viability and colony formation of PLX4032-resistant cells. Even more impressively, PF477736 triggers PLX4032-resistant melanoma cells to regain sensitivity to the PLX4032. Mouse xenograft studies show that treating A375-PLX-R derived tumors with combined PLX4032 and PF477736 significantly reduce tumor growth. Combined treatments with PLX4032 and PF477736 reduce the levels of total Chk1 protein and alter Chk1 phosphorylation at several sites in both PLX4032 sensitive and resistant melanoma cells. Combinatorial treatments with PLX4032 and PF477736 to melanoma cells substantially induce DNA damage and cell death. Our results suggest that Chk1 inhibitors may provide new therapy options for melanoma patients.
Collapse
Affiliation(s)
- Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
38
|
Pacheco S, Maldonado-Linares A, Marcet-Ortega M, Rojas C, Martínez-Marchal A, Fuentes-Lazaro J, Lange J, Jasin M, Keeney S, Fernández-Capetillo O, Garcia-Caldés M, Roig I. ATR is required to complete meiotic recombination in mice. Nat Commun 2018; 9:2622. [PMID: 29977027 PMCID: PMC6033890 DOI: 10.1038/s41467-018-04851-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Precise execution of recombination during meiosis is essential for forming chromosomally-balanced gametes. Meiotic recombination initiates with the formation and resection of DNA double-strand breaks (DSBs). Cellular responses to meiotic DSBs are critical for efficient repair and quality control, but molecular features of these remain poorly understood, particularly in mammals. Here we report that the DNA damage response protein kinase ATR is crucial for meiotic recombination and completion of meiotic prophase in mice. Using a hypomorphic Atr mutation and pharmacological inhibition of ATR in vivo and in cultured spermatocytes, we show that ATR, through its effector kinase CHK1, promotes efficient RAD51 and DMC1 assembly at RPA-coated resected DSB sites and establishment of interhomolog connections during meiosis. Furthermore, our findings suggest that ATR promotes local accumulation of recombination markers on unsynapsed axes during meiotic prophase to favor homologous chromosome synapsis. These data reveal that ATR plays multiple roles in mammalian meiotic recombination.
Collapse
Affiliation(s)
- Sarai Pacheco
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Andros Maldonado-Linares
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Marina Marcet-Ortega
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Cristina Rojas
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Ana Martínez-Marchal
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Judit Fuentes-Lazaro
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Montserrat Garcia-Caldés
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
| |
Collapse
|
39
|
Yang L, Yang X, Tang Y, Zhang D, Zhu L, Wang S, Wang B, Ma T. Inhibition of DNA‑PK activity sensitizes A549 cells to X‑ray irradiation by inducing the ATM‑dependent DNA damage response. Mol Med Rep 2018; 17:7545-7552. [PMID: 29620203 PMCID: PMC5983948 DOI: 10.3892/mmr.2018.8828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Non‑small cell lung cancer (NSCLC) is radioresistant to X‑rays due to powerful cellular DNA damage repair mechanisms. DNA‑dependent protein kinase (DNA‑PK) is a key enzyme involved in DNA damage repair and the phenomenon and molecular mechanism of NSCLC radionsensitivity were investigated following inhibition of DNA‑PK activity. In the present study A549 cells were treated with the DNA‑PK inhibitor NU7026 and/or siRNA directed against ataxia telangiectasia mutated (ATM), followed by exposure to 4 Gy X‑ray irradiation. Radiosensitivity, DNA damage, apoptosis and protein expression were measured by colony formation assay, γH2AX foci immunofluorescence, Annexin V/PI staining and western blotting, respectively. A Balb/c‑nu/nu xenograft mouse model was established by subcutaneous injection of A549 cells and was used to examine the effect of administering NU7026 via intraperitoneal injection prior to 4 Gy X‑ray exposure. The xenograft tumors were weighed and observed by hematoxylin and eosin staining after irradiation. NU7026 treatment followed by X‑ray irradiation significantly decreased the colony formation ratio of A549 cells, and increased γH2AX foci and cell apoptosis. Furthermore, the combined treatment of NU7026 and X‑rays resulted in growth inhibition and cell apoptosis in A549 xenograft tumors. Consequently, apoptosis regulators full‑length transactivating (TA) p73 and an N‑terminally truncated (DN) p73 were upregulated and downregulated respectively, leading to activation of glucosyltransferases and Rab‑like GTPase activators and myotubularins domain‑containing 4 (GRAMD4) protein to reduce the Bcl‑2/Bax protein ratio. In addition, ATM siRNA efficiently prevented γH2AX foci formation, and enhanced NU7026‑induced inhibition of survival and promoted apoptosis. In conclusion, inhibition of DNA‑PK activity increased the radiosensitivity of A549 cells to X‑ray irradiation. NU7026 treatment activated the ATM‑dependent DNA damage response and induced p73 apoptosis pathway. DNA‑PK inhibitor may be an effective constituent of radiosensitization products. DNA damage repair pathway could be a potential target for radiosensitization.
Collapse
Affiliation(s)
- Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, P.R. China
| | - Xinrui Yang
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Yiwei Tang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, P.R. China
| | - Defu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, P.R. China
| | - Lijie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, P.R. China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, P.R. China
| | - Bo Wang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, P.R. China
| | - Tao Ma
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, P.R. China
| |
Collapse
|
40
|
Tian C, Han Z, Li Y, Wang M, Yang J, Wang X, Zhang Z, Liu J. Synthesis and biological evaluation of 2,6-disubstituted-9H-purine, 2,4-disubstitued-thieno[3,2-d]pyrimidine and -7H-pyrrolo[2,3-d]pyrimidine analogues as novel CHK1 inhibitors. Eur J Med Chem 2018; 151:836-848. [DOI: 10.1016/j.ejmech.2018.03.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/14/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
|
41
|
Meng Y, Chen CW, Yung MMH, Sun W, Sun J, Li Z, Li J, Li Z, Zhou W, Liu SS, Cheung ANY, Ngan HYS, Braisted JC, Kai Y, Peng W, Tzatsos A, Li Y, Dai Z, Zheng W, Chan DW, Zhu W. DUOXA1-mediated ROS production promotes cisplatin resistance by activating ATR-Chk1 pathway in ovarian cancer. Cancer Lett 2018; 428:104-116. [PMID: 29704517 DOI: 10.1016/j.canlet.2018.04.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/16/2023]
Abstract
The acquisition of resistance is a major obstacle to the clinical use of platinum drugs for ovarian cancer treatment. Increase of DNA damage response is one of major mechanisms contributing to platinum-resistance. However, how DNA damage response is regulated in platinum-resistant ovarian cancer cells remains unclear. Using quantitative high throughput combinational screen (qHTCS) and RNA-sequencing (RNA-seq), we show that dual oxidase maturation factor 1 (DUOXA1) is overexpressed in platinum-resistant ovarian cancer cells, resulting in over production of reactive oxygen species (ROS). Elevated ROS level sustains the activation of ATR-Chk1 pathway, leading to resistance to cisplatin in ovarian cancer cells. Moreover, using qHTCS we identified two Chk1 inhibitors (PF-477736 and AZD7762) that re-sensitize resistant cells to cisplatin. Blocking this novel pathway by inhibiting ROS, DUOXA1, ATR or Chk1 effectively overcomes cisplatin resistance in vitro and in vivo. Significantly, the clinical studies also confirm the activation of ATR and DOUXA1 in ovarian cancer patients, and elevated DOUXA1 or ATR-Chk1 pathway correlates with poor prognosis. Taken together, our findings not only reveal a novel mechanism regulating cisplatin resistance, but also provide multiple combinational strategies to overcome platinum-resistance in ovarian cancer.
Collapse
Affiliation(s)
- Yunxiao Meng
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Chi-Wei Chen
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Mingo M H Yung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Jing Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Wei Zhou
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA; Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Stephanie S Liu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Annie N Y Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John C Braisted
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Kai
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA; Department of Physics, The George Washington University Columbian College of Arts & Sciences, Washington, DC, 20052, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University Columbian College of Arts & Sciences, Washington, DC, 20052, USA
| | - Alexandros Tzatsos
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA; Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - David W Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
42
|
Doerr F, George J, Schmitt A, Beleggia F, Rehkämper T, Hermann S, Walter V, Weber JP, Thomas RK, Wittersheim M, Büttner R, Persigehl T, Reinhardt HC. Targeting a non-oncogene addiction to the ATR/CHK1 axis for the treatment of small cell lung cancer. Sci Rep 2017; 7:15511. [PMID: 29138515 PMCID: PMC5686113 DOI: 10.1038/s41598-017-15840-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Small cell lung cancer (SCLC) is a difficult to treat subtype of lung cancer. One of the hallmarks of SCLC is its almost uniform chemotherapy sensitivity. However, chemotherapy response is typically transient and patients frequently succumb to SCLC within a year following diagnosis. We performed a transcriptome analysis of the major human lung cancer entities. We show a significant overexpression of genes involved in the DNA damage response, specifically in SCLC. Particularly CHEK1, which encodes for the cell cycle checkpoint kinase CHK1, is significantly overexpressed in SCLC, compared to lung adenocarcinoma. In line with uncontrolled cell cycle progression in SCLC, we find that CDC25A, B and C mRNAs are expressed at significantly higher levels in SCLC, compared to lung adenocarcinoma. We next profiled the efficacy of compounds targeting CHK1 and ATR. Both, ATR- and CHK1 inhibitors induce genotoxic damage and apoptosis in human and murine SCLC cell lines, but not in lung adenocarcinoma cells. We further demonstrate that murine SCLC tumors were highly sensitive to ATR- and CHK1 inhibitors, while Kras G12D -driven murine lung adenocarcinomas were resistant against these compounds and displayed continued growth under therapy. Altogether, our data indicate that SCLC displays an actionable dependence on ATR/CHK1-mediated cell cycle checkpoints.
Collapse
Affiliation(s)
- Fabian Doerr
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany. .,Department of Cardiothoracic Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Julie George
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Anna Schmitt
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Filippo Beleggia
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Tim Rehkämper
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Sarah Hermann
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Vonn Walter
- Department of Public Health Sciences, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jean-Philip Weber
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany.,Institute for Pathology, University Hospital of Cologne, Cologne, Germany.,German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Maike Wittersheim
- Institute for Pathology, University Hospital of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute for Pathology, University Hospital of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - H Christian Reinhardt
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
43
|
Arnould S, Rodier G, Matar G, Vincent C, Pirot N, Delorme Y, Berthet C, Buscail Y, Noël JY, Lachambre S, Jarlier M, Bernex F, Delpech H, Vidalain PO, Janin YL, Theillet C, Sardet C. Checkpoint kinase 1 inhibition sensitises transformed cells to dihydroorotate dehydrogenase inhibition. Oncotarget 2017; 8:95206-95222. [PMID: 29221122 PMCID: PMC5707016 DOI: 10.18632/oncotarget.19199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/17/2017] [Indexed: 12/17/2022] Open
Abstract
Reduction in nucleotide pools through the inhibition of mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) has been demonstrated to effectively reduce cancer cell proliferation and tumour growth. The current study sought to investigate whether this antiproliferative effect could be enhanced by combining Chk1 kinase inhibition. The pharmacological activity of DHODH inhibitor teriflunomide was more selective towards transformed mouse embryonic fibroblasts than their primary or immortalised counterparts, and this effect was amplified when cells were subsequently exposed to PF477736 Chk1 inhibitor. Flow cytometry analyses revealed substantial accumulations of cells in S and G2/M phases, followed by increased cytotoxicity which was characterised by caspase 3-dependent induction of cell death. Associating PF477736 with teriflunomide also significantly sensitised SUM159 and HCC1937 human triple negative breast cancer cell lines to dihydroorotate dehydrogenase inhibition. The main characteristic of this effect was the sustained accumulation of teriflunomide-induced DNA damage as cells displayed increased phospho serine 139 H2AX (γH2AX) levels and concentration-dependent phosphorylation of Chk1 on serine 345 upon exposure to the combination as compared with either inhibitor alone. Importantly a similar significant increase in cell death was observed upon dual siRNA mediated depletion of Chk1 and DHODH in both murine and human cancer cell models. Altogether these results suggest that combining DHODH and Chk1 inhibitions may be a strategy worth considering as a potential alternative to conventional chemotherapies.
Collapse
Affiliation(s)
- Stéphanie Arnould
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Geneviève Rodier
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Gisèle Matar
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Charles Vincent
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Nelly Pirot
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Yoann Delorme
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Charlène Berthet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Yoan Buscail
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Jean Yohan Noël
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Simon Lachambre
- Montpellier RIO Imaging, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Marta Jarlier
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Florence Bernex
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Hélène Delpech
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Pierre Olivier Vidalain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Equipe Chimie and Biologie, Modélisation et Immunologie pour la Thérapie, CNRS UMR 8601 CNRS-Université Paris Descartes, Paris, France
| | - Yves L. Janin
- Institut Pasteur, Unité de Chimie et Biocatalyse, CNRS UMR3523, Paris, France
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
44
|
Dai CH, Wang Y, Chen P, Jiang Q, Lan T, Li MY, Su JY, Wu Y, Li J. Suppression of the FA pathway combined with CHK1 inhibitor hypersensitize lung cancer cells to gemcitabine. Sci Rep 2017; 7:15031. [PMID: 29118324 PMCID: PMC5678185 DOI: 10.1038/s41598-017-15172-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/23/2017] [Indexed: 01/15/2023] Open
Abstract
The combination of platinum and gemcitabine is one of the standard regimens in the treatment of advanced lung squamous carcinoma (LSC). Resistance to gemcitabine is main barrier to the successful treatment of LSC. In this study, we showed that suppression of the Fanconi anemia (FA) pathway increased the sensitivity of two LSC cell lines SK-MES-1 and KLN205 to gemcitabine. Moreover, we found that the CHK1 pathway and the FA pathway are functionally compensatory in the repair of DNA damage in the LSC cell lines. Inactivation of one of the two pathways led to DNA damage, triggering compensatory activation of other pathway. Furthermore, we demonstrated that FANCD2 depletion combined with CHK1 inhibitor MK-8776 significantly potentiated the cytotoxicity of gemcitabine to the two LSC cell lines, compared to individual FANCD2 depletion or MK-8776 treatment. The enhanced effect of gemcitabine-chemosensitization was accompanied by loss of DNA repair function and accumulation of DNA single strand breaks and double strand breaks, in parallel with obvious increase of caspase-3 dependent apoptosis. Our results indicate that the enhancement effect of FANCD2 depletion combined with CHK1 inhibitor in sensitizing the LCS cells to gemcitabine supports the FA pathway and CHK1 as two therapeutic targets for improvement of anti-tumor regimens in treatment of LSC.
Collapse
Affiliation(s)
- Chun-Hua Dai
- Department of Radiation Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Wang
- Center of Experimental Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ping Chen
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China
| | - Qian Jiang
- Center of Experimental Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ting Lan
- Institute of Medical Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei-Yu Li
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China
| | - Jin-Yu Su
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Wu
- Institute of Medical Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jian Li
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
45
|
Geneste CC, Massey AJ. Cell Density Affects the Detection of Chk1 Target Engagement by the Selective Inhibitor V158411. SLAS DISCOVERY 2017; 23:144-153. [PMID: 29048945 DOI: 10.1177/2472555217738534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding drug target engagement and the relationship to downstream pharmacology is critical for drug discovery. Here we have evaluated target engagement of Chk1 by the small-molecule inhibitor V158411 using two different target engagement methods (autophosphorylation and cellular thermal shift assay [CETSA]). Target engagement measured by these methods was subsequently related to Chk1 inhibitor-dependent pharmacology. Inhibition of autophosphorylation was a robust method for measuring V158411 Chk1 target engagement. In comparison, while target engagement determined using CETSA appeared robust, the V158411 CETSA target engagement EC50 values were 43- and 19-fold greater than the autophosphorylation IC50 values. This difference was attributed to the higher cell density in the CETSA assay configuration. pChk1 (S296) IC50 values determined using the CETSA assay conditions were 54- and 33-fold greater than those determined under standard conditions and were equivalent to the CETSA EC50 values. Cellular conditions, especially cell density, influenced the target engagement of V158411 for Chk1. The effects of high cell density on apparent compound target engagement potency should be evaluated when using target engagement assays that necessitate high cell densities (such as the CETSA conditions used in this study). In such cases, the subsequent relation of these data to downstream pharmacological changes should therefore be interpreted with care.
Collapse
|
46
|
Qiu Z, Oleinick NL, Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol 2017; 126:450-464. [PMID: 29054375 DOI: 10.1016/j.radonc.2017.09.043] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 02/06/2023]
Abstract
The cell cycle checkpoint proteins ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) and its major downstream effector checkpoint kinase 1 (CHK1) prevent the entry of cells with damaged or incompletely replicated DNA into mitosis when the cells are challenged by DNA damaging agents, such as radiation therapy (RT) or chemotherapeutic drugs, that are the major modalities to treat cancer. This regulation is particularly evident in cells with a defective G1 checkpoint, a common feature of cancer cells, due to p53 mutations. In addition, ATR and/or CHK1 suppress replication stress (RS) by inhibiting excess origin firing, particularly in cells with activated oncogenes. Those functions of ATR/CHK1 make them ideal therapeutic targets. ATR/CHK1 inhibitors have been developed and are currently used either as single agents or paired with radiotherapy or a variety of genotoxic chemotherapies in preclinical and clinical studies. Here, we review the status of the development of ATR and CHK1 inhibitors. We also discuss the potential mechanisms by which ATR and CHK1 inhibition induces cell killing in the presence or absence of exogenous DNA damaging agents, such as RT and chemotherapeutic agents. Lastly, we discuss synthetic lethality interactions between the inhibition of ATR/CHK1 and defects in other DNA damage response (DDR) pathways/genes.
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Nancy L Oleinick
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
47
|
Green AM, Budagyan K, Hayer KE, Reed MA, Savani MR, Wertheim GB, Weitzman MD. Cytosine Deaminase APOBEC3A Sensitizes Leukemia Cells to Inhibition of the DNA Replication Checkpoint. Cancer Res 2017; 77:4579-4588. [PMID: 28655787 PMCID: PMC5581702 DOI: 10.1158/0008-5472.can-16-3394] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/18/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022]
Abstract
Mutational signatures in cancer genomes have implicated the APOBEC3 cytosine deaminases in oncogenesis, possibly offering a therapeutic vulnerability. Elevated APOBEC3B expression has been detected in solid tumors, but expression of APOBEC3A (A3A) in cancer has not been described to date. Here, we report that A3A is highly expressed in subsets of pediatric and adult acute myelogenous leukemia (AML). We modeled A3A expression in the THP1 AML cell line by introducing an inducible A3A gene. A3A expression caused ATR-dependent phosphorylation of Chk1 and cell-cycle arrest, consistent with replication checkpoint activation. Further, replication checkpoint blockade via small-molecule inhibition of ATR kinase in cells expressing A3A led to apoptosis and cell death. Although DNA damage checkpoints are broadly activated in response to A3A activity, synthetic lethality was specific to ATR signaling via Chk1 and did not occur with ATM inhibition. Our findings identify elevation of A3A expression in AML cells, enabling apoptotic sensitivity to inhibitors of the DNA replication checkpoint and suggesting it as a candidate biomarker for ATR inhibitor therapy. Cancer Res; 77(17); 4579-88. ©2017 AACR.
Collapse
Affiliation(s)
- Abby M Green
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Konstantin Budagyan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Katharina E Hayer
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Morgann A Reed
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Milan R Savani
- University of Pennsylvania College of Arts and Sciences, Philadelphia, Pennsylvania
| | - Gerald B Wertheim
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Matthew D Weitzman
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Dréan A, Williamson CT, Brough R, Brandsma I, Menon M, Konde A, Garcia-Murillas I, Pemberton HN, Frankum J, Rafiq R, Badham N, Campbell J, Gulati A, Turner NC, Pettitt SJ, Ashworth A, Lord CJ. Modeling Therapy Resistance in BRCA1/2-Mutant Cancers. Mol Cancer Ther 2017; 16:2022-2034. [PMID: 28619759 PMCID: PMC6157714 DOI: 10.1158/1535-7163.mct-17-0098] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/02/2017] [Accepted: 06/05/2017] [Indexed: 01/02/2023]
Abstract
Although PARP inhibitors target BRCA1- or BRCA2-mutant tumor cells, drug resistance is a problem. PARP inhibitor resistance is sometimes associated with the presence of secondary or "revertant" mutations in BRCA1 or BRCA2 Whether secondary mutant tumor cells are selected for in a Darwinian fashion by treatment is unclear. Furthermore, how PARP inhibitor resistance might be therapeutically targeted is also poorly understood. Using CRISPR mutagenesis, we generated isogenic tumor cell models with secondary BRCA1 or BRCA2 mutations. Using these in heterogeneous in vitro culture or in vivo xenograft experiments in which the clonal composition of tumor cell populations in response to therapy was monitored, we established that PARP inhibitor or platinum salt exposure selects for secondary mutant clones in a Darwinian fashion, with the periodicity of PARP inhibitor administration and the pretreatment frequency of secondary mutant tumor cells influencing the eventual clonal composition of the tumor cell population. In xenograft studies, the presence of secondary mutant cells in tumors impaired the therapeutic effect of a clinical PARP inhibitor. However, we found that both PARP inhibitor-sensitive and PARP inhibitor-resistant BRCA2 mutant tumor cells were sensitive to AZD-1775, a WEE1 kinase inhibitor. In mice carrying heterogeneous tumors, AZD-1775 delivered a greater therapeutic benefit than olaparib treatment. This suggests that despite the restoration of some BRCA1 or BRCA2 gene function in "revertant" tumor cells, vulnerabilities still exist that could be therapeutically exploited. Mol Cancer Ther; 16(9); 2022-34. ©2017 AACR.
Collapse
Affiliation(s)
- Amy Dréan
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Chris T Williamson
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Rachel Brough
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Inger Brandsma
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Malini Menon
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Asha Konde
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Isaac Garcia-Murillas
- Molecular Oncology Laboratory, The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Helen N Pemberton
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Jessica Frankum
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Rumana Rafiq
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Nicholas Badham
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - James Campbell
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Aditi Gulati
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Nicholas C Turner
- Molecular Oncology Laboratory, The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Alan Ashworth
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
49
|
Narayan S, Jaiswal AS, Sharma R, Nawab A, Duckworth LV, Law BK, Zajac-Kaye M, George TJ, Sharma J, Sharma AK, Hromas RA. NSC30049 inhibits Chk1 pathway in 5-FU-resistant CRC bulk and stem cell populations. Oncotarget 2017; 8:57246-57264. [PMID: 28915668 PMCID: PMC5593639 DOI: 10.18632/oncotarget.19778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/20/2017] [Indexed: 01/20/2023] Open
Abstract
The 5-fluorouracil (5-FU) treatment induces DNA damage and stalling of DNA replication forks. These stalled replication forks then collapse to form one sided double-strand breaks, leading to apoptosis. However, colorectal cancer (CRC) stem cells rapidly repair the stalled/collapsed replication forks and overcome treatment effects. Recent evidence suggests a critical role of checkpoint kinase 1 (Chk1) in preventing the replicative stress. Therefore, Chk1 kinase has been a target for developing mono or combination therapeutic agents. In the present study, we have identified a novel orphan molecule NSC30049 (NSC49L) that is effective alone, and in combination potentiates 5-FU-mediated growth inhibition of CRC heterogeneous bulk and FOLFOX-resistant cell lines in culture with minimal effect on normal colonic epithelial cells. It also inhibits the sphere forming activity of CRC stem cells, and decreases the expression levels of mRNAs of CRC stem cell marker genes. Results showed that NSC49L induces 5-FU-mediated S-phase cell cycle arrest due to increased load of DNA damage and increased γ-H2AX staining as a mechanism of cytotoxicity. The pharmacokinetic analysis showed a higher bioavailability of this compound, however, with a short plasma half-life. The drug is highly tolerated by animals with no pathological aberrations. Furthermore, NSC49L showed very potent activity in a HDTX model of CRC stem cell tumors either alone or in combination with 5-FU. Thus, NSC49L as a single agent or combined with 5-FU can be developed as a therapeutic agent by targeting the Chk1 pathway in 5-FU-resistant CRC heterogeneous bulk and CRC stem cell populations.
Collapse
Affiliation(s)
- Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Aruna S. Jaiswal
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ritika Sharma
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Akbar Nawab
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Lizette Vila Duckworth
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brian K. Law
- Department of Pharmacology and Experimental Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Thomas J. George
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jay Sharma
- Celprogen, Inc., Torrance, CA 90503, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Robert A. Hromas
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
50
|
Babiker HM, McBride A, Cooke LS, Mahadevan D. Therapeutic potential of investigational CHK-1 inhibitors for the treatment of solid tumors. Expert Opin Investig Drugs 2017; 26:1063-1072. [DOI: 10.1080/13543784.2017.1360275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hani M. Babiker
- Phase I Program, University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Molecular Medicine, Translational Genomics Research Institute, Phoenix, AZ, USA
- Banner University Medical Center, Tucson, AZ, USA
| | - Ali McBride
- Banner University Medical Center, Tucson, AZ, USA
- Department of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Laurence S. Cooke
- Phase I Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Daruka Mahadevan
- Phase I Program, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|