1
|
Bai H, Ding J, Wang S, Zhang S, Jiang N, Wu X, Chen G, Dang Q, Liu M, Tang B, Wang X. Murine skeletal muscle satellite cells isolation and preliminary study on regulation in immune microenvironment during nurse cells formation of Trichinella spiralis infection. Vet Parasitol 2024:110175. [PMID: 38614824 DOI: 10.1016/j.vetpar.2024.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
As an intracellular parasitic nematode, Trichinella spiralis (T. spiralis) can induce the formation of nurse cells (NC) in host muscles and keep it to survive within the NC for an extended period. The formation of NC is similar to muscle cell injury and repair which lead to the arrest of satellite cells in the G2/M phase and build a suitable parasitic environment for the muscle larvae of T. spiralis. However, the molecular mechanisms involved in skeletal muscle repair through skeletal muscle satellite cells (SMSC) and the host immune response during T. spiralis infection have not been fully elucidated. In this study, histopathological examination revealed that the severity of damage increased as the infection progressed in the soleus muscle. SMSCs were isolated from BALB/c mice infected with T. spiralis at 4, 21 and 35 days post-infection (dpi). The immunological characteristics of these cells were analyzed by real-time PCR and flow cytometry (FCM). FCM analysis revealed a notable increase in the expression of B7 homolog 1 (B7-H1) in SMSCs following T. spiralis infection, while conversely, the expression of inducible costimulatory ligand (ICOSL) significantly decreased. Furthermore, real-time PCR results showed that toll like receptor 3 (TLR3) expression in SMSCs of the infected mice was upregulated at 21 dpi. The expression levels of three subtypes (PPARα, PPARβ and PPARγ) of peroxisome proliferator-activated receptors (PPARs) also increased in the cells. This study highlights the immunological regulation significance of SMSCs host during T. spiralis infection and suggests that SMSCs actively participant in the local immune response to T. spiralis by regulating the interaction between the parasite and the host.
Collapse
Affiliation(s)
- Huifang Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Saining Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ning Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoxia Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guoliang Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qianqian Dang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bin Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xuelin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Wang R, Li J, Zhou X, Mao Y, Wang W, Gao S, Wang W, Gao Y, Chen K, Yu S, Wu X, Wen L, Ge H, Fu W, Tang F. Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors. Genome Med 2022; 14:93. [PMID: 35974387 PMCID: PMC9380328 DOI: 10.1186/s13073-022-01093-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 07/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks as the second-leading cause of cancer-related death worldwide with metastases being the main cause of cancer-related death. Here, we investigated the genomic and transcriptomic alterations in matching adjacent normal tissues, primary tumors, and metastatic tumors of CRC patients. METHODS We performed whole genome sequencing (WGS), multi-region whole exome sequencing (WES), simultaneous single-cell RNA-Seq, and single-cell targeted cDNA Sanger sequencing on matching adjacent normal tissues, primary tumors, and metastatic tumors from 12 metastatic colorectal cancer patients (n=84 for genomes, n=81 for exomes, n=9120 for single cells). Patient-derived tumor organoids were used to estimate the anti-tumor effects of a PPAR inhibitor, and self-renewal and differentiation ability of stem cell-like tumor cells. RESULTS We found that the PPAR signaling pathway was prevalently and aberrantly activated in CRC tumors. Blocking of PPAR pathway both suppressed the growth and promoted the apoptosis of CRC organoids in vitro, indicating that aberrant activation of the PPAR signaling pathway plays a critical role in CRC tumorigenesis. Using matched samples from the same patient, distinct origins of the metastasized tumors between lymph node and liver were revealed, which was further verified by both copy number variation and mitochondrial mutation profiles at single-cell resolution. By combining single-cell RNA-Seq and single-cell point mutation identification by targeted cDNA Sanger sequencing, we revealed important phenotypic differences between cancer cells with and without critical point mutations (KRAS and TP53) in the same patient in vivo at single-cell resolution. CONCLUSIONS Our data provides deep insights into how driver mutations interfere with the transcriptomic state of cancer cells in vivo at a single-cell resolution. Our findings offer novel knowledge on metastatic mechanisms as well as potential markers and therapeutic targets for CRC diagnosis and therapy. The high-precision single-cell RNA-seq dataset of matched adjacent normal tissues, primary tumors, and metastases from CRCs may serve as a rich resource for further studies.
Collapse
Affiliation(s)
- Rui Wang
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- Beijing Advanced Innovation Center for Genomics & Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Jingyun Li
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Xin Zhou
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- Peking University Third Hospital Cancer Center, Beijing, 100193, China
| | - Yunuo Mao
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- Beijing Advanced Innovation Center for Genomics & Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Wendong Wang
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Shuai Gao
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Wang
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Yuan Gao
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Kexuan Chen
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Shuntai Yu
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Xinglong Wu
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Hao Ge
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- Beijing International Center for Mathematical Research, Peking University, Beijing, 100871, People's Republic of China
| | - Wei Fu
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China.
- Peking University Third Hospital Cancer Center, Beijing, 100193, China.
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China.
- Beijing Advanced Innovation Center for Genomics & Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100871, People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
3
|
Pudakalakatti S, Titus M, Enriquez JS, Ramachandran S, Zacharias NM, Shureiqi I, Liu Y, Yao JC, Zuo X, Bhattacharya PK. Identifying the Metabolic Signatures of PPARD-Overexpressing Gastric Tumors. Int J Mol Sci 2022; 23:1645. [PMID: 35163565 PMCID: PMC8835946 DOI: 10.3390/ijms23031645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor delta (PPARD) is a nuclear receptor known to play an essential role in regulation of cell metabolism, cell proliferation, inflammation, and tumorigenesis in normal and cancer cells. Recently, we found that a newly generated villin-PPARD mouse model, in which PPARD is overexpressed in villin-positive gastric progenitor cells, demonstrated spontaneous development of large, invasive gastric tumors as the mice aged. However, the role of PPARD in regulation of downstream metabolism in normal gastric and tumor cells is elusive. The aim of the present study was to find PPARD-regulated downstream metabolic changes and to determine the potential significance of those changes to gastric tumorigenesis in mice. Hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, and liquid chromatography-mass spectrometry were employed for metabolic profiling to determine the PPARD-regulated metabolite changes in PPARD mice at different ages during the development of gastric cancer, and the changes were compared to corresponding wild-type mice. Nuclear magnetic resonance spectroscopy-based metabolomic screening results showed higher levels of inosine monophosphate (p = 0.0054), uracil (p = 0.0205), phenylalanine (p = 0.017), glycine (p = 0.014), and isocitrate (p = 0.029) and lower levels of inosine (p = 0.0188) in 55-week-old PPARD mice than in 55-week-old wild-type mice. As the PPARD mice aged from 10 weeks to 35 weeks and 55 weeks, we observed significant changes in levels of the metabolites inosine monophosphate (p = 0.0054), adenosine monophosphate (p = 0.009), UDP-glucose (p = 0.0006), and oxypurinol (p = 0.039). Hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy performed to measure lactate flux in live 10-week-old PPARD mice with no gastric tumors and 35-week-old PPARD mice with gastric tumors did not reveal a significant difference in the ratio of lactate to total pyruvate plus lactate, indicating that this PPARD-induced spontaneous gastric tumor development does not require glycolysis as the main source of fuel for tumorigenesis. Liquid chromatography-mass spectrometry-based measurement of fatty acid levels showed lower linoleic acid, palmitic acid, oleic acid, and steric acid levels in 55-week-old PPARD mice than in 10-week-old PPARD mice, supporting fatty acid oxidation as a bioenergy source for PPARD-expressing gastric tumors.
Collapse
Affiliation(s)
- Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.P.); (J.S.E.)
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (S.R.)
| | - José S. Enriquez
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.P.); (J.S.E.)
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
| | - Sumankalai Ramachandran
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (S.R.)
| | - Niki M. Zacharias
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - James C. Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - Pratip K. Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.P.); (J.S.E.)
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
| |
Collapse
|
4
|
Yao L, Zhang Q, Li A, Ma B, Zhang Z, Liu J, Liang L, Zhu S, Gan Y, Zhang Q. Synthetic Artificial Long Non-coding RNA Shows Higher Efficiency in Specific Malignant Phenotype Inhibition Compared to the CRISPR/Cas Systems. Front Mol Biosci 2020; 7:617600. [PMID: 33363214 PMCID: PMC7755931 DOI: 10.3389/fmolb.2020.617600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022] Open
Abstract
Objective: Both oncogenic transcription factors (TFs) and microRNAs (miRNAs) play an important regulator in human cancer by transcriptional and post-transcriptional regulation, respectively. These phenomena raise questions about the ability of artificial device to regulate miRNAs and TFs simultaneously. In this study, we aimed to construct an artificial long non-coding RNA, “alncRNA,” which imitated CRISPR/Cas systems and to illuminate its therapeutic effects in bladder cancer cell lines. At the same time, we also compared the efficiency of alncRNA and CRISPR/Cas systems in regulating gene expression. Study Design and Methods: Based on engineering principles of synthetic biology, we combined tandem arrayed cDNA sequences of aptamer for TFs with tandem arrayed cDNA copies of binding sites for the miRNAs to construct alncRNA. In order to prove the utility of this platform, we chose β -catenin, NF-κB, miR-940, and miR-495 as the functional targets and used the bladder cancer cell lines 5637 and T24 as the test models. Real-time Quantitative PCR (qPCR), dual-luciferase assay and relative phenotypic experiments were applied to severally test the expression of relative gene and therapeutic effects of our devices. Result: Dual-luciferase assay indicated alncRNA could inhibit transcriptional activity of TFs. What’s more, the result of qPCR showed that expression levels of the relative TFs target genes and miRNAs were reduced by corresponding alncRNA and the inhibitory effect was better than CRIPSR dCas9-KRAB. By functional experiments, decreased cell proliferation, increased apoptosis, and motility inhibition were observed in alncRNA-infected bladder cells. Conclusion: In summary, our synthetic devices indeed function as anti-tumor regulator, which synchronously accomplish transcriptional and post-transcriptional regulation in bladder cancer cell and show higher efficiency in specific malignant phenotype inhibition compared to the CRISPR/Cas systems. Most importantly, Anti-cancer effects were induced by the synthetic alncRNA in the bladder cancer lines. Our devices, therefore, provides a novel strategy for cancer therapy and could be a useful “weapon” for cancer cell.
Collapse
Affiliation(s)
- Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Quan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Aolin Li
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Binglei Ma
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Zhenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Jun Liu
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Lei Liang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Shiyu Zhu
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Ying Gan
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| |
Collapse
|
5
|
Xie H, Zhan H, Gao Q, Li J, Zhou Q, Chen Z, Liu Y, Ding M, Xiao H, Liu Y, Huang W, Cai Z. Synthetic artificial "long non-coding RNAs" targeting oncogenic microRNAs and transcriptional factors inhibit malignant phenotypes of bladder cancer cells. Cancer Lett 2018; 422:94-106. [PMID: 29501702 DOI: 10.1016/j.canlet.2018.02.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 02/05/2023]
Abstract
Both oncogenic transcription factors (TFs) and microRNAs (miRNAs) play important roles in human cancers, acting as transcriptional and post-transcriptional regulators, respectively. These phenomena raise questions about the ability of an artificial device to simultaneously regulate miRNAs and TFs. In this study, we aimed to construct artificial long non-coding RNAs, "alncRNAs", and to investigate their therapeutic effects on bladder cancer cell lines. Based on engineering principles of synthetic biology, we combined tandem arrayed aptamer cDNA sequences for TFs with tandem arrayed cDNA copies of binding sites for the miRNAs to construct alncRNAs. In order to prove the utility of this platform, we chose β-catenin and the miR-183-182-96 cluster as the functional targets and used the bladder cancer cell lines 5637 and SW780 as the test models. Dual-luciferase reporter assay, real-time quantitative PCR (qRT-PCR) and related phenotypic experiments were used to test the expression of related genes and the therapeutic effects of our devices. The result of dual-luciferase reporter assay and qRT-PCR showed that alncRNAs could inhibit transcriptional activity of TFs and expression of corresponding microRNAs. Using functional experiments, we observed decreased cell proliferation, increased apoptosis, and motility inhibition in alncRNA-infected bladder cancer cells. What's more, follow-up mechanism experiments further confirmed the anti-tumor effect of our devices. In summary, our synthetic devices indeed function as anti-tumor regulators, which synchronously accomplish transcriptional and post-transcriptional regulation in bladder cancer cells. Most importantly, anti-cancer effects were induced by the synthetic alncRNAs in the bladder cancer lines. Our devices, all in all, provided a novel strategy and methodology for cancer studies, and might show a great potential for cancer therapy if the challenges of in vivo DNA delivery are overcome.
Collapse
Affiliation(s)
- Haibiao Xie
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Shantou University Medical College, Shantou, 515041, Guangdong Province, China; Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China
| | - Hengji Zhan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China
| | - Qunjun Gao
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Guangzhou Medical University, Guangzhou, 511436, China
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Shantou University Medical College, Shantou, 515041, Guangdong Province, China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Qun Zhou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, 518039, Guangdong, China
| | - Zhicong Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China
| | - Yuhan Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China
| | - Mengting Ding
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China
| | - Huizhong Xiao
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China.
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China; Shantou University Medical College, Shantou, 515041, Guangdong Province, China; Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China.
| |
Collapse
|
6
|
Re A. Synthetic Gene Expression Circuits for Designing Precision Tools in Oncology. Front Cell Dev Biol 2017; 5:77. [PMID: 28894736 PMCID: PMC5581392 DOI: 10.3389/fcell.2017.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/16/2017] [Indexed: 01/21/2023] Open
Abstract
Precision medicine in oncology needs to enhance its capabilities to match diagnostic and therapeutic technologies to individual patients. Synthetic biology streamlines the design and construction of functionalized devices through standardization and rational engineering of basic biological elements decoupled from their natural context. Remarkable improvements have opened the prospects for the availability of synthetic devices of enhanced mechanism clarity, robustness, sensitivity, as well as scalability and portability, which might bring new capabilities in precision cancer medicine implementations. In this review, we begin by presenting a brief overview of some of the major advances in the engineering of synthetic genetic circuits aimed to the control of gene expression and operating at the transcriptional, post-transcriptional/translational, and post-translational levels. We then focus on engineering synthetic circuits as an enabling methodology for the successful establishment of precision technologies in oncology. We describe significant advancements in our capabilities to tailor synthetic genetic circuits to specific applications in tumor diagnosis, tumor cell- and gene-based therapy, and drug delivery.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future Technologies, Istituto Italiano di TecnologiaTorino, Italy
| |
Collapse
|
7
|
Ohuchi S, Suess B. An inhibitory RNA aptamer against the lambda cI repressor shows transcriptional activator activity in vivo. FEBS Lett 2017; 591:1429-1436. [PMID: 28407231 DOI: 10.1002/1873-3468.12653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/14/2017] [Accepted: 04/08/2017] [Indexed: 01/03/2023]
Abstract
RNA aptamers are one of the promising components for constructing artificial genetic circuits. In this study, we developed a transcriptional activator based on an RNA aptamer against one of the most frequently applied repressor proteins, lambda phage cI. In vitro selection (Systematic Evolution of Ligands by EXponential enrichment) and following in vivo screening identified an RNA aptamer with the intended transcriptional activator activity from an RNA pool containing a 40-nucleotide long random region. Quantitative analysis showed a 35-fold elevation of reporter expression upon aptamer expression. These results suggest that the diversity of artificial transcriptional activators can be extended by employing RNA aptamers against repressor proteins to broaden the parts for constructing genetic circuits.
Collapse
Affiliation(s)
- Shoji Ohuchi
- Department of Biology, Technische Universität Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, Germany
| |
Collapse
|
8
|
Novel biotechnology approaches in colorectal cancer diagnosis and therapy. Biotechnol Lett 2017; 39:785-803. [DOI: 10.1007/s10529-017-2303-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
|
9
|
Fortenberry YM, Brandal SM, Carpentier G, Hemani M, Pathak AP. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis. PLoS One 2016; 11:e0164288. [PMID: 27755560 PMCID: PMC5068744 DOI: 10.1371/journal.pone.0164288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential.
Collapse
Affiliation(s)
- Yolanda M Fortenberry
- Department of Pediatric Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.,Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stephanie M Brandal
- Department of Pediatric Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gilles Carpentier
- Laboratoire CRRET, Faculté des Sciences et Technologie, Université Paris-Est Créteil, 61 avenue du général De Gaulle, 94010 Créteil, France
| | - Malvi Hemani
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
10
|
Abstract
Aptamers are single strand DNA or RNA molecules, selected by an iterative process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to various advantages of aptamers such as high temperature stability, animal free, cost effective production and its high affinity and selectivity for its target make them attractive alternatives to monoclonal antibody for use in diagnostic and therapeutic purposes. Aptamer has been generated against vesicular endothelial growth factor 165 involved in age related macular degeneracy. Macugen was the first FDA approved aptamer based drug that was commercialized. Later other aptamers were also developed against blood clotting proteins, cancer proteins, antibody E, agents involved in diabetes nephropathy, autoantibodies involved in autoimmune disorders, etc. Aptamers have also been developed against viruses and could work with other antiviral agents in treating infections.
Collapse
Affiliation(s)
- Abhishek Parashar
- Research Scholar, Animal Biochemistry Division, National Dairy Research Institute , Karnal, India
| |
Collapse
|
11
|
Zhou G, Wilson G, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers: A promising chemical antibody for cancer therapy. Oncotarget 2016; 7:13446-63. [PMID: 26863567 PMCID: PMC4924653 DOI: 10.18632/oncotarget.7178] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Aptamers, also known as chemical antibodies, are single-stranded nucleic acid oligonucleotides which bind to their targets with high specificity and affinity. They are typically selected by repetitive in vitro process termed systematic evolution of ligands by exponential enrichment (SELEX). Owing to their excellent properties compared to conventional antibodies, notably their smaller physical size and lower immunogenicity and toxicity, aptamers have recently emerged as a new class of agents to deliver therapeutic drugs to cancer cells by targeting specific cancer-associated hallmarks. Aptamers can also be structurally modified to make them more flexible in order to conjugate other agents such as nano-materials and therapeutic RNA agents, thus extending their applications for cancer therapy. This review presents the current knowledge on the practical applications of aptamers in the treatment of a variety of cancers.
Collapse
Affiliation(s)
- Gang Zhou
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - George Wilson
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Lionel Hebbard
- Discipline of Molecular and Cell Biology, James Cook University, Townsville, QLD, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
12
|
Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. SENSORS 2015; 15:16281-313. [PMID: 26153774 PMCID: PMC4541879 DOI: 10.3390/s150716281] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Detection of small molecules or proteins of living cells provides an exceptional opportunity to study genetic variations and functions, cellular behaviors, and various diseases including cancer and microbial infections. Our aim in this review is to give an overview of selected research activities related to nucleic acid-based aptamer techniques that have been reported in the past two decades. Limitations of aptamers and possible approaches to overcome these limitations are also discussed.
Collapse
|
13
|
Lennarz S, Alich TC, Kelly T, Blind M, Beck H, Mayer G. Selective Aptamer-Based Control of Intraneuronal Signaling. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sabine Lennarz
- Life and Medical Sciences Institute; University of Bonn; Gerhard-Domagk-Str. 1 Bonn Germany
| | - Therese Christine Alich
- Laboratory of Experimental Epileptology and Cognition Research; Department of Epileptology; Sigmund-Freud Str. 25 Bonn Germany
| | - Tony Kelly
- Laboratory of Experimental Epileptology and Cognition Research; Department of Epileptology; Sigmund-Freud Str. 25 Bonn Germany
| | - Michael Blind
- Life and Medical Sciences Institute; University of Bonn; Gerhard-Domagk-Str. 1 Bonn Germany
| | - Heinz Beck
- Laboratory of Experimental Epileptology and Cognition Research; Department of Epileptology; Sigmund-Freud Str. 25 Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen in der Helmholtz Gemeinschaft
| | - Günter Mayer
- Life and Medical Sciences Institute; University of Bonn; Gerhard-Domagk-Str. 1 Bonn Germany
| |
Collapse
|
14
|
Lennarz S, Alich TC, Kelly T, Blind M, Beck H, Mayer G. Selective aptamer-based control of intraneuronal signaling. Angew Chem Int Ed Engl 2015; 54:5369-73. [PMID: 25754968 PMCID: PMC5324602 DOI: 10.1002/anie.201409597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/29/2015] [Indexed: 11/11/2022]
Abstract
Cellular behavior is orchestrated by the complex interactions of a myriad of intracellular signal transduction pathways. To understand and investigate the role of individual components in such signaling networks, the availability of specific inhibitors is of paramount importance. We report the generation and validation of a novel variant of an RNA aptamer that selectively inhibits the mitogen-activated kinase pathway in neurons. We demonstrate that the aptamer retains function under intracellular conditions and that application of the aptamer through the patch-clamp pipette efficiently inhibits mitogen-activated kinase-dependent synaptic plasticity. This approach introduces synthetic aptamers as generic tools, readily applicable to inhibit different components of intraneuronal signaling networks with utmost specificity.
Collapse
Affiliation(s)
- Sabine Lennarz
- Life and Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, Bonn (Germany)
| | | | | | | | | | | |
Collapse
|
15
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
16
|
Yuan H, Lu J, Xiao J, Upadhyay G, Umans R, Kallakury B, Yin Y, Fant ME, Kopelovich L, Glazer RI. PPARδ induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation. Cancer Res 2013; 73:4349-61. [PMID: 23811944 PMCID: PMC3723355 DOI: 10.1158/0008-5472.can-13-0322] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The peroxisome proliferator-activated receptor-δ (PPARδ) regulates a multitude of physiological processes associated with glucose and lipid metabolism, inflammation, and proliferation. One or more of these processes are potential risk factors for the ability of PPARδ agonists to promote tumorigenesis in the mammary gland. In this study, we describe a new transgenic mouse model in which activation of PPARδ in the mammary epithelium by endogenous or synthetic ligands resulted in progressive histopathologic changes that culminated in the appearance of estrogen receptor- and progesterone receptor-positive and ErbB2-negative infiltrating ductal carcinomas. Multiparous mice presented with mammary carcinomas after a latency of 12 months, and administration of the PPARδ ligand GW501516 reduced tumor latency to 5 months. Histopathologic changes occurred concurrently with an increase in an inflammatory, invasive, metabolic, and proliferative gene signature, including expression of the trophoblast gene, Plac1, beginning 1 week after GW501516 treatment, and remained elevated throughout tumorigenesis. The appearance of malignant changes correlated with a pronounced increase in phosphatidylcholine and lysophosphatidic acid metabolites, which coincided with activation of Akt and mTOR signaling that were attenuated by treatment with the mTOR inhibitor everolimus. Our findings are the first to show a direct role of PPARδ in the pathogenesis of mammary tumorigenesis, and suggest a rationale for therapeutic approaches to prevent and treat this disease.
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinoma, Ductal/genetics
- Carcinoma, Ductal/metabolism
- Epithelium/metabolism
- Female
- Gene Expression
- Genes, erbB-2
- Inflammation/genetics
- Inflammation/metabolism
- Inflammatory Breast Neoplasms/genetics
- Inflammatory Breast Neoplasms/metabolism
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Metabolomics/methods
- Mice
- Mice, Transgenic
- PPAR delta/genetics
- PPAR delta/metabolism
- Phenotype
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| | - Jin Lu
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| | - Junfeng Xiao
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| | - Geeta Upadhyay
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| | | | - Bhaskar Kallakury
- Department of Pathology, Georgetown University, Washington, DC 20007
| | - Yuhzi Yin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20814
| | - Michael E. Fant
- Department of Pediatrics, University of South Florida, Tampa, FL 33606
| | - Levy Kopelovich
- Chemoprevention Agent Development and Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20814
| | - Robert I. Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| |
Collapse
|
17
|
Jiang X, Yang X, Han Y, Lu S. Transcription factor AP1 binds the functional region of the promoter and regulates gene expression of human PPARdelta in LoVo cell. Tumour Biol 2013; 34:3619-25. [PMID: 23832539 DOI: 10.1007/s13277-013-0943-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/12/2013] [Indexed: 01/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor δ gene (PPARδ) is correlated with carcinogenesis of colorectal cancer, but the regulation of its gene transcription remains unclear. We herein report that AP1 binds the promoter and regulates PPARδ gene expression. With a luciferase reporter system, we identified a functional promoter region of 30 bp of PPARδ gene by deletion and electrophoretic mobility shift assays (EMSA). Using site-directed mutagenesis and decoy analyses, we demonstrated that AP1 bound the functional transcriptional factor binding site in a region extending from -176 to -73 of the PPARδ promoter, which was confirmed using EMSA and supershift assays. Consequently, inhibition of the AP1 binding site led to decreased PPARδ mRNA. Our study demonstrated that AP1 is the transcriptional factor that contributes to PPARδ expression in LoVo cells.
Collapse
Affiliation(s)
- Xiaogang Jiang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, 710061, Shaanxi, People's Republic of China
| | | | | | | |
Collapse
|
18
|
Liu K, Lin B, Lan X. Aptamers: a promising tool for cancer imaging, diagnosis, and therapy. J Cell Biochem 2013; 114:250-5. [PMID: 22949372 DOI: 10.1002/jcb.24373] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/24/2012] [Indexed: 02/04/2023]
Abstract
Aptamers are a group of molecules, which can specifically bind, track, and inhibit target molecules, comprising DNA aptamers, RNA aptamers, and peptide aptamers. So far, there are much progress about developing novel aptamers and their expansile applications. This prospect systematically introduces the composition and technological evolution of aptamers, and then focuses on the application of aptamers in cancer diagnosis, imaging, and therapy. Following this, we discuss the potential to harness aptamers in discovering the biomarker of stem cells, which is favorable for us to study the normal developmental or abnormal pathological process of tissue and to deliver drugs into target cells or tissues in the future.
Collapse
Affiliation(s)
- KuanCan Liu
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian 350025, P.R. China
| | | | | |
Collapse
|
19
|
Hwang I, Kim J, Jeong S. β-Catenin and peroxisome proliferator-activated receptor-δ coordinate dynamic chromatin loops for the transcription of vascular endothelial growth factor A gene in colon cancer cells. J Biol Chem 2012; 287:41364-73. [PMID: 23086933 DOI: 10.1074/jbc.m112.377739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor A (VEGFA) mRNA is regulated by β-catenin and peroxisome proliferator activated receptor δ (PPAR-δ) activation in colon cancer cells, but the detailed mechanism remains to be elucidated. As chromatin loops are generally hubs for transcription factors, we tested here whether β-catenin could modulate chromatin looping near the VEGFA gene and play any important role for PPAR-δ activated VEGFA transcription. First, we identified the far upstream site as an important site for VEGFA transcription by luciferase assay and chromatin immunoprecipitation in colorectal carcinoma HCT116 cells. Chromatin conformation capture analysis also revealed the chromatin loops formed by the β-catenin bindings on these sites near the VEGFA gene. Dynamic association and dissociation of β-catenin/TCF-4/PPAR-δ on the far upstream site and β-catenin/NF-κB p65 on the downstream site were also detected depending on PPAR-δ activation. Interestingly, β-catenin-mediated chromatin loops were relieved by PPAR-δ activation, suggesting a regulatory role of β-catenin for VEGFA transcription. Based on these data, we propose a model for PPAR-δ-activated VEGFA transcription that relies on β-catenin-mediated chromatin looping as a prerequisite for the activation. Our findings could extend to other β-catenin regulated target genes and could provide a general mechanism and novel paradigm for β-catenin-mediated oncogenesis.
Collapse
Affiliation(s)
- Injoo Hwang
- National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, and Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701, Republic of Korea
| | | | | |
Collapse
|
20
|
Xu M, Zuo X, Shureiqi I. Targeting peroxisome proliferator-activated receptor-β/δ in colon cancer: how to aim? Biochem Pharmacol 2012; 85:607-611. [PMID: 23041232 DOI: 10.1016/j.bcp.2012.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/18/2022]
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARδ) is a ubiquitously expressed, ligand-activated transcriptional factor that performs diverse critical functions in normal cells (e.g., fatty acid metabolism, obesity, apoptosis, and inflammation). Various studies in humans have found that PPARδ is upregulated in primary colorectal cancers; however, these findings have been challenged by those of other reports. Similarly, various in vitro and in vivo mechanistic pre-clinical models have yielded data demonstrating that PPARδ promotes colonic tumorigenesis, but other models have yielded data that contradicts this notion. Definitive studies are therefore needed to establish the exact role of PPARδ in human colorectal tumorigenesis and to provide a theoretical basis for PPARδ therapeutic targeting.
Collapse
Affiliation(s)
- Min Xu
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA; Department of Gastroenterology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu 212001, PR China
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, Unit 0426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA.
| |
Collapse
|
21
|
The role of peroxisome proliferator-activated receptors in colorectal cancer. PPAR Res 2012; 2012:876418. [PMID: 23024650 PMCID: PMC3447370 DOI: 10.1155/2012/876418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/01/2012] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer is one of the most common cancers in the world. Dietary fat intake is a major risk factor for colorectal cancer. Some nuclear hormone receptors play an important role in regulating nutrient metabolism and energy homeostasis. Among these receptors, special attention has been focused on the role of peroxisome proliferator-activated receptors (PPARs) in colorectal cancer, because PPARs are involved in regulation of lipid and carbohydrate metabolism. PPARs are ligand-activated intracellular transcription factors. The PPAR subfamily consists of three subtypes encoded by distinct genes named PPARα, PPARβ/δ, and PPARγ. PPARγ is the most extensively studied subtype of PPARs. Even though many investigators have studied the expression and clinical implications of PPARs in colorectal cancer, there are still many controversies about the role of PPARs in colorectal cancer. In this paper, the recent progresses in understanding the role of PPARs in colorectal cancer are summarized.
Collapse
|
22
|
Pollock CB, Rodriguez O, Martin PL, Albanese C, Li X, Kopelovich L, Glazer RI. Induction of metastatic gastric cancer by peroxisome proliferator-activated receptorδ activation. PPAR Res 2010; 2010:571783. [PMID: 21318167 PMCID: PMC3026990 DOI: 10.1155/2010/571783] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/16/2010] [Indexed: 01/24/2023] Open
Abstract
Peroxisome proliferator-activated receptorδ (PPARδ) regulates a multiplicity of physiological processes associated with glucose and lipid metabolism, inflammation, and proliferation. One or more of these processes likely create risk factors associated with the ability of PPARδ agonists to promote tumorigenesis in some organs. In the present study, we describe a new gastric tumor mouse model that is dependent on the potent and highly selective PPARδ agonist GW501516 following carcinogen administration. The progression of gastric tumorigenesis was rapid as determined by magnetic resonance imaging and resulted in highly metastatic squamous cell carcinomas of the forestomach within two months. Tumorigenesis was associated with gene expression signatures indicative of cell adhesion, invasion, inflammation, and metabolism. Increased PPARδ expression in tumors correlated with increased PDK1, Akt, β-catenin, and S100A9 expression. The rapid development of metastatic gastric tumors in this model will be useful for evaluating preventive and therapeutic interventions in this disease.
Collapse
Affiliation(s)
- Claire B. Pollock
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Philip L. Martin
- Center for Advanced Preclinical Research, SAIC/NCI-Frederick, Frederick, MD 21702, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Xin Li
- Department of Biostatistics, Bioinformatics, and Biomathematics, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Levy Kopelovich
- Chemoprevention Agent Development and Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20814, USA
| | - Robert I. Glazer
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| |
Collapse
|
23
|
Peroxisome proliferator activating receptor (PPAR) in cerebral malaria (CM): a novel target for an additional therapy. Eur J Clin Microbiol Infect Dis 2010; 30:483-98. [PMID: 21140187 DOI: 10.1007/s10096-010-1122-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/13/2010] [Indexed: 12/16/2022]
Abstract
Cerebral malaria (CM) is a global life-threatening complication of Plasmodium infection and represents a major cause of morbidity and mortality among severe forms of malaria. Despite developing knowledge in understanding mechanisms of pathogenesis, the current anti-malarial agents are not sufficient due to drug resistance and various adverse effects. Therefore, there is an urgent need for the novel target and additional therapy. Recently, peroxisome proliferator-activated receptor (PPAR) a nuclear receptors (NR) and agonists of its isoforms (PPARγ, PPARα and PPARβ/δ) have been demonstrated to exhibit anti-inflammatory and immunomodulatory properties, which are driven to a new approach of research on inflammatory diseases. Although many studies on PPARs have confirmed their diverse biological role, there is a lack of knowledge of its therapeutic use in CM. The major objective of this review is to explore the possible experimental studies to link these two areas of research. We focus on the data describing the beneficial effects of this receptor in inflammation, which is observed as a basic pathology in CM. In conclusion, PPARs could be a novel target in treating inflammatory diseases, and continued work with the available and additional agonists screened from various sources may result in a potential new treatment for CM.
Collapse
|
24
|
Xu GF, Zhang KH. Application of nucleic acid aptamers for digestive disease research. Shijie Huaren Xiaohua Zazhi 2010; 18:3220-3225. [DOI: 10.11569/wcjd.v18.i30.3220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid aptamers, selected from a synthesized library of random single-stranded oligonucleotides by systematic evolution of ligands by exponential enrichment (SELEX), are oligonucleotide ligands binding to target molecules with high specificity and affinity. Nucleic acid aptamers have similar functions to antibodies, but possess the advantages of wider range of targets, better stability, easier modification and synthesis, showing promising prospects for diagnosis and treatment of diseases. In terms of digestive diseases, nucleic acid aptamers have been applied in the research of tumor markers, anti-tumor therapy, hepatitis virus C and liver imaging.
Collapse
|
25
|
Affiliation(s)
- Michael Famulok
- LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|