1
|
Li K, Guo Z, Bai L. Digitoxose as powerful glycosyls for building multifarious glycoconjugates of natural products and un-natural products. Synth Syst Biotechnol 2024; 9:701-712. [PMID: 38868608 PMCID: PMC11167396 DOI: 10.1016/j.synbio.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Digitoxose, a significant 2,6-dideoxyhexose found in nature, exists in many small-molecule natural products. These digitoxose-containing natural products can be divided into steroids, macrolides, macrolactams, anthracyclines, quinones, enediynes, acyclic polyene, indoles and oligosaccharides, that exhibit antibacterial, anti-viral, antiarrhythmic, and antitumor activities respectively. As most of digitoxose-containing natural products for clinical application or preclinical tests, this review also summarizes the biosynthesis of digitoxose, and application of compound diversification by introducing sugar plasmids. It may provide a practical approach to expanding the diversity of digitoxose-containing products.
Collapse
Affiliation(s)
- Kemeng Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhengyan Guo
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liping Bai
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
2
|
Kumari P, Beeraka NM, Tengli A, Bannimath G, Baath RK, Patil M. Recent Updates on Oncogenic Signaling of Aurora Kinases in Chemosensitive, Chemoresistant Cancers: Novel Medicinal Chemistry Approaches for Targeting Aurora Kinases. Curr Med Chem 2024; 31:3502-3528. [PMID: 37138483 DOI: 10.2174/0929867330666230503124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 05/05/2023]
Abstract
The Aurora Kinase family (AKI) is composed of serine-threonine protein kinases involved in the modulation of the cell cycle and mitosis. These kinases are required for regulating the adherence of hereditary-related data. Members of this family can be categorized into aurora kinase A (Ark-A), aurora kinase B (Ark-B), and aurora kinase C (Ark-C), consisting of highly conserved threonine protein kinases. These kinases can modulate cell processes such as spindle assembly, checkpoint pathway, and cytokinesis during cell division. The main aim of this review is to explore recent updates on the oncogenic signaling of aurora kinases in chemosensitive/chemoresistant cancers and to explore the various medicinal chemistry approaches to target these kinases. We searched Pubmed, Scopus, NLM, Pubchem, and Relemed to obtain information pertinent to the updated signaling role of aurora kinases and medicinal chemistry approaches and discussed the recently updated roles of each aurora kinases and their downstream signaling cascades in the progression of several chemosensitive/chemoresistant cancers; subsequently, we discussed the natural products (scoulerine, Corynoline, Hesperidin Jadomycin-B, fisetin), and synthetic, medicinal chemistry molecules as aurora kinase inhibitors (AKIs). Several natural products' efficacy was explained as AKIs in chemosensitization and chemoresistant cancers. For instance, novel triazole molecules have been used against gastric cancer, whereas cyanopyridines are used against colorectal cancer and trifluoroacetate derivatives could be used for esophageal cancer. Furthermore, quinolone hydrazine derivatives can be used to target breast cancer and cervical cancer. In contrast, the indole derivatives can be preferred to target oral cancer whereas thiosemicarbazone-indole could be used against prostate cancer, as reported in an earlier investigation against cancerous cells. Moreover, these chemical derivatives can be examined as AKIs through preclinical studies. In addition, the synthesis of novel AKIs through these medicinal chemistry substrates in the laboratory using in silico and synthetic routes could be beneficial to develop prospective novel AKIs to target chemoresistant cancers. This study is beneficial to oncologists, chemists, and medicinal chemists to explore novel chemical moiety synthesis to target specifically the peptide sequences of aurora kinases in several chemoresistant cancer cell types.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha Murthy Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya str., Moscow 119991, Russia
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Ramandeep Kaur Baath
- Department of Pharmaceautics, IFTM University, Lodhipur Rajput, NH-24 Delhi Road, Moradabad 244102, Uttar Pradesh, India
| | - Mayuri Patil
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
3
|
Zhang J, Zhou W, Chen Y, Wang Y, Guo Z, Hu W, Li Y, Han X, Si S. Small molecules targeting Pin1 as potent anticancer drugs. Front Pharmacol 2023; 14:1073037. [PMID: 37050909 PMCID: PMC10083437 DOI: 10.3389/fphar.2023.1073037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Pin1 is a member of the evolutionarily conserved peptidyl-prolyl isomerase (PPIase) family of proteins. Following phosphorylation, Pin1-catalyzed prolyl-isomerization induces conformational changes, which serve to regulate the function of many phosphorylated proteins that play important roles during oncogenesis. Thus, the inhibition of Pin1 provides a unique means of disrupting oncogenic pathways and therefore represents an appealing target for novel anticancer therapies.Methods: As Pin1 is conserved between yeast and humans, we employed budding yeast to establish a high-throughput screening method for the primary screening of Pin1 inhibitors. This effort culminated in the identification of the compounds HWH8-33 and HWH8-36. Multifaceted approaches were taken to determine the inhibition profiles of these compounds against Pin1 activity in vitro and in vivo, including an isomerization assay, surface plasmon resonance (SPR) technology, virtual docking, MTT proliferation assay, western blotting, cell cycle analysis, apoptosis analysis, immunofluorescence analysis, wound healing, migration assay, and nude mouse assay.Results:In vitro, HWH8-33 and HWH8-36 could bind to purified Pin1 and inhibited its enzyme activity; showed inhibitory effects on cancer cell proliferation; led to G2/M phase arrest, dysregulated downstream protein expression, and apoptosis; and suppressed cancer cell migration. In vivo, HWH8-33 suppressed tumor growth in the xenograft mice after oral administration for 4 weeks, with no noticeable toxicity. Together, these results show the anticancer activity of HWH8-33 and HWH8-36 against Pin1 for the first time.Conclusion: In summary, we identified two hit compounds HWH8-33 and HWH8-36, which after further structure optimization have the potential to be developed as antitumor drugs.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenwen Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunyu Chen
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Zongru Guo
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhui Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yan Li, ; Xiaomin Han, ; Shuyi Si,
| | - Xiaomin Han
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
- *Correspondence: Yan Li, ; Xiaomin Han, ; Shuyi Si,
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yan Li, ; Xiaomin Han, ; Shuyi Si,
| |
Collapse
|
4
|
Akagi Y, Mori Y, Sato Y, Iwasaki E, Komatsu T. Total synthesis of jadomycins A, B, and L-digitoxosyl-phenanthroviridin. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Gupta D, Kumar M, Singh M, Salman M, Das U, Kaur P. Identification of polypharmacological anticancerous molecules against Aurora kinase family of proteins. J Cell Biochem 2022; 123:719-735. [PMID: 35040172 DOI: 10.1002/jcb.30214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022]
Abstract
The Human Aurora Kinase (AURK) protein family is the key player of cell cycle events including spindle assembly, kinetochore formation, chromosomal segregation, centrosome separation, microtubule dynamics, and cytokinesis. Their aberrant expression has been extensively linked with chromosomal instability in addition to derangement of multiple tumor suppressors and oncoprotein regulated pathways. Therefore, the AURK family of kinases is a promising target for the treatment of various types of cancer. Over the past few decades, several potential inhibitors of AURK proteins have been identified and have reached various phases of clinical trials. But very few molecules have currently crossed the safety criteria due to their various toxic side effects. In the present study, we have adopted a computational polypharmacological strategy and identified four novel molecules that can target all three AURKs. These molecules were further investigated for their binding stabilities at the ATP binding pocket using molecular dynamics based simulation studies. The molecules selected adopting a multipronged computational approach can be considered as potential AURKs inhibitors for cancer therapeutics.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mohd Salman
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Bonitto EP, McKeown BT, Goralski KB. Jadomycins: A potential chemotherapy for multi-drug resistant metastatic breast cancer. Pharmacol Res Perspect 2021; 9:e00886. [PMID: 34708587 PMCID: PMC8551564 DOI: 10.1002/prp2.886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer causes the most cancer fatalities in women worldwide. Approximately one-third of breast cancers metastasize, or spread from primary tumors to other tissues, and have a 70% 5-year mortality rate. Current breast cancer treatments like doxorubicin and paclitaxel become ineffective when breast cancer cells develop multi-drug resistance and overexpress ATP-binding cassette transporters, as the transporters cause a substantial efflux of the chemotherapies. Jadomycins, a group of molecules isolated from Streptomyces venezuelae ISP5230, are shown to be cytotoxic against a variety of cancers, especially breast cancer. Furthermore, jadomycins retain their cytotoxic properties in multi-drug resistant breast cancer cells, as they are not expelled through ATP-binding cassette transporters. Here, we describe the research that supports the potential use of jadomycins as a novel chemotherapy in the treatment of multi-drug resistant, metastatic breast cancer. We present the supportive findings, as well as the mechanisms of action investigated thus far. These include copper-mediated reactive oxygen species generation, aurora B kinase inhibition, and topoisomerase IIα and IIβ inhibition. We also suggest future directions of jadomycin research, which will help to determine if jadomycins can be used as a breast cancer chemotherapy in clinical practice.
Collapse
Affiliation(s)
- Esther P. Bonitto
- Department of PharmacologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Brendan T. McKeown
- Department of PharmacologyDalhousie UniversityHalifaxNova ScotiaCanada
- Beatrice Hunter Cancer Research InstituteHalifaxNova ScotiaCanada
| | - Kerry B. Goralski
- Department of PharmacologyDalhousie UniversityHalifaxNova ScotiaCanada
- Beatrice Hunter Cancer Research InstituteHalifaxNova ScotiaCanada
- College of PharmacyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of PediatricsDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
7
|
Thirunavukkarasu MK, Shin WH, Karuppasamy R. Exploring safe and potent bioactives for the treatment of non-small cell lung cancer. 3 Biotech 2021; 11:241. [PMID: 33968584 DOI: 10.1007/s13205-021-02797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 11/28/2022] Open
Abstract
Activating and suppressing mutations in the MAPK pathway receptors are the primary causes of NSCLC. Of note, MEK inhibition is considered a promising strategy because of the diverse structures and harmful effects of upstream receptors in MAPK pathway. Thus, we explore a total of 1574 plant-based bioactive compounds activity against MEK using an energy-based virtual screening strategy. Molecular docking, binding free energy, and drug-likeness analysis were performed through GLIDE, Prime MM-GBSA, and QikProp module, respectively. The findings indicate that 5-O-caffeoylshikimic acid has an increased binding affinity to MEK protein. Further, molecular dynamic simulations and MM-PBSA analysis were performed to explore the ligand activity in real-life situations. In essence, compounds inhibitory activity was validated across 77 lung cancer cell lines using multimodal attention-based neural network algorithm. Eventually, our analysis highlight that 5-O-caffeoylshikimic acid obtained from the bark of Rhizoma smilacis glabrae would be developed as a potential compound for treating NSCLC.
Collapse
Affiliation(s)
- Muthu Kumar Thirunavukkarasu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014 India
| | - Woong-Hee Shin
- Department of Chemical Science Education, College of Education, Sunchon National University, Suncheon, Republic of Korea
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014 India
| |
Collapse
|
8
|
Baier A, Szyszka R. Compounds from Natural Sources as Protein Kinase Inhibitors. Biomolecules 2020; 10:biom10111546. [PMID: 33198400 PMCID: PMC7698043 DOI: 10.3390/biom10111546] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The advantage of natural compounds is their lower number of side-effects when compared to most synthetic substances. Therefore, over the past several decades, the interest in naturally occurring compounds is increasing in the search for new potent drugs. Natural compounds are playing an important role as a starting point when developing new selective compounds against different diseases. Protein kinases play a huge role in several diseases, like cancers, neurodegenerative diseases, microbial infections, or inflammations. In this review, we give a comprehensive view of natural compounds, which are/were the parent compounds in the development of more potent substances using computational analysis and SAR studies.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Animal Physiology and Toxicology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Correspondence:
| | - Ryszard Szyszka
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
9
|
de Koning CB, Ngwira KJ, Rousseau AL. Biosynthesis, synthetic studies, and biological activities of the jadomycin alkaloids and related analogues. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2020; 84:125-199. [PMID: 32416952 DOI: 10.1016/bs.alkal.2020.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The jadomycins are an expanding class of compounds produced from Streptomyces venezuelae, by diverting the normal biosynthesis which provides the antibiotic chloramphenicol. In the presence of amino acids, and either by heat shock, supplementation with ethanol, or when phage SV1 is added to the culture, the formation of substituted jadomycins and benzo[b]phenanthridines can be achieved. The first part of this review provides details of intermediates involved in the biosynthesis of the jadomycins and the related benzo[b]phenanthridines. Both the jadomycins and the benzo[b]phenanthridines share biosynthetic pathways with a large class of naturally occurring compounds known as the angucyclines. The biosynthetic pathways diverge when it is postulated that an intermediate quinone, such as 3-(2-formyl-6-hydroxy-4-methylphenyl)-8-hydroxy-1,4-naphthoquinone-2-carboxylic acid is formed. The quinone then undergoes reactions with amino acids and derivatives in the culture medium to ultimately afford a library of jadomycins and a few benzo[b]phenanthridines. The second part of the review initially details synthetic efforts toward the synthesis of the naturally occurring benzo[b]phenanthridine, phenanthroviridin, and then outlines methods that have been used to assemble a selection of jadomycins. Total syntheses of jadomycin A and B, derived from l-isoleucine, are described. In addition, the synthesis of the aglycon of jadomycins M, W, S, and T is outlined. These four jadomycins were derived from l-methionine, l-tryptophan, l-serine and l-threonine respectively. As a result of these synthetic efforts, the structures of jadomycin S and T have been revised. The third part of the review describes the reported antibacterial and anticancer activities of both the jadomycins and some naturally occurring benzo[b]phenanthridines.
Collapse
Affiliation(s)
- Charles B de Koning
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | - Kennedy J Ngwira
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda L Rousseau
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Romano JD, Tatonetti NP. Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Front Genet 2019; 10:368. [PMID: 31114606 PMCID: PMC6503039 DOI: 10.3389/fgene.2019.00368] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
The discovery of new pharmaceutical drugs is one of the preeminent tasks-scientifically, economically, and socially-in biomedical research. Advances in informatics and computational biology have increased productivity at many stages of the drug discovery pipeline. Nevertheless, drug discovery has slowed, largely due to the reliance on small molecules as the primary source of novel hypotheses. Natural products (such as plant metabolites, animal toxins, and immunological components) comprise a vast and diverse source of bioactive compounds, some of which are supported by thousands of years of traditional medicine, and are largely disjoint from the set of small molecules used commonly for discovery. However, natural products possess unique characteristics that distinguish them from traditional small molecule drug candidates, requiring new methods and approaches for assessing their therapeutic potential. In this review, we investigate a number of state-of-the-art techniques in bioinformatics, cheminformatics, and knowledge engineering for data-driven drug discovery from natural products. We focus on methods that aim to bridge the gap between traditional small-molecule drug candidates and different classes of natural products. We also explore the current informatics knowledge gaps and other barriers that need to be overcome to fully leverage these compounds for drug discovery. Finally, we conclude with a "road map" of research priorities that seeks to realize this goal.
Collapse
Affiliation(s)
- Joseph D. Romano
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| | - Nicholas P. Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| |
Collapse
|
11
|
Hameed R, Khan A, Khan S, Perveen S. Computational Approaches Towards Kinases as Attractive Targets for Anticancer Drug Discovery and Development. Anticancer Agents Med Chem 2018; 19:592-598. [PMID: 30306880 DOI: 10.2174/1871520618666181009163014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/09/2018] [Accepted: 09/03/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND One of the major goals of computational chemists is to determine and develop the pathways for anticancer drug discovery and development. In recent past, high performance computing systems elicited the desired results with little or no side effects. The aim of the current review is to evaluate the role of computational chemistry in ascertaining kinases as attractive targets for anticancer drug discovery and development. METHODS Research related to computational studies in the field of anticancer drug development is reviewed. Extensive literature on achievements of theorists in this regard has been compiled and presented with special emphasis on kinases being the attractive anticancer drug targets. RESULTS Different approaches to facilitate anticancer drug discovery include determination of actual targets, multi-targeted drug discovery, ligand-protein inverse docking, virtual screening of drug like compounds, formation of di-nuclear analogs of drugs, drug specific nano-carrier design, kinetic and trapping studies in drug design, multi-target QSAR (Quantitative Structure Activity Relationship) model, targeted co-delivery of anticancer drug and siRNA, formation of stable inclusion complex, determination of mechanism of drug resistance, and designing drug like libraries for the prediction of drug-like compounds. Protein kinases have gained enough popularity as attractive targets for anticancer drugs. These kinases are responsible for uncontrolled and deregulated differentiation, proliferation, and cell signaling of the malignant cells which result in cancer. CONCLUSION Interest in developing drugs through computational methods is a growing trend, which saves equally the cost and time. Kinases are the most popular targets among the other for anticancer drugs which demand attention. 3D-QSAR modelling, molecular docking, and other computational approaches have not only identified the target-inhibitor binding interactions for better anticancer drug discovery but are also designing and predicting new inhibitors, which serve as lead for the synthetic preparation of drugs. In light of computational studies made so far in this field, the current review highlights the importance of kinases as attractive targets for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Rabia Hameed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sehroon Khan
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 560201, Yunnan, China
| | - Shagufta Perveen
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Forget SM, Robertson AW, Hall SR, MacLeod JM, Overy DP, Kerr RG, Goralski KB, Jakeman DL. Isolation of a jadomycin incorporating L-ornithine, analysis of antimicrobial activity and jadomycin reactive oxygen species (ROS) generation in MDA-MB-231 breast cancer cells. J Antibiot (Tokyo) 2018; 71:722-730. [PMID: 29700425 DOI: 10.1038/s41429-018-0060-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 02/01/2023]
Abstract
Herein, we report the characterization and antimicrobial activity of a previously unreported jadomycin (1) obtained from a culture of S. venezuelae ISP5230 with L-ornithine (Orn). 1 arises from the rearrangement of a putative five-membered ring containing jadomycin incorporating Orn, whereby intramolecular attack of the E-ring carbonyl from the δ-NH2 group of the Orn side chain results in collapse of the oxazolone ring and formation of a stable six-membered lactam. This rearrangement produces a jadomycin with a 3a hemiaminal position that is susceptible to solvolysis. A structure-activity relationship is discussed based on the antimicrobial activity of 1 compared to previously reported jadomycins, providing evidence that the presence of a 3a hemiaminal enhances activity against Gram-positive bacteria. Additionally, assays to quantify reactive oxygen species (ROS) generation and cell viability were performed using a series of nine jadomycins. Compound 1 was found to produce the highest ROS activity and to possess the greatest cytotoxicity against MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Stephanie M Forget
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Andrew W Robertson
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Steven R Hall
- College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jeanna M MacLeod
- College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - David P Overy
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Russell G Kerr
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Kerry B Goralski
- College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - David L Jakeman
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
13
|
Heravi MM, Ghalavand N, Ghanbarian M, Mohammadkhani L. Applications of Mitsunobu Reaction in total synthesis of natural products. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| | - Nastaran Ghalavand
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| | - Manizheh Ghanbarian
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| | - Leyla Mohammadkhani
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| |
Collapse
|
14
|
Abstract
The jadomycin family of natural products was discovered from Streptomyces venezuelae ISP5230 in the 1990s. Subsequent identification of the biosynthetic gene cluster along with synthetic efforts established that incorporation of an amino acid into the polyaromatic angucycline core occurs non-enzymatically. Over two decades, the precursor-directed biosynthetic potential of the jadomycins has been heavily exploited, generating a library exceeding 70 compounds. This review compiles the jadomycins that have been isolated and characterized to date; these include jadomycins incorporating proteinogenic and non-proteinogenic amino acids, semi-synthetic derivatives, biosynthetic shunt products, compounds isolated in structural gene deletion studies, and deoxysugar sugar variant jadomycins produced by deletion or heterologous expression of sugar biosynthetic genes.
Collapse
Affiliation(s)
- Jeanna M. MacLeod
- College of Pharmacy, Dalhousie University, Halifax, NS, B3H 1X7, Canada
| | | | - David L. Jakeman
- College of Pharmacy, Dalhousie University, Halifax, NS, B3H 1X7, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
15
|
Hall SR, Toulany J, Bennett LG, Martinez-Farina CF, Robertson AW, Jakeman DL, Goralski KB. Jadomycins Inhibit Type II Topoisomerases and Promote DNA Damage and Apoptosis in Multidrug-Resistant Triple-Negative Breast Cancer Cells. J Pharmacol Exp Ther 2017; 363:196-210. [PMID: 28904004 DOI: 10.1124/jpet.117.241125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/07/2017] [Indexed: 12/24/2022] Open
Abstract
Jadomycins are natural products that kill drug-sensitive and multidrug-resistant (MDR) breast cancer cells. To date, the cytotoxic activity of jadomycins has never been tested in MDR breast cancer cells that are also triple negative. Additionally, there is only a rudimentary understanding of how jadomycins cause cancer cell death, which includes the induction of intracellular reactive oxygen species (ROS). We first created a paclitaxel-resistant, triple-negative breast cancer cell line [paclitaxel-resistant MDA-MB-231 breast cancer cells (231-TXL)] from drug-sensitive control MDA-MB-231 cells (231-CON). Using thiazolyl blue methyltetrazolium bromide cell viability-measuring assays, jadomycins B, S, and F were found to be equipotent in drug-sensitive 231-CON and MDR 231-TXL cells; and using ROS-detecting assays, these jadomycins were determined to increase ROS activity in both cell lines by up to 7.3-fold. Jadomycins caused DNA double-strand breaks in 231-CON and 231-TXL cells as measured by γH2AX Western blotting. Coincubation with the antioxidant N-acetyl cysteine or pro-oxidant auranofin did not affect jadomycin-mediated DNA damage. Jadomycins induced apoptosis in 231-CON and 231-TXL cells as measured by annexin V affinity assays, a process that was retained when ROS were inhibited. This indicated that jadomycins are capable of inducing MDA-MB-231 apoptotic cell death independently of ROS activity. Using quantitative polymerase chain reaction, Western blotting, and direct topoisomerase inhibition assays, it was determined that jadomycins inhibit type II topoisomerases and that jadomycins B and F selectively poison topoisomerase IIβ We therefore propose novel mechanisms through which jadomycins induce breast cancer cell death independently of ROS activity, through inhibition or poisoning of type II topoisomerases and the induction of DNA damage and apoptosis.
Collapse
Affiliation(s)
- Steven R Hall
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jay Toulany
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Leah G Bennett
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Camilo F Martinez-Farina
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew W Robertson
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - David L Jakeman
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Pharmacology, Faculty of Medicine (S.R.H., K.B.G.), College of Pharmacy, Faculty of Health (J.T., L.G.B, D.L.J., K.B.G.), and Department of Chemistry, Faculty of Sciences (C.F.M.-F., A.W.R., D.L.J.), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
16
|
The potential role of in silico approaches to identify novel bioactive molecules from natural resources. Future Med Chem 2017; 9:1665-1686. [PMID: 28841048 DOI: 10.4155/fmc-2017-0124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent years, integration of in silico approaches to natural product (NP) research reawakened the declined interest in NP-based drug discovery efforts. In particular, advancements in cheminformatics enabled comparison of NP databases with contemporary small-molecule libraries in terms of molecular properties and chemical space localizations. Virtual screening and target fishing approaches were successful in recognizing the untold macromolecular targets for NPs to exploit the unmet therapeutic needs. Developments in molecular docking and scoring methods along with molecular dynamics enabled to predict the target-ligand interactions more accurately taking into consideration the remarkable structural complexity of NPs. Hence, innovative in silico strategies have contributed valuably to the NP research in drug discovery processes as reviewed herein. [Formula: see text].
Collapse
|
17
|
Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible O-glycosyltransferase. Appl Microbiol Biotechnol 2017; 101:5291-5300. [PMID: 28429060 DOI: 10.1007/s00253-017-8256-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/12/2017] [Accepted: 03/16/2017] [Indexed: 12/29/2022]
Abstract
Glycosyltransferases (GTs)-mediated glycodiversification studies have drawn significant attention recently, with the goal of generating bioactive compounds with improved pharmacological properties by diversifying the appended sugars. The key to achieving glycodiversification is to identify natural and/or engineered flexible GTs capable of acting upon a broad range of substrates. Here, we report the use of a combinatorial biosynthetic approach to probe the substrate flexibility of JadS, the GT in jadomycin biosynthesis, towards different non-native NDP-sugar substrates, enabling us to identify six jadomycin B analogues with different sugar moieties. Further structural engineering by precursor-directed biosynthesis allowed us to obtain 11 new jadomycin analogues. Our results for the first time show that JadS is a flexible O-GT that can utilize both L- and D- sugars as donor substrates, and tolerate structural changes at the C2, C4 and C6 positions of the sugar moiety. JadS may be further exploited to generate novel glycosylated jadomycin molecules in future glycodiversification studies.
Collapse
|
18
|
Dube D, Tiwari P, Kaur P. The hunt for antimitotic agents: an overview of structure-based design strategies. Expert Opin Drug Discov 2016; 11:579-97. [PMID: 27077683 DOI: 10.1080/17460441.2016.1174689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Structure-based drug discovery offers a rational approach for the design and development of novel anti-mitotic agents which target specific proteins involved in mitosis. This strategy has paved the way for development of a new generation of chemotypes which selectively interfere with the target proteins. The interference of these anti-mitotic targets implicated in diverse stages of mitotic cell cycle progression culminates in cancer cell apoptosis. AREAS COVERED This review covers the various mitotic inhibitors developed against validated mitotic checkpoint protein targets using structure-based design and optimization strategies. The protein-ligand interactions and the insights gained from these studies, culminating in the development of more potent and selective inhibitors, have been presented. EXPERT OPINION The advent of structure-based drug design coupled with advances in X-ray crystallography has revolutionized the discovery of candidate lead molecules. The structural insights gleaned from the co-complex protein-drug interactions have provided a new dimension in the design of anti-mitotic molecules to develop drugs with a higher selectivity and specificity profile. Targeting non-catalytic domains has provided an alternate approach to address cross-reactivity and broad selectivity among kinase inhibitors. The elucidation of structures of emerging mitotic drug targets has opened avenues for the design of inhibitors that target cancer.
Collapse
Affiliation(s)
- D Dube
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Tiwari
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Kaur
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
19
|
Zhang L, Yang T, Xie X, Liu G. Identification of 3,5,6-substituted indolin-2-one’s inhibitors of Aurora B by development of a luminescent kinase assay. Bioorg Med Chem Lett 2015; 25:2937-42. [DOI: 10.1016/j.bmcl.2015.05.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/07/2015] [Accepted: 05/15/2015] [Indexed: 12/30/2022]
|
20
|
Hall SR, Blundon HL, Ladda MA, Robertson AW, Martinez-Farina CF, Jakeman DL, Goralski KB. Jadomycin breast cancer cytotoxicity is mediated by a copper-dependent, reactive oxygen species-inducing mechanism. Pharmacol Res Perspect 2015; 3:e00110. [PMID: 25729577 PMCID: PMC4324684 DOI: 10.1002/prp2.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/10/2014] [Indexed: 12/29/2022] Open
Abstract
Jadomycins are natural products biosynthesized by the bacteria Streptomyces venezuelae which kill drug-sensitive and multidrug-resistant breast cancer cells in culture. Currently, the mechanisms of jadomycin cytotoxicity are poorly understood; however, reactive oxygen species (ROS)–induced DNA cleavage is suggested based on bacterial plasmid DNA cleavage studies. The objective of this study was to determine if and how ROS contribute to jadomycin cytotoxicity in drug-sensitive MCF7 (MCF7-CON) and taxol-resistant MCF7 (MCF7-TXL) breast cancer cells. As determined using an intracellular, fluorescent, ROS-detecting probe, jadomycins B, S, SPhG, and F dose dependently increased intracellular ROS activity 2.5- to 5.9-fold. Cotreatment with the antioxidant N-acetyl cysteine lowered ROS concentrations to below baseline levels and decreased the corresponding cytotoxic potency of the four jadomycins 1.9- to 3.3-fold, confirming a ROS-mediated mechanism. Addition of CuSO4 enhanced, whereas addition of the Cu(II)-chelator d-penicillamine reduced, the ROS generation and cytotoxicity of each jadomycin. Specific inhibitors of the antioxidant enzymes, superoxide dismutase 1, glutathione S-transferase, and thioredoxin reductase, but not catalase, enhanced jadomycin-mediated ROS generation and anticancer activity. In conclusion, the results indicate that jadomycin cytotoxicity involves the generation of cytosolic superoxide via a Cu(II)-jadomycin reaction, a mechanism common to all jadomycins tested and observed in MCF7-CON and drug-resistant MCF7-TXL cells. The superoxide dismutase 1, glutathione, and peroxiredoxin/thioredoxin cellular antioxidant enzyme pathways scavenged intracellular ROS generated by jadomycin treatment. Blocking these antioxidant pathways could serve as a strategy to enhance jadomycin cytotoxic potency in drug-sensitive and multidrug-resistant breast cancers.
Collapse
Affiliation(s)
- Steven R Hall
- Department of Pharmacology, Faculty of Medicine, Dalhousie University Halifax, Nova Scotia, Canada, B3H 4R2
| | - Heather L Blundon
- College of Pharmacy, Faculty of Health Professions, Dalhousie University Halifax, Nova Scotia, Canada, B3H 4R2
| | - Matthew A Ladda
- College of Pharmacy, Faculty of Health Professions, Dalhousie University Halifax, Nova Scotia, Canada, B3H 4R2
| | - Andrew W Robertson
- Department of Chemistry, Faculty of Sciences, Dalhousie University Halifax, Nova Scotia, Canada, B3H 4R2
| | - Camilo F Martinez-Farina
- Department of Chemistry, Faculty of Sciences, Dalhousie University Halifax, Nova Scotia, Canada, B3H 4R2
| | - David L Jakeman
- College of Pharmacy, Faculty of Health Professions, Dalhousie University Halifax, Nova Scotia, Canada, B3H 4R2 ; Department of Chemistry, Faculty of Sciences, Dalhousie University Halifax, Nova Scotia, Canada, B3H 4R2
| | - Kerry B Goralski
- Department of Pharmacology, Faculty of Medicine, Dalhousie University Halifax, Nova Scotia, Canada, B3H 4R2 ; College of Pharmacy, Faculty of Health Professions, Dalhousie University Halifax, Nova Scotia, Canada, B3H 4R2
| |
Collapse
|
21
|
Martinez-Farina CF, McCormick N, Robertson AW, Clement H, Jee A, Ampaw A, Chan NL, Syvitski RT, Jakeman DL. Investigations into the binding of jadomycin DS to human topoisomerase IIβ by WaterLOGSY NMR spectroscopy. Org Biomol Chem 2015; 13:10324-7. [DOI: 10.1039/c5ob01508a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
First evidence that jadomycins bind human topoisomerase IIβ.
Collapse
Affiliation(s)
| | | | | | - Helen Clement
- College of Pharmacy
- Dalhousie University
- Halifax
- Canada
| | - Alison Jee
- College of Pharmacy
- Dalhousie University
- Halifax
- Canada
| | - Anna Ampaw
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology
- College Medicine
- National Taiwan University
- Taipei City 100
- Taiwan
| | - Ray T. Syvitski
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
- Institute of Marine Biosciences
| | - David L. Jakeman
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
- College of Pharmacy
| |
Collapse
|
22
|
Kallio P, Patrikainen P, Belogurov GA, Mäntsälä P, Yang K, Niemi J, Metsä-Ketelä M. Tracing the evolution of angucyclinone monooxygenases: structural determinants for C-12b hydroxylation and substrate inhibition in PgaE. Biochemistry 2013; 52:4507-16. [PMID: 23731237 DOI: 10.1021/bi400381s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two functionally distinct homologous flavoprotein hydroxylases, PgaE and JadH, have been identified as branching points in the biosynthesis of the polyketide antibiotics gaudimycin C and jadomycin A, respectively. These evolutionarily related enzymes are both bifunctional and able to catalyze the same initial reaction, C-12 hydroxylation of the common angucyclinone intermediate prejadomycin. The enzymes diverge in their secondary activities, which include hydroxylation at C-12b by PgaE and dehydration at C-4a/C-12b by JadH. A further difference is that the C-12 hydroxylation is subject to substrate inhibition only in PgaE. Here we have identified regions associated with the C-12b hydroxylation in PgaE by extensive chimeragenesis, focusing on regions surrounding the active site. The results highlight the importance of a hairpin-β motif near the dimer interface, with two nonconserved residues, P78 and I79 (corresponding to Q89 and F90, respectively, in JadH), and invariant residue H73 playing key roles. Kinetic characterization of PgaE variants demonstrates that the secondary C-12b hydroxylation and substrate inhibition by prejadomycin are likely to be interlinked. The crystal structure of the PgaE P78Q/I79F variant at 2.4 Å resolution confirms that the changes do not alter the conformation of the β-strand secondary structure and that the side chains of these residues in effect point away from the active site toward the dimer interface. The results support a catalytic model for PgaE containing two binding modes for C-12 and C-12b hydroxylations, where binding of prejadomycin in the orientation for C-12b hydroxylation leads to substrate inhibition. The presence of an allosteric network is evident based on enzyme kinetics.
Collapse
Affiliation(s)
- Pauli Kallio
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Ngoei KRW, Ng DCH, Gooley PR, Fairlie DP, Stoermer MJ, Bogoyevitch MA. Identification and characterization of bi-thiazole-2,2'-diamines as kinase inhibitory scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1077-88. [PMID: 23410953 DOI: 10.1016/j.bbapap.2013.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/30/2013] [Accepted: 02/03/2013] [Indexed: 11/18/2022]
Abstract
Based on bioinformatics interrogation of the genome, >500 mammalian protein kinases can be clustered within seven different groups. Of these kinases, the mitogen-activated protein kinase (MAPK) family forms part of the CMGC group of serine/threonine kinases that includes extracellular signal regulated kinases (ERKs), cJun N-terminal kinases (JNKs), and p38 MAPKs. With the JNKs considered attractive targets in the treatment of pathologies including diabetes and stroke, efforts have been directed to the discovery of new JNK inhibitory molecules that can be further developed as new therapeutics. Capitalizing on our biochemical understanding of JNK, we performed in silico screens of commercially available chemical databases to identify JNK1-interacting compounds and tested their in vitro JNK inhibitory activity. With in vitro and cell culture studies, we showed that the compound, 4'-methyl-N(2)-3-pyridinyl-4,5'-bi-1,3-thiazole-2,2'-diamine (JNK Docking (JD) compound 123, but not the related compound (4'-methyl-N~2~-(6-methyl-2-pyridinyl)-4,5'-bi-1,3-thiazole-2,2'-diamine (JD124), inhibited JNK1 activity towards a range of substrates. Molecular docking, saturation transfer difference NMR experiments and enzyme kinetic analyses revealed both ATP- and substrate-competitive inhibition of JNK by JD123. In characterizing JD123 further, we noted its ATP-competitive inhibition of the related p38-γ MAPK, but not ERK1, ERK2, or p38-α, p38-β or p38-δ. Further screening of a broad panel of kinases using 10μM JD123, identified inhibition of kinases including protein kinase Bβ (PKBβ/Aktβ). Appropriately modified thiazole diamines, as typified by JD123, thus provide a new chemical scaffold for development of inhibitors for the JNK and p38-γ MAPKs as well as other kinases that are also potential therapeutic targets such as PKBβ/Aktβ.
Collapse
Affiliation(s)
- Kevin R W Ngoei
- Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Evaluation of the cytotoxic activity of new jadomycin derivatives reveals the potential to improve its selectivity against tumor cells. J Antibiot (Tokyo) 2012; 65:449-52. [DOI: 10.1038/ja.2012.48] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Khodade VS, Dharmaraja AT, Chakrapani H. Synthesis, reactive oxygen species generation and copper-mediated nuclease activity profiles of 2-aryl-3-amino-1,4-naphthoquinones. Bioorg Med Chem Lett 2012; 22:3766-9. [DOI: 10.1016/j.bmcl.2012.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/16/2012] [Accepted: 04/03/2012] [Indexed: 01/08/2023]
|
27
|
Sharif EU, O’Doherty GA. Biosynthesis and Total Synthesis Studies on The Jadomycin Family of Natural Products. European J Org Chem 2012; 2012:10.1002/ejoc.201101609. [PMID: 24371430 PMCID: PMC3871192 DOI: 10.1002/ejoc.201101609] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Indexed: 11/11/2022]
Abstract
Jadomycins are unique angucycline polyketides, which are produced by soil bacteria Streptomyces venezuelae under specific nutrient and environmental conditions. Their unique structural complexity and biological activities have engendered extensive study of the jadomycin class of natural compounds in terms of biological activity, biosynthesis, and synthesis. This review outlines the recent developments in the study of the synthesis and biosynthesis of jadomycins.
Collapse
Affiliation(s)
- Ehesan U. Sharif
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, Homepage: http://nuweb9.neu.edu/odoherty/
| | - George A. O’Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, Homepage: http://nuweb9.neu.edu/odoherty/
| |
Collapse
|
28
|
Liu J, Zhang Z, Xu Y, Feng T, Jiang W, Li Z, Hong B, Xie Z, Si S. IMB2026791, a xanthone, stimulates cholesterol efflux by increasing the binding of apolipoprotein A-I to ATP-binding cassette transporter A1. Molecules 2012; 17:2833-54. [PMID: 22399138 PMCID: PMC6268880 DOI: 10.3390/molecules17032833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/16/2012] [Accepted: 02/24/2012] [Indexed: 11/24/2022] Open
Abstract
It is known that the ATP-binding cassette transporter A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein (HDL) metabolism. Several laboratories have demonstrated that ABCA1 binding to lipid-poor apolipoprotein A-I (apoA-I) will mediate the assembly of nascent HDL and cellular cholesterol efflux, which suggests a possible receptor-ligand interaction between ABCA1 and apoA-I. In this study, a cell-based-ELISA-like high-throughput screening (HTS) method was developed to identify the synthetic and natural compounds that can regulate binding activity of ABCA1 to apoA-I. The cell-based-ELISA-like high-throughput screen was conducted in a 96-well format using Chinese hamster ovary (CHO) cells stably transfected with ABCA1 pIRE2-EGFP (Enhanced Green Fluorecence Protein) expression vector and the known ABCA1 inhibitor glibenclamide as the antagonist control. From 2,600 compounds, a xanthone compound (IMB 2026791) was selected using this HTS assay, and it was proved as an apoA-I binding agonist to ABCA1 by a flow cytometry assay and western blot analysis. The 3H cholesterol efflux assay of IMB2026791 treated ABCA1-CHO cells and PMA induced THP-1 macrophages (human acute monocytic leukemia cell) further confirmed the compound as an accelerator of cholesterol efflux in a dose-dependent manner with an EC50 of 25.23 μM.
Collapse
Affiliation(s)
- Jikai Liu
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Zhongbing Zhang
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Yanni Xu
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Tingting Feng
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Wei Jiang
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Zhuorong Li
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Bin Hong
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Zijian Xie
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, OH 43614, USA
- Authors to whom correspondence should be addressed; (Z.X.); (S.S.); Tel.: +1-419-383-4182 (Z.X.); Fax: +1-419-383-2871 (Z.X.); Tel./Fax: +86-10-6318-0604 (S.S.)
| | - Shuyi Si
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
- Authors to whom correspondence should be addressed; (Z.X.); (S.S.); Tel.: +1-419-383-4182 (Z.X.); Fax: +1-419-383-2871 (Z.X.); Tel./Fax: +86-10-6318-0604 (S.S.)
| |
Collapse
|
29
|
Aurora kinase B/C inhibition impairs malignant glioma growth in vivo. J Neurooncol 2012; 108:349-60. [PMID: 22382783 DOI: 10.1007/s11060-012-0835-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 02/15/2012] [Indexed: 12/25/2022]
Abstract
Inhibition of Aurora kinase B has been evaluated as a therapy to block solid tumor growth in breast cancer, hepatocellular carcinoma, lung adenocarcinoma, and colorectal cancer models. Aurora kinase inhibitors are in early clinical trials for the treatment of leukemia. We hypothesized that Aurora B inhibition would reduce malignant glioma cell viability and result in impaired tumor growth in vivo. Aurora B expression is greater in cultured malignant glioma U251 cells compared to proliferating normal human astrocytes, and expression is maintained in U251 flank xenografts. Aurora B inhibition with AZD1152-HQPA blocked cell division in four different p53-mutant glioma cell lines (U251, T98G, U373, and U118). AZD1152-HQPA also inhibited Aurora C activation loop threonine autophosphorylation at the effective antiproliferative concentrations in vitro. Reduction in cell viability of U251 (p53(R273H)) cells was secondary to cytokinesis blockade and apoptosis induction following endoreplication. AZD1152-HQPA inhibited the growth of U251 tumor xenografts and resulted in an increase in tumor cell apoptosis both in vitro and in vivo. Subcutaneous administration of AZD1152-HQPA (25 mg/kg/day × 4 days; 2 cycles spaced 7 days apart) resulted in a prolongation in median survival after intracranial inoculation of U251 cells in mice (P = 0.025). This is the first demonstration that an Aurora kinase inhibitor can inhibit malignant glioma growth in vivo at drug doses that are clinically relevant.
Collapse
|
30
|
Kollareddy M, Zheleva D, Dzubak P, Brahmkshatriya PS, Lepsik M, Hajduch M. Aurora kinase inhibitors: progress towards the clinic. Invest New Drugs 2012; 30:2411-32. [PMID: 22350019 PMCID: PMC3484309 DOI: 10.1007/s10637-012-9798-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/29/2012] [Indexed: 11/29/2022]
Abstract
The Aurora kinases (serine/threonine kinases) were discovered in 1995 during studies of mutant alleles associated with abnormal spindle pole formation in Drosophila melanogaster. They soon became the focus of much attention because of their importance in human biology and association with cancer. Aurora kinases are essential for cell division and are primarily active during mitosis. Following their identification as potential targets for cancer chemotherapy, many Aurora kinase inhibitors have been discovered, and are currently under development. The binding modes of Aurora kinase inhibitors to Aurora kinases share specific hydrogen bonds between the inhibitor core and the back bone of the kinase hinge region, while others parts of the molecules may point to different parts of the active site via noncovalent interactions. Currently there are about 30 Aurora kinase inhibitors in different stages of pre-clinical and clinical development. This review summarizes the characteristics and status of Aurora kinase inhibitors in preclinical, Phase I, and Phase II clinical studies, with particular emphasis on the mechanisms of action and resistance to these promising anticancer agents. We also discuss the validity of Aurora kinases as oncology targets, on/off-target toxicities, and other important aspects of overall clinical performance and future of Aurora kinase inhibitors.
Collapse
Affiliation(s)
- Madhu Kollareddy
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Palacky University, Puskinova 6, Olomouc, 77520, Czech Republic
| | | | | | | | | | | |
Collapse
|
31
|
Liu J, Hu Y, Waller DL, Wang J, Liu Q. Natural products as kinase inhibitors. Nat Prod Rep 2012; 29:392-403. [DOI: 10.1039/c2np00097k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Dupuis SN, Robertson AW, Veinot T, Monro SMA, Douglas SE, Syvitski RT, Goralski KB, McFarland SA, Jakeman DL. Synthetic diversification of natural products: semi-synthesis and evaluation of triazole jadomycins. Chem Sci 2012. [DOI: 10.1039/c2sc00663d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Ma DL, Chan DSH, Leung CH. Molecular docking for virtual screening of natural product databases. Chem Sci 2011. [DOI: 10.1039/c1sc00152c] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
34
|
Li Y, Ren G, Wang YX, Kong WJ, Yang P, Wang YM, Li YH, Yi H, Li ZR, Song DQ, Jiang JD. Bioactivities of berberine metabolites after transformation through CYP450 isoenzymes. J Transl Med 2011; 9:62. [PMID: 21569619 PMCID: PMC3103436 DOI: 10.1186/1479-5876-9-62] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 05/15/2011] [Indexed: 12/02/2022] Open
Abstract
Background Berberine (BBR) is a drug with multiple effects on cellular energy metabolism. The present study explored answers to the question of which CYP450 (Cytochrome P450) isoenzymes execute the phase-I transformation for BBR, and what are the bioactivities of its metabolites on energy pathways. Methods BBR metabolites were detected using LC-MS/MS. Computer-assistant docking technology as well as bioassays with recombinant CYP450s were employed to identify CYP450 isoenzymes responsible for BBR phase-I transformation. Bioactivities of BBR metabolites in liver cells were examined with real time RT-PCR and kinase phosphorylation assay. Results In rat experiments, 4 major metabolites of BBR, berberrubine (M1), thalifendine (M2), demethyleneberberine (M3) and jatrorrhizine (M4) were identified in rat's livers using LC-MS/MS (liquid chromatography-tandem mass spectrometry). In the cell-free transformation reactions, M2 and M3 were detectable after incubating BBR with rCYP450s or human liver microsomes; however, M1 and M4 were below detective level. CYP2D6 and CYP1A2 played a major role in transforming BBR into M2; CYP2D6, CYP1A2 and CYP3A4 were for M3 production. The hepatocyte culture showed that BBR was active in enhancing the expression of insulin receptor (InsR) and low-density-lipoprotein receptor (LDLR) mRNA, as well as in activating AMP-activated protein kinase (AMPK). BBR's metabolites, M1-M4, remained to be active in up-regulating InsR expression with a potency reduced by 50-70%; LDLR mRNA was increased only by M1 or M2 (but not M3 and M4) with an activity level 35% or 26% of that of BBR, respectively. Similarly, AMPK-α phosphorylation was enhanced by M1 and M2 only, with a degree less than that of BBR. Conclusions Four major BBR metabolites (M1-M4) were identified after phase-I transformation in rat liver. Cell-free reactions showed that CYP2D6, CYP1A2 and CYP3A4 seemed to be the dominant CYP450 isoenzymes transforming BBR into its metabolites M2 and M3. BBR's metabolites remained to be active on BBR's targets (InsR, LDLR, and AMPK) but with reduced potency.
Collapse
Affiliation(s)
- Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brooijmans N, Cross JB, Humblet C. Biased retrieval of chemical series in receptor-based virtual screening. J Comput Aided Mol Des 2010; 24:1053-62. [DOI: 10.1007/s10822-010-9394-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 10/19/2010] [Indexed: 11/30/2022]
|
36
|
Chen Y, Fan K, He Y, Xu X, Peng Y, Yu T, Jia C, Yang K. Characterization of JadH as an FAD- and NAD(P)H-dependent bifunctional hydroxylase/dehydrase in jadomycin biosynthesis. Chembiochem 2010; 11:1055-60. [PMID: 20422670 DOI: 10.1002/cbic.201000178] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yihua Chen
- Division of Pharmaceutical Sciences,University of Wisconsin, Madison, WI 53705 78, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Harvey AL, Clark RL, Mackay SP, Johnston BF. Current strategies for drug discovery through natural products. Expert Opin Drug Discov 2010; 5:559-68. [PMID: 22823167 DOI: 10.1517/17460441.2010.488263] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE TO THE FIELD Natural products are the most consistently successful source of drug leads, both historically and currently. Despite this, the use of natural products in industrial drug discovery has fallen out of favour. Natural products are likely to continue to be sources of new commercially viable drug leads because the chemical novelty associated with natural products is higher than that of any other source: this is particularly important when searching for lead molecules against newly discovered targets for which there are no known small molecule leads. Areas to be covered: Current drug discovery strategies involving natural products are described in three sections: developments from traditionally used medicines, random testing of natural compounds on biological assays and use of virtual screening techniques with structures of natural products. WHAT THE READER WILL GAIN The reader will gain an insight into the potential for natural products in current drug discovery paradigms, particularly in the value of using natural products in virtual screening approaches. TAKE HOME MESSAGE Drug discovery would be enriched if fuller use was made of the chemistry of natural products.
Collapse
Affiliation(s)
- Alan L Harvey
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, 27 Taylor Street, Glasgow G4 0NR, UK +44 141 553 4155 ; +44 141 552 8376 ;
| | | | | | | |
Collapse
|
38
|
Brooijmans N, Humblet C. Chemical space sampling by different scoring functions and crystal structures. J Comput Aided Mol Des 2010; 24:433-47. [DOI: 10.1007/s10822-010-9356-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
|
39
|
Akagi Y, Yamada SI, Etomi N, Kumamoto T, Nakanishi W, Ishikawa T. Synthetic studies on jadomycins: synthesis of dimethyljadomycin A. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Structural studies of B-type Aurora kinase inhibitors using computational methods. Acta Pharmacol Sin 2010; 31:244-58. [PMID: 20139908 DOI: 10.1038/aps.2009.188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To characterize the structural features of quinazoline-based Aurora B inhibitors that influence its inhibitor activity. METHODS Two geometrical methods, Method 1 and Method 2, were used to develop the 3D-QSAR models. The most active ligand was used as the template for the alignment of all the ligands in Method 1, and a conformer of the cocrystal ligand was used as the template for the alignment of all the ligands in Method 2. RESULTS The models suggest that highly active ligands can be designed by varying the R1 substituent at position 7 of the quinazoline ring with positively charged, bulky, hydrophobic groups, while bulky and hydrophobic groups around the thiazole ring are desirable for higher activity. CONCLUSION This study emphasizes that the bioactive conformer is rather different from the minima. The steric, electrostatic, and hydrophobic field effects contribute to its inhibitory activity.
Collapse
|
41
|
|
42
|
Coumar MS, Leou JS, Shukla P, Wu JS, Dixit AK, Lin WH, Chang CY, Lien TW, Tan UK, Chen CH, Hsu JTA, Chao YS, Wu SY, Hsieh HP. Structure-based drug design of novel Aurora kinase A inhibitors: structural basis for potency and specificity. J Med Chem 2009; 52:1050-62. [PMID: 19140666 DOI: 10.1021/jm801270e] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aurora kinases have emerged as attractive targets for the design of anticancer drugs. Through structure-based virtual screening, novel pyrazole hit 8a was identified as Aurora kinase A inhibitor (IC(50) = 15.1 microM). X-ray cocrystal structure of 8a in complex with Aurora A protein revealed the C-4 position ethyl carboxylate side chain as a possible modification site for improving the potency. On the basis of this insight, bioisosteric replacement of the ester with amide linkage and changing the ethyl substituent to hydrophobic 3-acetamidophenyl ring led to the identification of 12w with a approximately 450-fold improved Aurora kinase A inhibition potency (IC(50) = 33 nM), compared to 8a. Compound 12w showed selective inhibition of Aurora A kinase over Aurora B/C, which might be due to the presence of a unique H-bond interaction between the 3-acetamido group and the Aurora A nonconserved Thr217 residue, which in Aurora B/C is Glu and found to sterically clash with the 3-acetamido group in modeling studies.
Collapse
Affiliation(s)
- Mohane Selvaraj Coumar
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Scherlach K, Hertweck C. Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 2009; 7:1753-60. [PMID: 19590766 DOI: 10.1039/b821578b] [Citation(s) in RCA: 400] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural products from microorganisms are a crucial source for novel therapeutics. Even so, it seems that many valuable compounds are overlooked when culturing microbes under standardized laboratory conditions. Many biosynthesis genes remain silent and such "cryptic" or "orphan" pathways are only activated under specific conditions. This report gives an overview on the strategies to trigger biosynthetic pathways to yield "cryptic natural products" through external cues, co-cultivation and genomic approaches such as genome-mining, epigenetic remodeling, and engineered pathway activation.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology, (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | | |
Collapse
|