1
|
Fan N, Zhao F, Meng Y, Chen L, Miao L, Wang P, Tang M, Wu X, Li Y, Li Y, Gao Z. Metal complex lipid-based nanoparticles deliver metabolism-regulating lomitapide to overcome CTC immune evasion via activating STING pathway. Eur J Pharm Biopharm 2024; 203:114467. [PMID: 39173934 DOI: 10.1016/j.ejpb.2024.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Activating the cGAS-STING pathway of circulating tumor cell clusters (CTC clusters) represents a promising strategy to mitigate metastases. To fully exploit the potential of cholesterol-regulating agents in activating CTCs' STING levels, we developed a nanoparticle (NP) composed of metal complex lipid (MCL). This design includes MCL-miriplatin to increase NP stiffness and loads lomitapide (lomi) modulating cholesterol levels, resulting in the creation of PLTs@Pt-lipid@lomi NPs. MCL-miriplatin not only enhances lomi's eliciting efficacy on STING pathway but also increases NPs' stiffness, thus a vital factor affecting the penetration into CTC clusters to further boost lomi's ability. Demonstrated by cy5 tracking experiments, PLTs@Pt-lipid@lomi NPs quickly attach to cancer cell via platelet membrane anchorage, penetrate deep into the spheres, and reach the subcellular endoplasmic reticulum where lomi regulates cholesterol. Additionally, these NPs have been shown to track CTCs in the bloodstream, a capability not demonstrated by the free drug. PLTs@Pt-lipid@lomi NPs more efficiently activate the STING pathway and reduce CTC stemness compared to free lomi. Ultimately, PLTs@Pt-lipid@lomi NPs reduce metastasis in a post-surgery animal model. While cholesterol-regulating agents are limited in efficacy when being repositioned as immunomodulatory agents, this MCL-composing NP strategy demonstrates the potential to effectively deliver these agents to target CTC clusters.
Collapse
Affiliation(s)
- Ni Fan
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuanyuan Meng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuanjun Wu
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Qingdao, Shandong University, Shandong 266237, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Dinić J, Podolski-Renić A, Novaković M, Li L, Opsenica I, Pešić M. Plant-Based Products Originating from Serbia That Affect P-glycoprotein Activity. Molecules 2024; 29:4308. [PMID: 39339303 PMCID: PMC11433820 DOI: 10.3390/molecules29184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our review paper evaluates the impact of plant-based products, primarily derived from plants from Serbia, on P-glycoprotein (P-gp) activity and their potential in modulating drug resistance in cancer therapy. We focus on the role and regulation of P-gp in cellular physiology and its significance in addressing multidrug resistance in cancer therapy. Additionally, we discuss the modulation of P-gp activity by 55 natural product drugs, including derivatives for some of them, based on our team's research findings since 2011. Specifically, we prospect into sesquiterpenoids from the genera Artemisia, Curcuma, Ferula, Inula, Petasites, and Celastrus; diterpenoids from the genera Salvia and Euphorbia; chalcones from the genera Piper, Glycyrrhiza, Cullen, Artemisia, and Humulus; riccardins from the genera Lunularia, Monoclea, Dumortiera, Plagiochila, and Primula; and diarylheptanoids from the genera Alnus and Curcuma. Through comprehensive analysis, we aim to highlight the potential of natural products mainly identified in plants from Serbia in influencing P-gp activity and overcoming drug resistance in cancer therapy, while also providing insights into future perspectives in this field.
Collapse
Affiliation(s)
- Jelena Dinić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Miroslav Novaković
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Liang Li
- Key Laboratory of Bioactive Substance and Function of Natural Medicines, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China;
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| |
Collapse
|
3
|
Aliyari M, Hashemy SI, Hashemi SF, Reihani A, Kesharwani P, Hosseini H, Sahebkar A. Targeting the Akt signaling pathway: Exploiting curcumin's anticancer potential. Pathol Res Pract 2024; 261:155479. [PMID: 39068859 DOI: 10.1016/j.prp.2024.155479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Cancer is recognized as one of the leading causes of death worldwide. In recent years, advancements in early detection and expanding treatment options have contributed to a decrease in mortality rates. However, the emergence of drug-resistant cancers necessitates the exploration of innovative and more effective drugs. The Akt kinases play a central role in various signaling pathways that regulate crucial cellular processes, including cell growth, proliferation, survival, angiogenesis, and glucose metabolism. Due to frequent disruptions of the Akt signaling pathway in numerous human cancers and its broad biological implications, targeting this pathway has become a key focus in combating tumor aggressiveness and a promising avenue for therapeutic intervention. Curcumin, a compound found in turmeric, has been extensively studied for its potential as an anti-cancer agent. It demonstrates inhibitory effects on cancer initiation, progression, and metastasis by influencing various processes involved in tumor growth and development. These effects are achieved through negative regulation of transcription factors, growth factors, cytokines, protein kinases, and other oncogenic molecules. This review aims to explore curcumin's anticancer activity against different types of cancer mediated via the PI3K/Akt signaling pathway, as well as its practical applications in treatment.
Collapse
Affiliation(s)
- Mahdieh Aliyari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Fatemeh Hashemi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Reihani
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Palacios-Navarro L, Crispin LA, Muñoz JP, Calaf GM. Effects of Curcumin and Estrogen Receptor Alpha in Luminal Breast Cancer Cells. Diagnostics (Basel) 2024; 14:1785. [PMID: 39202273 PMCID: PMC11353822 DOI: 10.3390/diagnostics14161785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
This work examined the potential benefit of curcumin in breast cancer patients as a supplementary drug in ER-positive cancers. The results indicated that in the MCF-7 human breast cancer cell line, E2 and curcumin decreased cell proliferation and the colony-forming capacity and down-regulated protein expression as well as important molecules associated with cell proliferation, such as PCNA and estrogen receptor alpha; genes associated with the epithelial-mesenchymal transition, such as β-catenin, Vimentin, and E-cadherin; and molecules associated with apoptosis. Clinical studies in bioinformatics have indicated a positive correlation between ESR1 and either CCND1 or BCL2 gene expression in all breast cancer patients. Thus, curcumin could become a potential natural adjuvant treatment for patients with estrogen receptor alpha-positive breast cancer and those with resistance or a poor response to endocrine therapy since the reactivation of estrogen receptor alpha is inevitable.
Collapse
Affiliation(s)
| | | | | | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.P.-N.); (L.A.C.); (J.P.M.)
| |
Collapse
|
5
|
Amaroli A, Panfoli I, Bozzo M, Ferrando S, Candiani S, Ravera S. The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management. Cancers (Basel) 2024; 16:2580. [PMID: 39061221 PMCID: PMC11275093 DOI: 10.3390/cancers16142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, exhibits significant therapeutic potential in cancer management. This review explores curcumin's mechanisms of action, the challenges related to its bioavailability, and its enhancement through modern technology and approaches. Curcumin demonstrates strong antioxidant and anti-inflammatory properties, contributing to its ability to neutralize free radicals and inhibit inflammatory mediators. Its anticancer effects are mediated by inducing apoptosis, inhibiting cell proliferation, and interfering with tumor growth pathways in various colon, pancreatic, and breast cancers. However, its clinical application is limited by its poor bioavailability due to its rapid metabolism and low absorption. Novel delivery systems, such as curcumin-loaded hydrogels and nanoparticles, have shown promise in improving curcumin bioavailability and therapeutic efficacy. Additionally, photodynamic therapy has emerged as a complementary approach, where light exposure enhances curcumin's anticancer effects by modulating molecular pathways crucial for tumor cell growth and survival. Studies highlight that combining low concentrations of curcumin with visible light irradiation significantly boosts its antitumor efficacy compared to curcumin alone. The interaction of curcumin with cytochromes or drug transporters may play a crucial role in altering the pharmacokinetics of conventional medications, which necessitates careful consideration in clinical settings. Future research should focus on optimizing delivery mechanisms and understanding curcumin's pharmacokinetics to fully harness its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Andrea Amaroli
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| | - Matteo Bozzo
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Sara Ferrando
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Simona Candiani
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ravera
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
6
|
Zoi V, Kyritsis AP, Galani V, Lazari D, Sioka C, Voulgaris S, Alexiou GA. The Role of Curcumin in Cancer: A Focus on the PI3K/Akt Pathway. Cancers (Basel) 2024; 16:1554. [PMID: 38672636 PMCID: PMC11048628 DOI: 10.3390/cancers16081554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer is a life-threatening disease and one of the leading causes of death worldwide. Despite significant advancements in therapeutic options, most available anti-cancer agents have limited efficacy. In this context, natural compounds with diverse chemical structures have been investigated for their multimodal anti-cancer properties. Curcumin is a polyphenol isolated from the rhizomes of Curcuma longa and has been widely studied for its anti-inflammatory, anti-oxidant, and anti-cancer effects. Curcumin acts on the regulation of different aspects of cancer development, including initiation, metastasis, angiogenesis, and progression. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway is a key target in cancer therapy, since it is implicated in initiation, proliferation, and cancer cell survival. Curcumin has been found to inhibit the PI3K/Akt pathway in tumor cells, primarily via the regulation of different key mediators, including growth factors, protein kinases, and cytokines. This review presents the therapeutic potential of curcumin in different malignancies, such as glioblastoma, prostate and breast cancer, and head and neck cancers, through the targeting of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
| | | | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrissa Sioka
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
| | - Spyridon Voulgaris
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45500 Ioannina, Greece
| | - Georgios A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
7
|
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia 2024; 91:90-106. [PMID: 37776274 DOI: 10.1177/03915603231202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer. We used the PRISMA statement to screen titles, abstracts, and the full texts of relevant articles and performed a descriptive analysis of the literature reviewed for study inclusion and consensus of the manuscript. The most common molecular and cellular pathway from articles reporting on the pathways and effects of CURC (n = 173) in prostate cancer was NF-κB (n = 25, 14.5%). The most common molecular and cellular pathway from articles reporting on the pathways and effects of UA (n = 24) in prostate cancer was caspase 3/caspase 9 (n = 10, 41.6%). The three most common molecular and cellular pathway from articles reporting on the pathways and effects of both CURC and UA (n = 193) in prostate cancer was NF-κB (n = 28, 14.2%), Akt (n = 22, 11.2%), and androgen (n = 19, 9.6%). Therefore, we have identified the potential synergistic target pathways of curcumin and ursolic acid to involve NF-κB, Akt, androgen receptors, and apoptosis pathways. Our review highlights the limited human studies and specific effects in prostate cancer.
Collapse
Affiliation(s)
- Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
- Department of Urology, South Texas Veterans Healthcare System, USA
| |
Collapse
|
8
|
Delgado-Gonzalez P, Garza-Treviño EN, de la Garza Kalife DA, Quiroz Reyes A, Hernández-Tobías EA. Bioactive Compounds of Dietary Origin and Their Influence on Colorectal Cancer as Chemoprevention. Life (Basel) 2023; 13:1977. [PMID: 37895359 PMCID: PMC10608661 DOI: 10.3390/life13101977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common causes of death and the third most diagnosed cancer worldwide. The tumor microenvironment and cancer stem cells participate in colorectal tumor progression and can dictate malignancy. Nutrition status affects treatment response and the progression or recurrence of the tumor. This review summarizes the main bioactive compounds against the molecular pathways related to colorectal carcinogenesis. Moreover, we focus on the compounds with chemopreventive properties, mainly polyphenols and carotenoids, which are highly studied dietary bioactive compounds present in major types of food, like vegetables, fruits, and seeds. Their proprieties are antioxidant and gut microbiota modulation, important in the intestine because they decrease reactive oxygen species and inflammation, both principal causes of cancer. These compounds can promote apoptosis and inhibit cell growth, proliferation, and migration. Combined with oncologic treatment, a sensitization to first-line colorectal chemotherapy schemes, such as FOLFOX and FOLFIRI, is observed, making them an attractive and natural support in the oncologic treatment of CRC.
Collapse
Affiliation(s)
- Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | - David A. de la Garza Kalife
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | - Adriana Quiroz Reyes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | | |
Collapse
|
9
|
Ratan C, Arian AM, Rajendran R, Jayakumar R, Masson M, Mangalathillam S. Nano-based formulations of curcumin: elucidating the potential benefits and future prospects in skin cancer. Biomed Mater 2023; 18:052008. [PMID: 37582394 DOI: 10.1088/1748-605x/acf0af] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Skin cancer refers to any malignant lesions that occur in the skin and are observed predominantly in populations of European descent. Conventional treatment modalities such as excision biopsy, chemotherapy, radiotherapy, immunotherapy, electrodesiccation, and photodynamic therapy (PDT) induce several unintended side effects which affect a patient's quality of life and physical well-being. Therefore, spice-derived nutraceuticals like curcumin, which are well tolerated, less expensive, and relatively safe, have been considered a promising agent for skin cancer treatment. Curcumin, a chemical constituent extracted from the Indian spice, turmeric, and its analogues has been used in various mammalian cancers including skin cancer. Curcumin has anti-neoplastic activity by triggering the process of apoptosis and preventing the multiplication and infiltration of the cancer cells by inhibiting some signaling pathways and thus subsequently preventing the process of carcinogenesis. Curcumin is also a photosensitizer and has been used in PDT. The major limitations associated with curcumin are poor bioavailability, instability, limited permeation into the skin, and lack of solubility in water. This will constrain the use of curcumin in clinical settings. Hence, developing a proper formulation that can ideally release curcumin to its targeted site is important. So, several nanoformulations based on curcumin have been established such as nanogels, nanoemulsions, nanofibers, nanopatterned films, nanoliposomes and nanoniosomes, nanodisks, and cyclodextrins. The present review mainly focuses on curcumin and its analogues as therapeutic agents for treating different types of skin cancers. The significance of using various nanoformulations as well non-nanoformulations loaded with curcumin as an effective treatment modality for skin cancer is also emphasized.
Collapse
Affiliation(s)
- Chameli Ratan
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Arya Mangalath Arian
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rajalakshmi Rajendran
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Mar Masson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavík, Iceland
| | - Sabitha Mangalathillam
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| |
Collapse
|
10
|
Baldassari S, Balboni A, Drava G, Donghia D, Canepa P, Ailuno G, Caviglioli G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023; 15:1445. [PMID: 37242687 PMCID: PMC10221807 DOI: 10.3390/pharmaceutics15051445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Daniela Donghia
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Paolo Canepa
- Department of Physics, University of Genova, 16146 Genova, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| |
Collapse
|
11
|
Ahmad I, Hoque M, Alam SSM, Zughaibi TA, Tabrez S. Curcumin and Plumbagin Synergistically Target the PI3K/Akt/mTOR Pathway: A Prospective Role in Cancer Treatment. Int J Mol Sci 2023; 24:ijms24076651. [PMID: 37047624 PMCID: PMC10095292 DOI: 10.3390/ijms24076651] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer development is associated with the deregulation of various cell signaling pathways brought on by certain genetic and epigenetic alterations. Therefore, novel therapeutic strategies have been developed to target those pathways. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) pathway is one major deregulated pathway in various types of cancer. Several anticancer drug candidates are currently being investigated in preclinical and/or clinical studies to target this pathway. Natural bioactive compounds provide an excellent source for anticancer drug development. Curcumin and plumbagin are two potential anticancer compounds that have been shown to target the PI3K/Akt/mTOR pathway individually. However, their combinatorial effect on cancer cells is still unknown. This study aims to investigate the synergistic effect of these two compounds on the PI3K/Akt/mTOR pathway by employing a sequential molecular docking and molecular dynamics (MD) analysis. An increase in binding affinity and a decrease in inhibition constant have been observed when curcumin and plumbagin were subjected to sequential docking against the key proteins PI3K, Akt, and mTOR. The MD simulations and molecular mechanics combined with generalized Born surface area (MM-GBSA) analyses validated the target proteins’ more stable conformation when interacting with the curcumin and plumbagin combination. This indicates the synergistic role of curcumin and plumbagin against cancer cells and the possible dose advantage when used in combination. The findings of this study pave the way for further investigation of their combinatorial effect on cancer cells in vitro and in vivo models.
Collapse
Affiliation(s)
- Iftikhar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mehboob Hoque
- Applied Bio-Chemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata 700160, India
| | | | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Yang J, Hasenbilige, Bao S, Luo S, Jiang L, Li Q, Kong Y, Cao J. Inhibition of ATF4-mediated elevation of both autophagy and AKT/mTOR was involved in antitumorigenic activity of curcumin. Food Chem Toxicol 2023; 173:113609. [PMID: 36640941 DOI: 10.1016/j.fct.2023.113609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Curcumin, a natural hydrophobic polyphenol, carries significant anticancer activity. The protein kinase B (AKT)/the mammalian target of the rapamycin (mTOR) pathway and autophagy are well known to be involved in carcinogenesis, and usually, inhibition of mTOR is the main reason to promote autophagy. In this study, however, autophagy and mTOR were found to be inhibited simultaneously by curcumin treatments, and both of them played an important role in the effect of curcumin on suppressing the growth of A549 cells. Tunicamycin (TM), the activator of Endoplasmic Reticulum (ER) stress, increased both autophagy and AKT/mTOR, while curcumin could significantly decrease TM-induced autophagy and AKT/mTOR. Furthermore, curcumin could inhibit TM-induced aerobic glycolysis in A549 cells, and decrease the level of cycle-related and migration-related proteins. Blocking activating transcription factor 4 (ATF4) by siRNA strongly reduced both the expression of autophagy-related proteins and AKT/mTOR. ChIP assay illustrated that ATF4 protein could bind to the promotor sequence of either ATG4B or AKT1. The transplantation tumor experiment showed that the weight and volume of the transplanted tumors were reduced significantly in the BALB/c mice subcutaneously injected with A549 cells treated with curcumin. Moreover, intranasal administration of curcumin decreased the protein level of autophagy, AKT/mTOR and ER stress in lung tissues of BALB/c mice. Taken together, our results demonstrated that inhibition of ER stress-dependent ATF4-mediated autophagy and AKT/mTOR pathway plays an important role in anticancer effect of curcumin.
Collapse
Affiliation(s)
- Jie Yang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Hasenbilige
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Shibo Bao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Shengxiang Luo
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
13
|
Thomas SD, Jha NK, Ojha S, Sadek B. mTOR Signaling Disruption and Its Association with the Development of Autism Spectrum Disorder. Molecules 2023; 28:molecules28041889. [PMID: 36838876 PMCID: PMC9964164 DOI: 10.3390/molecules28041889] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication along with repetitive stereotypic behaviors. Currently, there are no specific biomarkers for diagnostic screening or treatments available for autistic patients. Numerous genetic disorders are associated with high prevalence of ASD, including tuberous sclerosis complex, phosphatase and tensin homolog, and fragile X syndrome. Preclinical investigations in animal models of these diseases have revealed irregularities in the PI3K/Akt/mTOR signaling pathway as well as ASD-related behavioral defects. Reversal of the downstream molecular irregularities, associated with mTOR hyperactivation, improved the behavioral deficits observed in the preclinical investigations. Plant bioactive molecules have shown beneficial pre-clinical evidence in ASD treatment by modulating the PI3K/Akt/mTOR pathway. In this review, we summarize the involvement of the PI3K/Akt/mTOR pathway as well as the genetic alterations of the pathway components and its critical impact on the development of the autism spectrum disorder. Mutations in negative regulators of mTORC1, such as TSC1, TSC2, and PTEN, result in ASD-like phenotypes through the disruption of the mTORC1-mediated signaling. We further discuss the various naturally occurring phytoconstituents that have been identified to be bioactive and modulate the pathway to prevent its disruption and contribute to beneficial therapeutic effects in ASD.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
14
|
Habrowska-Górczyńska DE, Kowalska K, Urbanek KA, Domińska K, Kozieł MJ, Piastowska-Ciesielska AW. Effect of the mycotoxin deoxynivalenol in combinational therapy with TRAIL on prostate cancer cells. Toxicol Appl Pharmacol 2023; 461:116390. [PMID: 36690084 DOI: 10.1016/j.taap.2023.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is reported as a promising anti-cancer therapeutic target. Unfortunately, prostate cancer cells (PCa) are partially resistant to TRAIL-induced apoptosis limiting its therapeutic potential. The existing body of knowledge suggests that naturally produced compounds, such as mycotoxin deoxynivalenol (DON), might potentially sensitize cells to TRAIL treatment and improve the efficiency of therapy. Previously, we observed that DON induces oxidative stress and apoptosis in PCa cell lines. Thus we addressed here whether DON can sensitize PCa cells to TRAIL-induced apoptosis. Our data demonstrates that three out of four tested PCa cell lines pretreated with DON increased TRAIL-induced apoptosis detected with flow cytometry. This effect was associated with oxidative stress (LNCaP and DU-145 cell line) and elevated DNA damage (DU-145, LNCaP, and 22Rv1 cell lines). Next, in the animal model we inoculated PC tumor to SCKID mice followed by administration of DON intraperitoneally and/or TRIAL intravenously. During 21 days monitoring of tumor growth, the animals received 7 doses of DON, TRAIL, DON+TRAIL or control injections. No significant reduction in tumor mass was observed after combinational treatment of TRAIL and DON compared to 1 μg/kg of body weight DON treatment alone, which itself decreased the tumor growth. However, despite the lack of the TRAIL + DON effect, DON itself inducing apoptosis is an interesting compound worth investigating in the context of other combination therapies.
Collapse
Affiliation(s)
| | - Karolina Kowalska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Kinga Anna Urbanek
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Marta Justyna Kozieł
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | | |
Collapse
|
15
|
Subramanian S, Pajaniradje S, Tumdam R, Hoda M, Dasgupta A, Rajagopalan R. Indole curcumin combats metastatic HBV-positive hepatocellular carcinoma by inhibiting cell proliferation, migration, and matrix metalloproteinase-9 activity. J Cancer Res Ther 2023; 19:265-272. [PMID: 37313905 DOI: 10.4103/jcrt.jcrt_1256_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background Chemical modification of the natural products and molecules can lead us toward drugs with lesser off-target effects for chemotherapeutic use against cancers. In this study, we explored the effect of an indole analog of the molecule curcumin, for the first time against HBV-positive hepatocellular carcinoma (HCC) cells in vitro. Materials and Methods 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase assays were used to measure the cytotoxic effects of indole curcumin against Hep3B cells. The mode of cell death was established through acridine orange/ethidium bromide fluorescence staining, propidium iodide fluorescence staining, and the comet assay. The effect of the compound on cell migration behavior was studied through wound healing assay, whereas the effect on matrix metalloproteinase (MMP) activity was evaluated using gelatin zymography. In silico molecular docking was performed to predict the affinity of indole curcumin toward probable intracellular interacting partners. Results and Discussion Indole curcumin had an antiproliferative effect on Hep3B cells, induced apoptotic mode of cell death, inhibited cell migration in time- and dose-dependent assays, and decreased MMP-9 activity levels. Molecular docking results suggest that the interaction of PI3K with indole curcumin may have led to downregulation of MMP-9 expression, thereby contributing to the overall reduction in MMP-9 activity. Conclusion Our study establishes that indole curcumin is an effective cytotoxic and antimetastatic agent against hepatitis virus-B positive HCC cells. Hence, it can be a possible candidate for the treatment of hepatocarcinoma induced/promoted by the presence of chronic hepatitis B infection.
Collapse
Affiliation(s)
- Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Roshan Tumdam
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mudassarul Hoda
- Department of Biological Sciences, Aliah University, Kolkata, West Bengal, India
| | - Asmita Dasgupta
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
16
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
17
|
Su Y, Zhang X, Li S, Xie W, Guo J. Emerging roles of the copper-CTR1 axis in tumorigenesis. Mol Cancer Res 2022; 20:1339-1353. [PMID: 35604085 DOI: 10.1158/1541-7786.mcr-22-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Physiological roles of copper in metabolic homeostasis have been well established, however, whether and how copper is dysregulated in tumors and contributes to tumorigenesis are not recapitulated. Here, we comprehensively summarize the potential origins of copper accumulation in diseases especially in cancers by dysregulating copper transporter 1 (CTR1) or ATPase copper transporting alpha/beta (ATP7A/B) and further demonstrate the underlying mechanism of copper contributing to tumorigenesis. Specifically, in addition to modulating reactive oxygen species (ROS), angiogenesis, immune response, and metabolic homeostasis, copper recently has drawn more attention by directly binding to oncoproteins such as MEK, ULK, Memo, and PDK1 to activate distinct oncogenic signals and account for tumorigenesis. In the end, we disclose the emerging applications of copper in cancer diagnosis and highlight the promising strategies to target the copper-CTR1 axis for cancer therapies.
Collapse
Affiliation(s)
- Yaqing Su
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Xiaomei Zhang
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Shaoqiang Li
- The First Affiliatd Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Jianping Guo
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| |
Collapse
|
18
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J, Solano JD, Ibarra-Rubio ME. Redox-sensitive signaling pathways in renal cell carcinoma. Biofactors 2022; 48:342-358. [PMID: 34590744 DOI: 10.1002/biof.1784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most lethal urological cancers, highly resistant to chemo and radiotherapy. Obesity and smoking are the best-known risk factors of RCC, both related to oxidative stress presence, suggesting a significant role in RCC development and maintenance. Surgical resection is the treatment of choice for localized RCC; however, this neoplasia is hardly diagnosable at its initial stages, occurring commonly in late phases and even when metastasis is already present. Systemic therapies are the option against RCC in these more advanced stages, such as cytokine therapy or a combination of tyrosine kinase inhibitors with immunotherapies; nevertheless, these strategies are still insufficient. A field poorly analyzed in this neoplasia is the status of cell signaling pathways sensible to the redox state, which have been associated with the development and maintenance of RCC. This review focuses on alterations reported in the following redox-sensitive molecules and signaling pathways in RCC: mitogen-activated protein kinases, protein kinase B (AKT)/tuberous sclerosis complex 2/mammalian target of rapamycin C1, AKT/glycogen synthase kinase 3/β-catenin, nuclear factor κB/inhibitor of κB/epidermal growth factor receptor, and protein kinase Cζ/cut-like homeodomain protein/factor inhibiting hypoxia-inducible factor (HIF)/HIF as potential targets for redox therapy.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José D Solano
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María Elena Ibarra-Rubio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
19
|
Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Adv Colloid Interface Sci 2022; 300:102582. [PMID: 34953375 DOI: 10.1016/j.cis.2021.102582] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
Nanoparticles have emerged as promising drug delivery systems for the treatment of several diseases. Novel cancer therapies have exploited these particles as alternative adjuvant therapies to overcome the traditional limitations of radio and chemotherapy. Curcumin is a natural bioactive compound found in turmeric, that has been reported to show anticancer activity against several types of tumors. Despite some biological limitations regarding its absorption in the human body, curcumin encapsulation in poly(lactic-co-glycolic acid) (PLGA), a non-toxic, biodegradable and biocompatible polymer, represents an effective strategy to deliver a drug to a tumor site. Furthermore, PLGA nanoparticles can be engineered with targeting moieties to reach specific cancer cells, thus enhancing the antitumor effects of curcumin. We herein aim to bring an up-to-date summary of the recently developed strategies for curcumin delivery to different types of cancer cells through encapsulation in PLGA nanoparticles, correlating their effects with those of curcumin on the biological capabilities acquired by cancer cells (cancer hallmarks). We discuss the targeting strategies proposed for advanced curcumin delivery and the respective improvements achieved for each cancer cell analyzed, in addition to exploring the encapsulation techniques employed. The conjugation of correct encapsulation techniques with tumor-oriented targeting design can result in curcumin-loaded PLGA nanoparticles that can successfully integrate the elaborate network of development of alternative cancer treatments along with traditional ones. Finally, the current challenges and future demands to launch these nanoparticles in oncology are comprehensively examined.
Collapse
|
20
|
Curcumin and Carnosic Acid Cooperate to Inhibit Proliferation and Alter Mitochondrial Function of Metastatic Prostate Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10101591. [PMID: 34679726 PMCID: PMC8533243 DOI: 10.3390/antiox10101591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Anticancer activities of plant polyphenols have been demonstrated in various models of neoplasia. However, evidence obtained in numerous in vitro studies indicates that proliferation arrest and/or killing of cancer cells require quite high micromolar concentrations of polyphenols that are difficult to reach in vivo and can also be (geno)toxic to at least some types of normal cells. The ability of certain polyphenols to synergize with one another at low concentrations can be used as a promising strategy to effectively treat human malignancies. We have recently reported that curcumin and carnosic acid applied at non-cytotoxic concentrations synergistically cooperate to induce massive apoptosis in acute myeloid leukemia cells, but not in normal hematopoietic and non-hematopoietic cells, via sustained cytosolic calcium overload. Here, we show that the two polyphenols can also synergistically suppress the growth of DU145 and PC-3 metastatic prostate cancer cell cultures. However, instead of cell killing, the combined treatment induced a marked inhibition of cell proliferation associated with G0/G1 cell cycle arrest. This was preceded by transient elevation of cytosolic calcium levels and prolonged dissipation of the mitochondrial membrane potential, without generating oxidative stress, and was associated with defective oxidative phosphorylation encompassing mitochondrial dysfunction. The above effects were concomitant with a significant downregulation of mRNA and protein expression of the oncogenic kinase SGK1, the mitochondria-hosted mTOR component. In addition, a moderate decrease in SGK1 phosphorylation at Ser422 was observed in polyphenol-treated cells. The mTOR inhibitor rapamycin produced a similar reduction in SGK1 mRNA and protein levels as well as phosphorylation. Collectively, our findings suggest that the combination of curcumin and carnosic acid at potentially bioavailable concentrations may effectively target different types of cancer cells by distinct modes of action. This and similar combinations merit further exploration as an anticancer modality.
Collapse
|
21
|
Shah D, Gandhi M, Kumar A, Cruz-Martins N, Sharma R, Nair S. Current insights into epigenetics, noncoding RNA interactome and clinical pharmacokinetics of dietary polyphenols in cancer chemoprevention. Crit Rev Food Sci Nutr 2021; 63:1755-1791. [PMID: 34433338 DOI: 10.1080/10408398.2021.1968786] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several studies have reported the health-beneficial effects of dietary phytochemicals, namely polyphenols, to prevent various diseases, including cancer. Polyphenols, like (-)-epigallocatechin-3-gallate (EGCG) from green tea, curcumin from turmeric, and ellagic acid from pomegranate are known to act by modulating antioxidant, anti-inflammatory and apoptotic signal transduction pathways in the tumor milieu. The evolving literature underscores the role of epigenetic regulation of genes associated with cancer by these polyphenols, primarily via non-coding RNAs (ncRNAs), such as microRNAs (miRNA) and long noncoding RNA (lncRNA). However, there is little clarity on the exact role(s) played by these ncRNAs and their interactions with other ncRNAs, or with their protein targets, in response to modulation by these dietary polyphenols. Here, we review ncRNA interactions and functional networks of the complex ncRNA interactome with their targets in preclinical studies along with the role of epigenetics as well as key aspects of pharmacokinetics and phytochemistry of dietary polyphenols. We also summarize the current state of clinical trials with these dietary polyphenols. Taken together, this synthetic review provides insights into the molecular aspects underlying the anticancer chemopreventive effects of dietary polyphenols as well as summarizes data on novel biomarkers modulated by these polyphenols for preventive or therapeutic purposes in various types of cancer.
Collapse
Affiliation(s)
| | | | - Arun Kumar
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur Delhi, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, Portugal
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
22
|
Tang S, Cai S, Ji S, Yan X, Zhang W, Qiao X, Zhang H, Ye M, Yu S. Isoangustone A induces autophagic cell death in colorectal cancer cells by activating AMPK signaling. Fitoterapia 2021; 152:104935. [PMID: 34004245 DOI: 10.1016/j.fitote.2021.104935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022]
Abstract
Phytochemicals, especially flavonoids, have been widely investigated for their diversified pharmacological activities including anticancer activities. Previously we identified isoangustone A from licorice-derived compounds as a potent inducer of cell death. In the present study, the exact mechanism by which isoangustone A induced cell death was further investigated, with autophagy as an indispensible part of this process. Isoangustone A treatment activated autophagic signaling and induced a complete autophagic flux in colorectal cancer cells. Knockdown of ATG5 or pre-treatment with autophagy inhibitors significantly reversed isoangustone A-induced apoptotic signaling and loss of cell viability, suggesting autophagy plays an important role in isoangustone A-induced cell death. Isoangustone A inhibited Akt/mTOR signaling, and overexpressing of a constitutively activated Akt mildly suppressed isoangustone A-induced cell death. More importantly, isoangustone A inhibited cellular ATP level and activated AMPK, and pre-treatment with AMPK inhibitor or overexpression of dominant negative AMPKα2 significantly reversed isoangustone A-induced autophagy and cell death. Further study shows isoangustone A dose-dependently inhibited mitochondrial respiration, which could be responsible for isoangustone A-induced activation of AMPK. Finally, isoangustone A at a dosage of 10 mg/kg potently activated AMPK and autophagic signaling in and inhibited the growth of SW480 human colorectal xenograft in vivo. Taken together, induction of autophagy through activation of AMPK is an important mechanism by which isoangustone A inhibits tumor growth, and isoangustone A deserves further investigation as a promising anti-cancer agent.
Collapse
Affiliation(s)
- Shunan Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Sina Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Shuai Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Xiaojin Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Weijia Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Hongquan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Anatomy, Histology and Embryology, Peking University School of Basic Medicinal Sciences, PR China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China.
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China.
| |
Collapse
|
23
|
Armamentarium of anticancer analogues of curcumin: Portray of structural insight, bioavailability, drug-target interaction and therapeutic efficacy. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Harikrishnan A, Khanna S, Veena V. Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation. Curr Drug Targets 2021; 22:573-589. [PMID: 32753008 DOI: 10.2174/1389450121666200804113745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation. METHODOLOGY In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules. RESULTS Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed. CONCLUSION The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.
Collapse
Affiliation(s)
- A Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) campus, Paiyanoor, Chennai-603104, Tamil Nadu, India
| | - Sunali Khanna
- Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai, 400 008, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Rukmini knowledge park, Kattigenahalli, Yelahanka, Bengaluru - 5600 064. Karnataka State, India
| |
Collapse
|
25
|
Wang X, Chang X, Zhan H, Li C, Zhang Q, Li S, Sun Y. Curcumin combined with Baicalin attenuated ethanol-induced hepatitis by suppressing p38 MAPK and TSC1/ eIF-2α/ATF4 pathways in rats. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Mirzaei H, Bagheri H, Ghasemi F, Khoi JM, Pourhanifeh MH, Heyden YV, Mortezapour E, Nikdasti A, Jeandet P, Khan H, Sahebkar A. Anti-Cancer Activity of Curcumin on Multiple Myeloma. Anticancer Agents Med Chem 2021; 21:575-586. [PMID: 32951583 DOI: 10.2174/1871520620666200918113625] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Multiple Myeloma (MM) is the third most common and deadly hematological malignancy, which is characterized by a progressive monoclonal proliferation within the bone marrow. MM is cytogenetically heterogeneous with numerous genetic and epigenetic alterations, which lead to a wide spectrum of signaling pathways and cell cycle checkpoint aberrations. MM symptoms can be attributed to CRAB features (hyperCalcemia, Renal failure, Anemia, and Bone lesion), which profoundly affect both the Health-Related Quality of Life (HRQoL) and the life expectancy of patients. Despite all enhancement and improvement in therapeutic strategies, MM is almost incurable, and patients suffering from this disease eventually relapse. Curcumin is an active and non-toxic phenolic compound, isolated from the rhizome of Curcuma longa L. It has been widely studied and has a confirmed broad range of therapeutic properties, especially anti-cancer activity, and others, including anti-proliferation, anti-angiogenesis, antioxidant and anti-mutation activities. Curcumin induces apoptosis in cancerous cells and prevents Multidrug Resistance (MDR). Growing evidence concerning the therapeutic properties of curcumin caused a pharmacological impact on MM. It is confirmed that curcumin interferes with various signaling pathways and cell cycle checkpoints, and with oncogenes. In this paper, we summarized the anti- MM effects of curcumin.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bagheri
- Molecular and Medicine Research Center, Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Next to Milad Tower, Tehran, Iran
| | | | | | - Yvan V Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erfan Mortezapour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Nikdasti
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Fujiwara N, Whitford GM, Bartlett JD, Suzuki M. Curcumin suppresses cell growth and attenuates fluoride-mediated Caspase-3 activation in ameloblast-like LS8 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116495. [PMID: 33486250 PMCID: PMC8272738 DOI: 10.1016/j.envpol.2021.116495] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/10/2020] [Accepted: 01/08/2021] [Indexed: 05/30/2023]
Abstract
The trace element fluoride can be beneficial for oral health by preventing dental caries. However, fluoride is also known as an environmental pollutant. Fluoride pollution can lead to fluoride over-ingestion and can cause health issues, including dental fluorosis. Curcumin attenuated fluoride-induced toxicity in animal models, however the molecular mechanisms of how curcumin affects fluoride toxicity remain to be elucidated. We hypothesized that curcumin attenuates fluoride toxicity through modulation of Ac-p53. Here we investigated how curcumin affects the p53-p21 pathway in fluoride toxicity. LS8 cells were treated with NaF with/without curcumin. Curcumin significantly increased phosphorylation of Akt [Thr308] and attenuated fluoride-mediated caspase-3 cleavage and DNA damage marker γH2AX expression. Curcumin-mediated attenuation of caspase-3 activation was reversed by Akt inhibitor LY294002 (LY). However, LY did not alter curcumin-mediated γH2AX suppression. These results suggest that curcumin inhibited fluoride-mediated apoptosis via Akt activation, but DNA damage was suppressed by other pathways. Curcumin did not suppress/alter fluoride-mediated Ac-p53. However, curcumin itself significantly increased Ac-p53 and upregulated p21 protein levels to suppress cell proliferation in a dose-dependent manner. Curcumin suppressed fluoride-induced phosphorylation of p21 and increased p21 levels within the nuclear fraction. However, curcumin did not reverse fluoride-mediated cell growth inhibition. These results suggest that curcumin-induced Ac-p53 and p21 led to cell cycle arrest, while curcumin attenuated fluoride-mediated apoptosis via activation of Akt and suppressed fluoride-mediated DNA damage. By inhibiting DNA damage and apoptosis, curcumin may potentially alleviate health issues caused by fluoride pollution. Further studies are required to better understand the mechanism of curcumin-induced biological effects on fluoride toxicity.
Collapse
Affiliation(s)
- Natsumi Fujiwara
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Gary M Whitford
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - John D Bartlett
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA.
| | - Maiko Suzuki
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
28
|
Begum D, Merchant N, Nagaraju GP. Role of selected phytochemicals on gynecological cancers. A THERANOSTIC AND PRECISION MEDICINE APPROACH FOR FEMALE-SPECIFIC CANCERS 2021:1-30. [DOI: 10.1016/b978-0-12-822009-2.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Kaur H, Moreau R. Curcumin represses mTORC1 signaling in Caco-2 cells by a two-sided mechanism involving the loss of IRS-1 and activation of AMPK. Cell Signal 2020; 78:109842. [PMID: 33234350 DOI: 10.1016/j.cellsig.2020.109842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central modulator of inflammation and tumorigenesis in the gastrointestinal tract. Growth factors upregulate mTORC1 via the PI3K/AKT and/or Ras/MAPK signal pathways. Curcumin (CUR), a polyphenol found in turmeric roots (Curcuma longa) can repress mTORC1 kinase activity in colon cancer cell lines; however, key aspects of CUR mechanism of action remain to be elucidated including its primary cellular target. We investigated the molecular effects of physiologically attainable concentration of CUR (20 μM) in the intestinal lumen on mTORC1 signaling in Caco-2 cells. CUR markedly inhibited mTORC1 kinase activity as determined by the decreased phosphorylation of p70S6K (Thr389, -99%, P < 0.0001) and S6 (Ser235/236, -92%, P < 0.0001). Mechanistically, CUR decreased IRS-1 protein abundance (-80%, P < 0.0001) thereby downregulating AKT phosphorylation (Ser473, -94%, P < 0.0001) and in turn PRAS40 phosphorylation (Thr246, -99%, P < 0.0001) while total PRAS40 abundance was unchanged. The use of proteasome inhibitor MG132 showed that CUR-mediated loss of IRS-1 involved proteasomal degradation. CUR lowered Raptor protein abundance, which combined with PRAS40 hypophosphorylation, suggests CUR repressed mTORC1 activity by inducing compositional changes that hinder the complex assembly. In addition, CUR activated AMPK (Thr172 phosphorylation, P < 0.0001), a recognized repressor of mTORC1, and AMPK upstream regulator LKB1. Although cargo adapter protein p62 was decreased by CUR (-49%, P < 0.004), CUR did not significantly induce autophagy. Inhibition of AKT/mTORC1 signaling by CUR may have lifted the cross-inhibition onto MAPK signaling, which became induced; p-ERK1/2 (+670%, P < 0.0001), p-p38 (+1433%, P < 0.0001). By concomitantly targeting IRS-1 and AMPK, CUR's mechanism of mTORC1 inhibition is distinct from that of rapamycin.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
30
|
Curcumin against Prostate Cancer: Current Evidence. Biomolecules 2020; 10:biom10111536. [PMID: 33182828 PMCID: PMC7696488 DOI: 10.3390/biom10111536] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition characterized by remarkably enhanced rates of cell proliferation paired with evasion of cell death. These deregulated cellular processes take place following genetic mutations leading to the activation of oncogenes, the loss of tumor suppressor genes, and the disruption of key signaling pathways that control and promote homeostasis. Plant extracts and plant-derived compounds have historically been utilized as medicinal remedies in different cultures due to their anti-inflammatory, antioxidant, and antimicrobial properties. Many chemotherapeutic agents used in the treatment of cancer are derived from plants, and the scientific interest in discovering plant-derived chemicals with anticancer potential continues today. Curcumin, a turmeric-derived polyphenol, has been reported to possess antiproliferative and proapoptotic properties. In the present review, we summarize all the in vitro and in vivo studies examining the effects of curcumin in prostate cancer.
Collapse
|
31
|
Rosemary (Rosmarinus officinalis L.) extract inhibits prostate cancer cell proliferation and survival by targeting Akt and mTOR. Biomed Pharmacother 2020; 131:110717. [PMID: 33152908 DOI: 10.1016/j.biopha.2020.110717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed type of cancer in North American men and is typically classified as either androgen receptor positive or negative depending on the expression of the androgen receptor (AR). AR positive prostate cancer can be treated with hormone therapy while AR negative prostate cancer is aggressive and does not respond to hormone therapy. It has been previously reported that rosemary extract (RE) has antioxidant, anti-inflammatory and anti-cancer properties. In the present study, we found that treatment of the androgen-insensitive PC-3 prostate cancer cells with RE resulted in a significant inhibition of proliferation, survival, migration, Akt, and mTOR signaling. In addition, treatment of the androgen-sensitive 22RV1 prostate cancer cells with RE resulted in a significant inhibition of proliferation and survival while RE had no effect on normal prostate epithelial PNT1A cells. These findings suggest that RE has potent effects against prostate cancer and warrants further investigation.
Collapse
|
32
|
Hsiao PC, Chang JH, Lee WJ, Ku CC, Tsai MY, Yang SF, Chien MH. The Curcumin Analogue, EF-24, Triggers p38 MAPK-Mediated Apoptotic Cell Death via Inducing PP2A-Modulated ERK Deactivation in Human Acute Myeloid Leukemia Cells. Cancers (Basel) 2020; 12:cancers12082163. [PMID: 32759757 PMCID: PMC7464750 DOI: 10.3390/cancers12082163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Curcumin (CUR) has a range of therapeutic benefits against cancers, but its poor solubility and low bioavailability limit its clinical use. Demethoxycurcumin (DMC) and diphenyl difluoroketone (EF-24) are natural and synthetic curcumin analogues, respectively, with better solubilities and higher anti-carcinogenic activities in various solid tumors than CUR. However, the efficacy of these analogues against non-solid tumors, particularly in acute myeloid leukemia (AML), has not been fully investigated. Herein, we observed that both DMC and EF-24 significantly decrease the proportion of viable AML cells including HL-60, U937, and MV4-11, harboring different NRAS and Fms-like tyrosine kinase 3 (FLT3) statuses, and that EF-24 has a lower half maximal inhibitory concentration (IC50) than DMC. We found that EF-24 treatment induces several features of apoptosis, including an increase in the sub-G1 population, phosphatidylserine (PS) externalization, and significant activation of extrinsic proapoptotic signaling such as caspase-8 and -3 activation. Mechanistically, p38 mitogen-activated protein kinase (MAPK) activation is critical for EF-24-triggered apoptosis via activating protein phosphatase 2A (PP2A) to attenuate extracellular-regulated protein kinase (ERK) activities in HL-60 AML cells. In the clinic, patients with AML expressing high level of PP2A have the most favorable prognoses compared to various solid tumors. Taken together, our results indicate that EF-24 is a potential therapeutic agent for treating AML, especially for cancer types that lose the function of the PP2A tumor suppressor.
Collapse
Affiliation(s)
- Pei-Ching Hsiao
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Meng-Ying Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-F.Y.); (M.-H.C.); Tel.: +886-2-2736-1661 (ext. 3237) (M.-H.C.); +886-4-2473-9595 (ext. 34253) (S.-F.Y.); Fax: +886-2-2739-0500 (M.-H.C.); +886-4-2472-3229 (S.-F.Y.)
| | - Ming-Hsien Chien
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (S.-F.Y.); (M.-H.C.); Tel.: +886-2-2736-1661 (ext. 3237) (M.-H.C.); +886-4-2473-9595 (ext. 34253) (S.-F.Y.); Fax: +886-2-2739-0500 (M.-H.C.); +886-4-2472-3229 (S.-F.Y.)
| |
Collapse
|
33
|
Tamaddoni A, Mohammadi E, Sedaghat F, Qujeq D, As'Habi A. The anticancer effects of curcumin via targeting the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Pharmacol Res 2020; 156:104798. [PMID: 32278045 DOI: 10.1016/j.phrs.2020.104798] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 01/19/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that has been considered as a key regulator of a large number of cellular processes, including cell growth, proliferation, differentiation, survival, and motility. Overactivation of mTOR (especially mTORC1) signaling is related to oncogenic cellular processes. Therefore targeting mTORC1 signaling is a new promising strategy in cancer therapy. In this regard, various studies have shown that curcumin, a polyphenol produced from the turmeric rhizome, has anti-inflammatory, antioxidant and anticancer properties. Curcumin may exert its anticancer function, at least in part, by suppressing mTOR-mediated signaling pathway in tumor cells. However, the exact underlying mechanisms by which curcumin blocks the mTORC1 signaling remain unclear. According to literature, curcumin inhibits insulin-like growth factor 1 (IGF-1)/phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 pathway which leads to apoptosis and cell cycle arrest via suppression of erythroblastosis virus transcription factor 2 and murine double minute 2 oncoprotein. In addition, activation of unc-51-like kinase 1 by curcumin, as a downstream target of IGF-1/PI3K/Akt/mTORC1 axis, enhances autophagy. Curcumin induces AMP-activated protein kinase, a negative regulator of mTORC1, via inhibition of F0F1-ATPase. Interestingly, curcumin suppresses IκB kinase β, the upstream kinase in mTORC1 pathway. Moreover, evidence revealed that curcumin downregulates the E3-ubiquitin ligases NEDD4, neural precursor cell-expressed developmentally downregulated 4. NEDD4 is frequently overexpressed in a wide range of cancers and degrades the phosphatase and tensin homolog, which is a negative regulator of mTORC1. Finally another suggested mechanism is suppression of MAOA/mTORC1/hypoxia-inducible factor 1α signaling pathway by curcumin.
Collapse
Affiliation(s)
- Ahmad Tamaddoni
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elahe Mohammadi
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| | - Fatemeh Sedaghat
- Department of Basic Medical Sciences, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Atefeh As'Habi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran; Department of Nutrition, School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
34
|
Abd. Wahab NA, H. Lajis N, Abas F, Othman I, Naidu R. Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer. Nutrients 2020; 12:E679. [PMID: 32131560 PMCID: PMC7146610 DOI: 10.3390/nu12030679] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is a heterogeneous disease and ranked as the second leading cause of cancer-related deaths in males worldwide. The global burden of PCa keeps rising regardless of the emerging cutting-edge technologies for treatment and drug designation. There are a number of treatment options which are effectively treating localised and androgen-dependent PCa (ADPC) through hormonal and surgery treatments. However, over time, these cancerous cells progress to androgen-independent PCa (AIPC) which continuously grow despite hormone depletion. At this particular stage, androgen depletion therapy (ADT) is no longer effective as these cancerous cells are rendered hormone-insensitive and capable of growing in the absence of androgen. AIPC is a lethal type of disease which leads to poor prognosis and is a major contributor to PCa death rates. A natural product-derived compound, curcumin has been identified as a pleiotropic compound which capable of influencing and modulating a diverse range of molecular targets and signalling pathways in order to exhibit its medicinal properties. Due to such multi-targeted behaviour, its benefits are paramount in combating a wide range of diseases including inflammation and cancer disease. Curcumin exhibits anti-cancer properties by suppressing cancer cells growth and survival, inflammation, invasion, cell proliferation as well as possesses the ability to induce apoptosis in malignant cells. In this review, we investigate the mechanism of curcumin by modulating multiple signalling pathways such as androgen receptor (AR) signalling, activating protein-1 (AP-1), phosphatidylinositol 3-kinases/the serine/threonine kinase (PI3K/Akt/mTOR), wingless (Wnt)/ß-catenin signalling, and molecular targets including nuclear factor kappa-B (NF-κB), B-cell lymphoma 2 (Bcl-2) and cyclin D1 which are implicated in the development and progression of both types of PCa, ADPC and AIPC. In addition, the role of microRNAs and clinical trials on the anti-cancer effects of curcumin in PCa patients were also reviewed.
Collapse
Affiliation(s)
- Nurul Azwa Abd. Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| |
Collapse
|
35
|
Fontana F, Raimondi M, Marzagalli M, Di Domizio A, Limonta P. Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells 2020; 9:cells9020460. [PMID: 32085497 PMCID: PMC7072821 DOI: 10.3390/cells9020460] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) represents a major cause of cancer mortality among men in developed countries. Patients with recurrent disease initially respond to androgen-deprivation therapy, but the tumor eventually progresses into castration-resistant PCa; in this condition, tumor cells acquire the ability to escape cell death and develop resistance to current therapies. Thus, new therapeutic approaches for PCa management are urgently needed. In this setting, natural products have been extensively studied for their anti-PCa activities, such as tumor growth suppression, cell death induction, and inhibition of metastasis and angiogenesis. Additionally, numerous studies have shown that phytochemicals can specifically target the androgen receptor (AR) signaling, as well as the PCa stem cells (PCSCs). Interestingly, many clinical trials have been conducted to test the efficacy of nutraceuticals in human subjects, and they have partially confirmed the promising results obtained in vitro and in preclinical models. This article summarizes the anti-cancer mechanisms and therapeutic potentials of different natural compounds in the context of PCa prevention and treatment.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Alessandro Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- SPILLOproject, 20037 Paderno Dugnano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- Correspondence: ; Tel.: +39-0250318213
| |
Collapse
|
36
|
Mohammadi Kian M, Salemi M, Bahadoran M, Haghi A, Dashti N, Mohammadi S, Rostami S, Chahardouli B, Babakhani D, Nikbakht M. Curcumin Combined with Thalidomide Reduces Expression of STAT3 and Bcl-xL, Leading to Apoptosis in Acute Myeloid Leukemia Cell Lines. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:185-194. [PMID: 32021103 PMCID: PMC6970263 DOI: 10.2147/dddt.s228610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022]
Abstract
Introduction Acute myeloid leukemia (AML) is a type of blood disorder that exhibits uncontrolled growth and reduced ability to undergo apoptosis. Signal transducer and activator of transcription 3 (STAT3) is a family member of transcription factors which promotes carcinogenesis in most human cancers. This effect on AML is accomplished through deregulation of several critical genes, such as B cell lymphoma-extra-large (BCL-XL) which is anti-apoptotic protein. The aim of this study was to evaluate the effect of curcumin (CUR) and thalidomide (THAL) on apoptosis induction and also the alteration of the mRNA expression level of STAT3 and BCL-XL mRNA on AML cell line compounds. Methods The growth inhibitory effects of CUR and THAL and their combination were measured by MTT assay in U937 and KG-1 cell lines. The rates of apoptosis induction and cell cycle analysis were measured by concurrent staining with Annexin V and PI. The mRNA expression level of STAT3 and BCL-XL was evaluated by Real-Time PCR. Results CUR inhibited proliferation and induced apoptosis in both KG-1 and U937 cells and this effect increased by combination with THAL. The expression level of STAT3 and BCL-XL was significantly down-regulated in KG-1 cells after treatment by CUR and THAL and their combination. Conclusion Overall, our findings suggested that down-regulation of STAT3 and BCL-XL mRNA expression in response to CUR and THAL treatment lead to inhibition of cell growth and induction of apoptosis.
Collapse
Affiliation(s)
- Mahnaz Mohammadi Kian
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Salemi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bahadoran
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Atousa Haghi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Young Researchers & Elite Club Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasrin Dashti
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrbano Rostami
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Chahardouli
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Babakhani
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikbakht
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Golonko A, Lewandowska H, Świsłocka R, Jasińska U, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem 2019; 181:111512. [DOI: 10.1016/j.ejmech.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
38
|
Katta S, Srivastava A, Thangapazham RL, Rosner IL, Cullen J, Li H, Sharad S. Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells. Int J Mol Sci 2019; 20:ijms20194891. [PMID: 31581661 PMCID: PMC6801832 DOI: 10.3390/ijms20194891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/25/2022] Open
Abstract
The androgen receptor is one of the key targets for prostate cancer treatment. Despite its less satisfactory effects, chemotherapy is the most common treatment option for metastatic and/or castration-resistant patients. There are constant needs for novel anti-prostate cancer therapeutic/prevention agents. Curcumin, a known chemo-preventive agent, was shown to inhibit prostate cancer cell growth. This study aimed to unravel the inhibitory effect of curcumin in prostate cancer through analyzing the alterations of expressions of curcumin targeting genes clusters in androgen-dependent LNCaP cells and androgen-independent metastatic C4-2B cells. Hierarchical clustering showed the highest number of differentially expressed genes at 12 h post treatment in both cells, suggesting that the androgen-dependent/independent manner of curcumin impacts on prostate cancer cells. Evaluation of significantly regulated top canonical pathways highlighted that Transforming growth factor beta (TGF-β), Wingless-related integration site (Wnt), Phosphoinositide 3-kinase/Protein Kinase B/ mammalian target of rapamycin (PIK3/AKT(PKB)/mTOR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling were primarily inhibited, and Phosphatase and tensin homolog (PTEN) dependent cell cycle arrest and apoptosis pathways were elevated with curcumin treatment. The short term (3–24 h) and long term (48 h) effect of curcumin treatment revealed 31 and four genes modulated in both cell lines. TGF-β signaling, including the androgen/TGF-β inhibitor Prostate transmembrane protein androgen-induced 1 (PMEPA1), was the only pathway impacted by curcumin treatment after 48 h. Our findings also established that MYC Proto-Oncogene, basic helix-loop-helix (bHLH) Transcription Factor (MYC) signaling was down-regulated in curcumin-treated cell lines. This study established, for the first time, novel gene-networks and signaling pathways confirming the chemo-preventive and cancer-growth inhibitory nature of curcumin as a natural anti-prostate cancer compound.
Collapse
Affiliation(s)
- Shilpa Katta
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Arun Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Rajesh L Thangapazham
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Inger L Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Department of Urology, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889, USA.
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| |
Collapse
|
39
|
Lee JS, Kim J, Lee EJ, Yoon JS. Therapeutic Effect of Curcumin, a Plant Polyphenol Extracted From Curcuma longae, in Fibroblasts From Patients With Graves' Orbitopathy. ACTA ACUST UNITED AC 2019; 60:4129-4140. [DOI: 10.1167/iovs.19-27376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jihei Sara Lee
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jinjoo Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Vallée A, Lecarpentier Y, Vallée JN. Curcumin: a therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J Exp Clin Cancer Res 2019; 38:323. [PMID: 31331376 PMCID: PMC6647277 DOI: 10.1186/s13046-019-1320-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have presented that curcumin could have a positive effect in the prevention of cancer and then in tumor therapy. Several hypotheses have highlighted that curcumin could decreases tumor growth and invasion by acting on both chronic inflammation and oxidative stress. This review focuses on the interest of use curcumin in cancer therapy by acting on the WNT/β-catenin pathway to repress chronic inflammation and oxidative stress. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. Curcumin administration participates to the downregulation of the WNT/β-catenin pathway and thus, through this action, in tumor growth control. Curcumin act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in an opposed manner. Chronic inflammation, oxidative stress and circadian clock disruption are common and co-substantial pathological processes accompanying and promoting cancers. Circadian clock disruption related to the upregulation of the WNT/β-catenin pathway is involved in cancers. By stimulating PPARγ expression, curcumin can control circadian clocks through the regulation of many key circadian genes. The administration of curcumin in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 1 place du Parvis de Notre-Dame, Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| |
Collapse
|
41
|
Wei K, Sun H, Chen X, Chen Q, Li Y, Wu H. Furowanin A Exhibits Antiproliferative and Pro-Apoptotic Activities by Targeting Sphingosine Kinase 1 in Osteosarcoma. Anat Rec (Hoboken) 2019; 302:1941-1949. [PMID: 31197942 DOI: 10.1002/ar.24200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/19/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022]
Abstract
Osteosarcoma (OS) is one of the most common malignant bone tumors among children and young adults. Furowanin A (Fur A), one of the active ingredients of Millettia pachycarpa Benth, has been found to exert pro-apoptotic activity in human leukemia cells. This study is designed to evaluate the efficacy of Fur A against OS. The effect of Fur A on cell viability was assessed by Cell Counting Kit-8 (CCK-8) assay. Western blotting and quantitative real-time PCR (qRT-PCR) were performed to determine the protein and mRNA level of sphingosine kinase 1 (SphK1), respectively. To validate the role of SphK1 in the pro-apoptotic activity of Fur A, overexpressing SphK1 vector and siRNA targeting SphK1 were utilized to transfect OS cells. Moreover, an OS xenograft murine model was used to analyze the therapeutic efficacy of Fur A in vivo. Fur A treatment led to a dose-dependent decrease in the number of viable cells. It also exhibited antiproliferative activity and significantly promoted apoptotic cell death in OS cell lines. Our results showed that the anticancer activity of Fur A was associated with downregulation of SphK1 and inactivation of its downstream signaling. The mediatory role of SphK1 was validated when the pro-apoptotic activity of Fur A was significantly blocked by SphK1 overexpression, while SphK1 knockdown sensitized the OS cells to Fur A. We concluded that Fur A can exhibit anti-growth and pro-apoptotic activities in vitro and in vivo in OS by downregulating SphK1. Our study highlights the possibility of utilizing Fur A as a chemotherapeutic agent in the treatment of OS. Anat Rec, 302:1941-1949, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Ke Wei
- Department of Orthopedics, Ningbo No. 9 Hospital, Ningbo, Zhejiang, China
| | - Haixia Sun
- Department of Orthopedics, Ningbo No. 9 Hospital, Ningbo, Zhejiang, China
| | - Xinhui Chen
- Department of Orthopedics, Ningbo No. 9 Hospital, Ningbo, Zhejiang, China
| | - Qiwang Chen
- Department of Orthopedics, Ningbo No. 9 Hospital, Ningbo, Zhejiang, China
| | - Yuehong Li
- Department of Orthopedics, Ningbo No. 9 Hospital, Ningbo, Zhejiang, China
| | - Haihao Wu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
42
|
Curcumin Analogue C1 Promotes Hex and Gal Recruitment to the Plasma Membrane via mTORC1-Independent TFEB Activation. Int J Mol Sci 2019; 20:ijms20061363. [PMID: 30889901 PMCID: PMC6471159 DOI: 10.3390/ijms20061363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
The monocarbonyl analogue of curcumin (1E,4E)-1,5-Bis(2-methoxyphenyl)penta-1,4-dien-3-one (C1) has been used as a specific activator of the master gene transcription factor EB (TFEB) to correlate the activation of this nuclear factor with the increased activity of lysosomal glycohydrolases and their recruitment to the cell surface. The presence of active lysosomal glycohydrolases associated with the lipid microdomains has been extensively demonstrated, and their role in glycosphingolipid (GSL) remodeling in both physiological and pathological conditions, such as neurodegenerative disorders, has been suggested. Here, we demonstrate that Jurkat cell stimulation elicits TFEB nuclear translocation and an increase of both the expression of hexosaminidase subunit beta (HEXB), hexosaminidase subunit alpha (HEXA), and galactosidase beta 1 (GLB1) genes, and the recruitment of β-hexosaminidase (Hex, EC 3.2.1.52) and β-galactosidase (Gal, EC 3.2.1.23) on lipid microdomains. Treatment of Jurkat cells with the curcumin analogue C1 also resulted in an increase of both lysosomal glycohydrolase activity and their targeting to the cell surface. Similar effects of C1 on lysosomal glycohydrolase expression and their recruitment to lipid microdomains was observed by treating the SH-SY5Y neuroblastoma cell line; the effects of C1 treatment were abolished by TFEB silencing. Together, these results clearly demonstrate the existence of a direct link between TFEB nuclear translocation and the transport of Hex and Gal from lysosomes to the plasma membrane.
Collapse
|
43
|
Kuo CJ, Huang CC, Chou SY, Lo YC, Kao TJ, Huang NK, Lin C, Lin HC, Lin HC, Lee YC. Potential therapeutic effect of curcumin, a natural mTOR inhibitor, in tuberous sclerosis complex. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:132-139. [PMID: 30668362 DOI: 10.1016/j.phymed.2018.09.203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/28/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Curcumin is a polyphenol natural product of the plant Curcuma longa. Recent studies suggest that curcumin inhibit mTOR activity in vitro, which prompts us to investigate curcumin function as a new class of mTOR inhibitor suitable for tuberous sclerosis complex (TSC) treatment. PURPOSE We aim to investigate the efficacy of curcumin in the treatment of TSC related manifestations in animal model. STUDY DESIGN Solid lipid curcumin particle (SLCP), a novel curcumin formulation, was used to treat TSC related manifestations in Tsc2 knockout mice. METHODS The novel object recognition test was used to analyze the recognition memory function. The long-term potentiation was studied using electrophysiological analysis. Western blotting was used to assess the protein expression and activation status. RESULTS Recognition memory deficit began as early as 4 weeks of age in both male and female Tsc2+/- mice. Oral administration with SLCP activates AMPK activity and inhibits mTOR activity in the brain tissue of Tsc2+/- mice, and can rescue the electrophysiological abnormality and object recognition memory loss in the mice. CONCLUSIONS Our results suggest that SLCP could be an effective treatment for TSC patients.
Collapse
Affiliation(s)
- Chu-Jen Kuo
- Health Management Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Chi-Chen Huang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Szu-Yi Chou
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Jen Kao
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Nai-Kuei Huang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Connie Lin
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Chuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ching Lin
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Institute and Department of Physiology, School of Medicine, National Yang-Ming University, 155 Linong St., Taipei 112, Taiwan.
| | - Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
44
|
Curcumin and Solid Lipid Curcumin Particles Induce Autophagy, but Inhibit Mitophagy and the PI3K-Akt/mTOR Pathway in Cultured Glioblastoma Cells. Int J Mol Sci 2019; 20:ijms20020399. [PMID: 30669284 PMCID: PMC6359162 DOI: 10.3390/ijms20020399] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy and the (PI3K-Akt/mTOR) signaling pathway play significant roles in glioblastoma multiforme (GBM) cell death and survival. Curcumin (Cur) has been reported to prevent several cancers, including GBM. However, the poor solubility and limited bioavailability of natural Cur limits its application in preventing GBM growth. Previously, we have shown the greater apoptotic and anti-carcinogenic effects of solid lipid Cur particles (SLCP) than natural Cur in cultured GBM cells. Here, we compared the autophagic responses on cultured U-87MG, GL261, F98, C6-glioma, and N2a cells after treatment with Cur or SLCP (25 µM for 24 h). Different autophagy, mitophagy, and chaperone-mediated autophagy (CMA) markers, along with the PI3K-AKkt/mTOR signaling pathway, and the number of autophagy vacuoles were investigated after treatment with Cur and or SLCP. We observed increased levels of autophagy and decreased levels of mitophagy markers, along with inhibition of the PI3K-Akt/mTOR pathway after treatments with Cur or SLCP. Cell survival markers were downregulated, and cell death markers were upregulated after these treatments. We found greater effects in the case of SCLP-treated cells in comparison to Cur. Given that fewer effects were observed on C-6 glioma and N2a cells. Our results suggest that SLCP could be a safe and effective means of therapeutically modulating autophagy in GBM cells.
Collapse
|
45
|
Song X, Zhang M, Dai E, Luo Y. Molecular targets of curcumin in breast cancer (Review). Mol Med Rep 2018; 19:23-29. [PMID: 30483727 DOI: 10.3892/mmr.2018.9665] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/25/2018] [Indexed: 11/06/2022] Open
Abstract
Curcumin (diferuloylmethane), an orange‑yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of Curcuma longa. For centuries, curcumin has been used in medicinal preparations and as a food colorant. In recent years, extensive in vitro and in vivo studies have suggested that curcumin possesses activity against cancer, viral infection, arthritis, amyloid aggregation, oxidation and inflammation. Curcumin exerts anticancer effects primarily by activating apoptotic pathways in cancer cells and inhibiting pro‑cancer processes, including inflammation, angiogenesis and metastasis. Curcumin targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, Ras, phosphatidylinositol‑3‑kinase, protein kinase B, Wnt‑β catenin and mammalian target of rapamycin. Clinical studies have demonstrated that curcumin alone or combined with other drugs exhibits promising anticancer activity in patients with breast cancer without adverse effects. In the present review, the chemistry and bioavailability of curcumin and its molecular targets in breast cancer are discussed. Future research directions are discussed to further understand this promising natural product.
Collapse
Affiliation(s)
- Xinqiang Song
- Department of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Mu Zhang
- Hospital Attached to Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Erqin Dai
- Hospital Attached to Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, P.R. China
| |
Collapse
|
46
|
Discovery of traditional Chinese medicine monomers and their synthetic intermediates, analogs or derivatives for battling P-gp-mediated multi-drug resistance. Eur J Med Chem 2018; 159:381-392. [DOI: 10.1016/j.ejmech.2018.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
|
47
|
Soltani A, Salmaninejad A, Jalili‐Nik M, Soleimani A, Javid H, Hashemy SI, Sahebkar A. 5′‐Adenosine monophosphate‐activated protein kinase: A potential target for disease prevention by curcumin. J Cell Physiol 2018; 234:2241-2251. [DOI: 10.1002/jcp.27192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Arash Soltani
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Arash Salmaninejad
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Mohammad Jalili‐Nik
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Anvar Soleimani
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Hossein Javid
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical SciencesMashhad Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical SciencesMashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhad Iran
- School of Pharmacy, Mashhad University of Medical SciencesMashhad Iran
| |
Collapse
|
48
|
Kaur H, He B, Zhang C, Rodriguez E, Hage DS, Moreau R. Piperine potentiates curcumin-mediated repression of mTORC1 signaling in human intestinal epithelial cells: implications for the inhibition of protein synthesis and TNFα signaling. J Nutr Biochem 2018; 57:276-286. [PMID: 29800814 DOI: 10.1016/j.jnutbio.2018.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
Persistent activation of the mechanistic target of rapamycin complex 1 (mTORC1) is linked to sustained inflammation and progression of colorectal cancer. Widely available dietary phenolics, curcumin and piperine are purported to have antiinflammatory and anticarcinogenic activities through yet-to-be-delineated multitarget mechanisms. Piperine is also known to increase the bioavailability of dietary components, including curcumin. The objective of the study was to determine whether curcumin and piperine have individual and combined effects in the setting of gut inflammation by regulating mTORC1 in human intestinal epithelial cells. Results show that curcumin repressed (a) mTORC1 activity (measured as changes in the phosphorylation state of p70 ribosomal protein S6 kinase B1 and 40S ribosomal protein S6) in a dose-dependent manner (2.5-20 μM, P<.007) and (b) synthesis of nascent proteins. Piperine inhibited mTORC1 activity albeit at comparatively higher concentrations than curcumin. The combination of curcumin + piperine further repressed mTORC1 signaling (P<.02). Mechanistically, curcumin may repress mTORC1 by preventing TSC2 degradation, the conserved inhibitor of mTORC1. Results also show that a functional mTORC1 was required for the transcription of TNFα as Raptor knockdown abrogated TNFα gene expression. Curcumin, piperine and their combination inhibited TNFα gene expression at baseline but failed to do so under conditions of mTORC1 hyperactivation. TNF∝-induced cyclooxygenase-2 expression was repressed by curcumin or curcumin + piperine at baseline and high mTORC1 levels. We conclude that curcumin and piperine, either alone or in combination, have the potential to down-regulate mTORC1 signaling in the intestinal epithelium with implications for tumorigenesis and inflammation.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bo He
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chenhua Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Elliott Rodriguez
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Régis Moreau
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
49
|
Rajala A, Wang Y, Abcouwer SF, Gardner TW, Rajala RV. Developmental and light regulation of tumor suppressor protein PP2A in the retina. Oncotarget 2018; 9:1505-1523. [PMID: 29416710 PMCID: PMC5788578 DOI: 10.18632/oncotarget.23351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Protein phosphatases are a group of universal enzymes that are responsible for the dephosphorylation of various proteins and enzymes in cells. Cellular signal transduction events are largely governed by the phosphorylation of key proteins. The length of cellular response depends on the activation of protein phosphatase that dephosphorylates the phosphate groups to halt a biological response, and fine-tune the defined cellular outcome. Dysregulation of these phosphatase(s) results in various disease phenotypes. The retina is a post-mitotic tissue, and oncogenic tyrosine and serine/ threonine kinase activities are important for retinal neuron survival. Aberrant activation of protein phosphatase(s) may have a negative effect on retinal neurons. In the current study, we characterized tumor suppressor protein phosphatase 2 (PP2A), a major serine/ threonine kinase with a broad substrate specificity. Our data suggest that PP2A is developmentally regulated in the retina, localized predominantly in the inner retina, and expressed in photoreceptor inner segments. Our findings indicate that PKCα and mTOR may serve as PP2A substrates. We found that light regulates PP2A activity. Our studies also suggest that rhodopsin regulates PP2A and its substrate(s) dephosphorylation. PP2A substrate phosphorylation is increased in mice lacking the A-subunit of PP2A. However, there is no accompanying effect on retina structure and function. Together, our findings suggest that controlling the activity of PP2A in the retina may be neuroprotective.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yuhong Wang
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- W.K. Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas W. Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- W.K. Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Raju V.S. Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
50
|
Salemi M, Mohammadi S, Ghavamzadeh A, Nikbakht M. Anti-Vascular Endothelial Growth Factor Targeting by Curcumin and Thalidomide in Acute Myeloid Leukemia Cells. Asian Pac J Cancer Prev 2017; 18:3055-3061. [PMID: 29172279 PMCID: PMC5773791 DOI: 10.22034/apjcp.2017.18.11.3055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acute myeloid leukemias (AMLs) are blood disorders that exhibit uncontrolled growth and reduction of apoptosis rates. As with other malignancies, progression may be result of induction and formation of new blood vessels influenced by disease conditions. Cancer cells produce a variety of factors which play important roles in angiogenesis. Vascular endothelial growth factor (VEGF) is critical for many malignancies, including AMLs. Curcumin, as a natural compound, is able to enhance apoptosis via a mechanism affecting regulatory genes. As a new strategy we here evaluated anti-VEGF properties of curcumin, alone and in combination with thalidomide, in leukemic cell lines. Growth inhibitory effects were assessed by MTT assay and apoptosis was detected by annexin/PI staining in U937 and KG-1 cell lines. mRNA expression levels of VEGF isoforms were evaluated by qRT-PCR. Curcumin inhibited proliferation and induced apoptosis in both KG-1 and U937 cells and this effect was stronger in combination with thalidomide. In KG-1 cells, the level of VEGF (A, B, C and D) mRNA was decreased in curcumin-treated as compared to untreated cells. Maximum effects were obtained at the concentration of 40 μM curcumin in U937 cells. Taken together, the results indicate that the VEGF autocrine loop may have an impact on AML development and progression and could be considered as a therapeutic target. Thalidomide as a VEGF inhibitor in combination with curcumin appears to have a synergistic impact on inhibition of cell proliferation and promotion of apoptosis.
Collapse
Affiliation(s)
- Mahdieh Salemi
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran.
| | | | | | | |
Collapse
|