1
|
Zhang W, Zhang K, Ma Y, Song Y, Qi T, Xiong G, Zhang Y, Kan C, Zhang J, Han F, Sun X. Secreted frizzled-related proteins: A promising therapeutic target for cancer therapy through Wnt signaling inhibition. Biomed Pharmacother 2023; 166:115344. [PMID: 37634472 DOI: 10.1016/j.biopha.2023.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
The Wnt signaling system is a critical pathway that regulates embryonic development and adult homeostasis. Secreted frizzled-related proteins (SFRPs) are extracellular inhibitors of Wnt signaling that act by binding directly to Wnt ligands or Frizzled receptors. SFRPs can act as anti-Wnt agents and suppress cancer growth by blocking the action of Wnt ligands. However, SFRPs are often silenced by promoter methylation in cancer cells, resulting in hyperactivation of the Wnt pathway. Epigenetic modifiers can reverse this silencing and restore SFRPs expression. Despite the potential of SFRPs as a therapeutic target, the effects of SFRPs on tumor development remain unclear. Therefore, a review of the expression of various members of the SFRPs family in different cancers and their potential as therapeutic targets is warranted. This review aims to summarize the current knowledge of SFRPs in cancer, focusing on their expression patterns and their potential as novel therapeutic targets.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yuanzhu Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| |
Collapse
|
2
|
Alvarez-Rodrigo I, Willnow D, Vincent JP. The logistics of Wnt production and delivery. Curr Top Dev Biol 2023; 153:1-60. [PMID: 36967191 DOI: 10.1016/bs.ctdb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
3
|
Wu Q, Yin X, Zhao W, Xu W, Chen L. Downregulation of SFRP2 facilitates cancer stemness and radioresistance of glioma cells via activating Wnt/β-catenin signaling. PLoS One 2021; 16:e0260864. [PMID: 34852024 PMCID: PMC8635357 DOI: 10.1371/journal.pone.0260864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
Secreted frizzled-related protein 2 (SFRP2) is a glycoprotein with frizzled-like cysteine-rich domain that binds with Wnt ligands or frizzled receptors to regulate Wnt signaling. SFRP2 is frequently hypermethylated in glioma patients, and analysis of TCGA data indicates that SFRP2 is one of the most downregulated genes in radiotherapy treated glioma patients. In the present study, we aimed to explore the potential function of SFRP2 in tumorigenesis and radioresistance of glioma. The RNA sequencing data of TCGA glioma samples were downloaded and analyzed. SFRP2 expression in 166 glioma patients was evaluated by qRT-PCR. The potential functions of SFRP2 in glioma were evaluated by loss-of-function assays and gain-of-function assays in glioma cell lines. We found that SFRP2 was downregulated in radiotherapy-treated glioma patients, and low SFRP2 expression was correlated with advanced tumor stage and poor prognosis. CRISP/Cas9-meidated SFRP2 knockdown promoted soft agar colony formation, cancer stemness and radioresistance of glioma cells, while enforced SFRP2 expression exhibited opposite effects. Moreover, Wnt/β-catenin signaling was activated in radiotherapy treated glioma patients. SFRP2 knockdown activated Wnt/β-catenin signaling in glioma cell lines, while overexpression of SFRP2 inhibited Wnt/β-catenin activation. Besides, pharmacological inhibition of Wnt/β-catenin signaling by XAV-939 abrogated the effects of SFRP2 knockdown on cancer stemness and radioresistance of glioma cells. Our data for the first time demonstrated a role of SFRP2 in radioresistance of glioma cells, and suggested that inhibition of Wnt/β-catenin signaling might be a potential strategy for increasing radiosensitivity of glioma patients.
Collapse
Affiliation(s)
- Quansheng Wu
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Wenbo Zhao
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Wenli Xu
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Laizhao Chen
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- * E-mail:
| |
Collapse
|
4
|
Comprehensive Analysis of SFRP Family Members Prognostic Value and Immune Infiltration in Gastric Cancer. LIFE (BASEL, SWITZERLAND) 2021; 11:life11060522. [PMID: 34205081 PMCID: PMC8228899 DOI: 10.3390/life11060522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023]
Abstract
Gastric cancer (GC) is the fifth most common cancer globally. Secreted frizzled-related proteins (SFRP) are important elements associated with the Wnt signaling pathway, and its dysregulated expression is found in multiple cancers. However, the function of distinct SFRPs in GC remains poorly understood. We investigated the differential expression, prognostic value, and immune cell infiltration of SFRPs in gastric cancer patients from the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, Kaplan-Meier plotter, cBioPortal, STRING, Gene-MANIA, DAVID, MethSurv, and TIMER databases. We found that the expression levels of SFRP2 and SFRP4 were significantly increased in GC tissues, whereas the SFRP1 and SFRP5 expressions were reduced. SFRP1, SFRP2, and SFRP5 were significantly correlated with the clinical cancer stage in GC patients. Higher expression of SFRPs was associated with short overall survival (OS) in GC patients. Besides, high SFRPs methylation showed favorable OS in GC patients. The functions of SFRPs were primarily related to the Wnt signaling pathway, immune system development, and basal cell carcinoma. The expression of SFRPs was strongly correlated with immune infiltrating cells, including CD4+ T cells and macrophages in GC. Our study indicated that SFRPs could be potential targets of precision therapy and prognostic biomarkers for the survival of GC patients.
Collapse
|
5
|
Nasarre P, Garcia DI, Siegel JB, Bonilla IV, Mukherjee R, Hilliard E, Chakraborty P, Nasarre C, Yustein JT, Lang M, Jaffa AA, Mehrotra S, Klauber-DeMore N. Overcoming PD-1 Inhibitor Resistance with a Monoclonal Antibody to Secreted Frizzled-Related Protein 2 in Metastatic Osteosarcoma. Cancers (Basel) 2021; 13:cancers13112696. [PMID: 34070758 PMCID: PMC8199140 DOI: 10.3390/cancers13112696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Secreted frizzled-related protein 2 (SFRP2) promotes the migration/invasion of metastatic osteosarcoma (OS) cells and tube formation by endothelial cells. However, its function on T-cells is unknown. We hypothesized that blocking SFRP2 with a humanized monoclonal antibody (hSFRP2 mAb) can restore immunity by reducing CD38 and PD-1 levels, ultimately overcoming resistance to PD-1 inhibitors. Treating two metastatic murine OS cell lines in vivo, RF420 and RF577, with hSFRP2 mAb alone led to a significant reduction in the number of lung metastases, compared to IgG1 control treatment. While PD-1 mAb alone had minimal effect, hSFRP2 mAb combination with PD-1 mAb had an additive antimetastatic effect. This effect was accompanied by lower SFRP2 levels in serum, lower CD38 levels in tumor-infiltrating lymphocytes and T-cells, and lower PD-1 levels in T-cells. In vitro data confirmed that SFRP2 promotes NFATc3, CD38 and PD-1 expression in T-cells, while hSFRP2 mAb treatment counteracts these effects and increases NAD+ levels. hSFRP2 mAb treatment further rescued the suppression of T-cell proliferation by tumor cells in a co-culture model. Finally, hSFRP2 mAb induced apoptosis in RF420 and RF577 OS cells but not in T-cells. Thus, hSFRP2 mAb therapy could potentially overcome PD-1 inhibitor resistance in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Patrick Nasarre
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Denise I. Garcia
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Julie B. Siegel
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Ingrid V. Bonilla
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Rupak Mukherjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Eleanor Hilliard
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Cécile Nasarre
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Jason T. Yustein
- Department of Pediatrics, The Faris D. Virani Ewing Sarcoma Center at the Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Margaret Lang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Aneese A. Jaffa
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (P.N.); (D.I.G.); (J.B.S.); (I.V.B.); (R.M.); (E.H.); (P.C.); (M.L.); (A.A.J.); (S.M.)
- Correspondence:
| |
Collapse
|
6
|
Xiang L, Chen LM, Zhai YJ, Sun WJ, Yang JR, Fan YC, Wang K. Hypermethylation of secreted frizzled related protein 2 gene promoter serves as a noninvasive biomarker for HBV-associated hepatocellular carcinoma. Life Sci 2021; 270:119061. [PMID: 33454364 DOI: 10.1016/j.lfs.2021.119061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
For patients with hepatocellular carcinoma (HCC), early detection is critical to improve survival. Secreted frizzled-related protein 2 (SFRP2) is a candidate tumor suppressor as Wnt antagonist and SFRP2 promoter has been found hypermethylated in various malignancies. This study aimed to investigate the methylation status of SFRP2 promoter in hepatitis B virus (HBV) associated HCC and estimate its diagnostic value as a non-invasive biomarker. A total of 293 patients, including 132 patients with HBV-associated HCC, 121 with chronic hepatitis B (CHB) and 40 healthy controls (HCs) were enrolled. SFRP2 methylation level in peripheral mononuclear cells (PBMCs) was quantitatively detected by MethyLight. SFRP2 methylation level was significantly higher in patients with HBV-associated HCC than in those with CHB (p < 0.001) and HCs (p < 0.001) while mRNA level of SFRP2 was significantly lower in HCC group than the other two groups (p < 0.05). In HCC subgroup, SFRP2 methylation level markedly increased in patients >50 years old, female, with negative HBeAg, negative HBV-DNA and poor differentiation compared with the remaining groups (P < 0.05). Furthermore, SFRP2 methylation level showed a significantly better diagnostic value than alpha-fetoprotein (AFP) and the combination of AFP and methylation levels of SFRP2 markedly improved the area under the receiver operating characteristic curve (p < 0.05). In conclusion, hypermethylation of SFRP2 promoter exists in HBV-associated HCC. The combination of SFRP2 methylation level in PBMCs and AFP could significantly improve the diagnostic ability of AFP in discriminating HBV-associated HCC from CHB and SFRP2 methylation level had the potential to serve as a non-invasive biomarker for HCC diagnosis.
Collapse
Affiliation(s)
- Lin Xiang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - La-Mei Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Jia Zhai
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei-Juan Sun
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie-Ru Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China; Institute of Hepatology, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China; Institute of Hepatology, Shandong University, Jinan, China.
| |
Collapse
|
7
|
Peng R, Wang Y, Mao L, Fang F, Guan H. Identification of Core Genes Involved in the Metastasis of Clear Cell Renal Cell Carcinoma. Cancer Manag Res 2021; 12:13437-13449. [PMID: 33408516 PMCID: PMC7779301 DOI: 10.2147/cmar.s276818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction Renal cell carcinoma (RCC) is one of the most common malignancies globally, among which clear cell carcinoma (ccRCC) accounts for 85–90% of all pathological types. This study aims to screen out potential genes in metastatic ccRCC so as to provide novel insights for ccRCC treatment. Methods GSE53757 and GSE84546 datasets in the Gene Expression Omnibus (GEO) were profiled to identify differentially expressed genes (DEGs) from ccRCC samples with or without metastasis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and the gene ontology (GO) analysis were performed to analyze pathway enrichment and functional annotation of DEGs. Protein–protein interaction (PPI) network was constructed, and survival analysis was conducted to evaluate the clinical values of the identified hub genes. In vitro loss-of-function assays were performed to explore the biological roles of these genes. Results The bioinformatic analysis indicated that 312 DEGs were identified, including 148 upregulated genes and 164 downregulated ones. Using PPI and Cytoscape, 10 hub genes were selected (C3, CXCR4, CCl4, ACKR3, KIF20A, CCNB2, CDCA8, CCL28, S1PR5, and CCL20) from DEGs which might be closely related with ccRCC metastasis. In Kaplan–Meier analysis, three potential prognostic biomarkers (KIF20A, CCNB2 and CDCA8) were identified. Finally, cell proliferative and invasive assays further verified that KIF20A, CCNB2 and CDCA8 were associated with the proliferation and invasion of ccRCC cells. Conclusion Our results demonstrated that metastatic ccRCC was partially attributed to the aberrant expression of KIF20A, CCNB2 and CDCA8, and more personalized therapeutic approaches should be explored targeting these hub genes.
Collapse
Affiliation(s)
- Rui Peng
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Yahui Wang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shenshan Central Hospital, Shanwei, People's Republic of China
| | - Likai Mao
- Department of Urology, Second Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Fang Fang
- Department of Immunology, School of Laboratory Medicine, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, People's Republic of China
| | - Han Guan
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| |
Collapse
|
8
|
van Loon K, Huijbers EJM, Griffioen AW. Secreted frizzled-related protein 2: a key player in noncanonical Wnt signaling and tumor angiogenesis. Cancer Metastasis Rev 2020; 40:191-203. [PMID: 33140138 PMCID: PMC7897195 DOI: 10.1007/s10555-020-09941-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
Secreted frizzled-related proteins (SFRP) are glycoproteins containing a so-called frizzled-like cysteine-rich domain. This domain enables them to bind to Wnt ligands or frizzled (FzD) receptors, making potent regulators of Wnt signaling. As Wnt signaling is often altered in cancer, it is not surprising that Wnt regulators such as SFRP proteins are often differentially expressed in the tumor microenvironment, both in a metastatic and non-metastatic setting. Indeed, SFRP2 is shown to be specifically upregulated in the tumor vasculature of several types of cancer. Several studies investigated the functional role of SFRP2 in the tumor vasculature, showing that SFRP2 binds to FzD receptors on the surface of tumor endothelial cells. This activates downstream Wnt signaling and which is, thereby, stimulating angiogenesis. Interestingly, not the well-known canonical Wnt signaling pathway, but the noncanonical Wnt/Ca2+ pathway seems to be a key player in this event. In tumor models, the pro-angiogenic effect of SFRP2 could be counteracted by antibodies targeting SFRP2, without the occurrence of toxicity. Since tumor angiogenesis is an important process in tumorigenesis and metastasis formation, specific tumor endothelial markers such as SFRP2 show great promise as targets for anti-cancer therapies. This review discusses the role of SFRP2 in noncanonical Wnt signaling and tumor angiogenesis, and highlights its potential as anti-angiogenic therapeutic target in cancer.
Collapse
Affiliation(s)
- Karlijn van Loon
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 2020; 11:260. [PMID: 32317622 PMCID: PMC7174325 DOI: 10.1038/s41419-020-2417-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
The BCL-2 family of proteins integrates signals that trigger either cell survival or apoptosis. The balance between pro-survival and pro-apoptotic proteins is important for tissue development and homeostasis, while impaired apoptosis contributes to several pathologies and can be a barrier against effective treatment. BCL-w is an anti-apoptotic protein that shares a sequence similarity with BCL-XL, and exhibits a high conformational flexibility. BCL-w level is controlled by a number of signaling pathways, and the repertoire of transcriptional regulators largely depends on the cellular and developmental context. As only a few disease-relevant genetic alterations of BCL2L2 have been identified, increased levels of BCL-w might be a consequence of abnormal activation of signaling cascades involved in the regulation of BCL-w expression. In addition, BCL-w transcript is a target of a plethora of miRNAs. Besides its originally recognized pro-survival function during spermatogenesis, BCL-w has been envisaged in different types of normal and diseased cells as an anti-apoptotic protein. BCL-w contributes to survival of senescent and drug-resistant cells. Its non-apoptotic role in the promotion of cell migration and invasion has also been elucidated. Growing evidence indicates that a high BCL-w level can be therapeutically relevant in neurodegenerative disorders, neuron dysfunctions and after small intestinal resection, whereas BCL-w inhibition can be beneficial for cancer patients. Although several drugs and natural compounds can bi-directionally affect BCL-w level, agents that selectively target BCL-w are not yet available. This review discusses current knowledge on the role of BCL-w in health, non-cancerous diseases and cancer.
Collapse
|
10
|
Wu Y, Liu X, Zheng H, Zhu H, Mai W, Huang X, Huang Y. Multiple Roles of sFRP2 in Cardiac Development and Cardiovascular Disease. Int J Biol Sci 2020; 16:730-738. [PMID: 32071544 PMCID: PMC7019133 DOI: 10.7150/ijbs.40923] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
The Wnt signaling pathway plays important roles in organ development and disease processes. Secreted frizzled-related protein 2 (sFRP2), a vital molecule of Wnt signaling, can regulate cardiac development and cardiovascular disease. Recent studies have suggested that sFRP2 is not only an antagonist of the canonical Wnt signaling pathway, but also has a more complex relationship in myocardial fibrosis, angiogenesis, cardiac hypertrophy and cardiac regeneration. Here, we review the role of sFRP2 and Wnt signaling in cardiac development and cardiovascular disease.
Collapse
Affiliation(s)
- Yu Wu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Xinyue Liu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Hailan Zhu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Weiyi Mai
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou
| | - Xiaohui Huang
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China.,The George Institute for Global Health, NSW 2042 Australia
| |
Collapse
|
11
|
Garcia D, Nasarre P, Bonilla IV, Hilliard E, Peterson YK, Spruill L, Broome AM, Hill EG, Yustein JT, Mehrotra S, Klauber-DeMore N. Development of a Novel Humanized Monoclonal Antibody to Secreted Frizzled-Related Protein-2 That Inhibits Triple-Negative Breast Cancer and Angiosarcoma Growth In Vivo. Ann Surg Oncol 2019; 26:4782-4790. [PMID: 31515721 DOI: 10.1245/s10434-019-07800-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND We previously reported that secreted frizzled-related protein-2 (SFRP2) is expressed in a variety of tumors, including sarcoma and breast carcinoma, and stimulates angiogenesis and inhibits tumor apoptosis. Therefore, we hypothesized that a humanized SFRP2 monoclonal antibody (hSFRP2 mAb) would inhibit tumor growth. METHODS The lead hSFRP2 antibody was tested against a cohort of 22 healthy donors using a time course T-cell assay to determine the relative risk of immunogenicity. To determine hSFRP2 mAb efficacy, nude mice were subcutaneously injected with SVR angiosarcoma cells and treated with hSFRP2 mAb 4 mg/kg intravenously every 3 days for 3 weeks. We then injected Hs578T triple-negative breast cells into the mammary fat pad of nude mice and treated for 40 days. Control mice received an immunoglobulin (Ig) G1 control. The SVR and Hs578T tumors were then stained using a TUNEL assay to detect apoptosis. RESULTS Immunogenicity testing of hSFRP2 mAb did not induce proliferative responses using a simulation index (SI) ≥ 2.0 (p < 0.05) threshold in any of the healthy donors. SVR angiosarcoma tumor growth was inhibited in vivo, evidenced by significant tumor volume reduction in the hSFRP2 mAb-treated group, compared with controls (n = 10, p < 0.001). Likewise, Hs578T triple-negative breast tumors were smaller in the hSFRP2 mAb-treated group compared with controls (n = 10, p < 0.001). The hSFRP2 mAb treatment correlated with an increase in tumor cell apoptosis (n = 11, p < 0.05). Importantly, hSFRP2 mAb treatment was not associated with any weight loss or lethargy. CONCLUSION We present a novel hSFRP2 mAb with therapeutic potential in breast cancer and sarcoma that has no effect on immunogenicity.
Collapse
Affiliation(s)
- Denise Garcia
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick Nasarre
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Ingrid V Bonilla
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Eleanor Hilliard
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
| | - Laura Spruill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Anne-Marie Broome
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth G Hill
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jason T Yustein
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
12
|
Nfonsam LE, Jandova J, Jecius HC, Omesiete PN, Nfonsam VN. SFRP4 expression correlates with epithelial mesenchymal transition-linked genes and poor overall survival in colon cancer patients. World J Gastrointest Oncol 2019; 11:589-598. [PMID: 31435461 PMCID: PMC6700031 DOI: 10.4251/wjgo.v11.i8.589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Colon cancer is among the most commonly diagnosed cancers in the United States with an estimated 97220 new cases expected by the end of 2018. It affects 1.2 million people around the world and is responsible for about 0.6 million deaths every year. Despite decline in overall incidence and mortality over the past 30 years, there continues to be an alarming rise in early-onset colon cancer cases (< 50 years). Patients are often diagnosed at late stages of the disease and tend to have poor survival. We previously showed that the WNT “gatekeeper” gene, secreted frizzled-related protein 4 (SFRP4), is over-expressed in early-onset colon cancer. SFRP4 is speculated to play an essential role in cancer by inhibiting the epithelial mesenchymal transition (EMT).
AIM To investigate the correlation between SFRP4 expression and EMT-linked genes in colon cancer and how it affects patient survival.
METHODS SFRP4 expression relative to that of EMT-linked genes and survival analysis were performed using the University of California Santa Cruz Cancer Browser interface.
RESULTS SFRP4 was found to be co-expressed with the EMT-linked markers CDH2, FN1, VIM, TWIST1, TWIST2, SNAI1, SNAI2, ZEB1, ZEB2, POSTN, MMP2, MMP7, MMP9, and COL1A1. SFRP4 expression negatively correlated with the EMT-linked suppressors CLDN4, CLDN7, TJP3, MUC1, and CDH1. The expression of SFRP4 and the EMT-linked markers was higher in mesenchymal-like samples compared to epithelial-like samples which potentially implicates SFRP4-EMT mechanism in colon cancer. Additionally, patients overexpressing SFRP4 presented with poor overall survival (P = 0.0293).
CONCLUSION Considering the implication of SFRP4 in early-onset colon cancer, particularly in the context of EMT, tumor metastasis, and invasion, and the effect of increased expression on colon cancer patient survival, SFRP4 might be a potential biomarker for early-onset colon cancer that could be targeted for diagnosis and/or disease therapy.
Collapse
Affiliation(s)
- Landry E Nfonsam
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada
| | - Jana Jandova
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Hunter C Jecius
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Pamela N Omesiete
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Valentine N Nfonsam
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| |
Collapse
|
13
|
Secreted Frizzled-Related Protein 2 Is Associated with Disease Progression and Poor Prognosis in Breast Cancer. DISEASE MARKERS 2019; 2019:6149381. [PMID: 30944668 PMCID: PMC6421737 DOI: 10.1155/2019/6149381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/01/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
Purpose Secreted frizzled-related protein 2 (sFRP2) is a secreted protein associated with cancer drug resistance and metastasis. However, few studies have reported serum sFRP2 levels in breast cancer. We evaluated serum sFRP2 as a potential biomarker for breast cancer. Methods Serum sFRP2 concentrations were detected in 274 breast cancer patients along with 147 normal healthy controls by enzyme-linked immunosorbent assay (ELISA). Diagnostic significance was evaluated by area under the curve (AUC) analysis and the Youden index. Prognostic significance was determined by Kaplan-Meier survival method and univariate and multivariate Cox proportional hazard regression model analyses. Results Serum sFRP2 was elevated in breast cancer patients compared to normal healthy controls (P < 0.001). The sensitivity of sFRP2 in diagnosing breast cancer was 76.9% at a specificity of 76.6%. Elevated serum sFRP2 levels are associated with primary tumor size, TNM stage, and lymph node metastases. The Kaplan-Meier curves showed a significant association of serum sFRP2 with progression-free survival. The multivariate Cox analysis confirmed that high serum sFRP2 was an independent prognostic factor for poor prognosis (HR = 3.89, 95% CI = 1.95-7.68, P = 0.001). Conclusions In conclusion, serum sFRP2 may serve as a potential biomarker for breast cancer diagnosis and prognostic evaluation.
Collapse
|
14
|
Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism. Proc Natl Acad Sci U S A 2018; 115:E11128-E11137. [PMID: 30385632 DOI: 10.1073/pnas.1814044115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS), the most common primary bone tumor, is highly metastatic with high chemotherapeutic resistance and poor survival rates. Using induced pluripotent stem cells (iPSCs) generated from Li-Fraumeni syndrome (LFS) patients, we investigate an oncogenic role of secreted frizzled-related protein 2 (SFRP2) in p53 mutation-associated OS development. Interestingly, we find that high SFRP2 expression in OS patient samples correlates with poor survival. Systems-level analyses identified that expression of SFRP2 increases during LFS OS development and can induce angiogenesis. Ectopic SFRP2 overexpression in normal osteoblast precursors is sufficient to suppress normal osteoblast differentiation and to promote OS phenotypes through induction of oncogenic molecules such as FOXM1 and CYR61 in a β-catenin-independent manner. Conversely, inhibition of SFRP2, FOXM1, or CYR61 represses the tumorigenic potential. In summary, these findings demonstrate the oncogenic role of SFRP2 in the development of p53 mutation-associated OS and that inhibition of SFRP2 is a potential therapeutic strategy.
Collapse
|
15
|
Vincent KM, Postovit LM. Matricellular proteins in cancer: a focus on secreted Frizzled-related proteins. J Cell Commun Signal 2018; 12:103-112. [PMID: 28589318 PMCID: PMC5842174 DOI: 10.1007/s12079-017-0398-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 12/31/2022] Open
Abstract
Tumours are complex entities, wherein cancer cells interact with myriad soluble, insoluble and cell associated factors. These microenvironmental mediators regulate tumour growth, progression and metastasis, and are produced by cancer cells and by stromal components such as fibroblast, adipocytes and immune cells. Through their ability to bind to extracellular matrix proteins, cell surface receptors and growth factors, matricellular proteins enable a dynamic reciprocity between cancer cells and their microenvironment. Hence, matricellular proteins play a critical role in tumour progression by regulating where and when cancer cells are exposed to key growth factors and regulatory proteins. Recent studies suggest that, in addition to altering Wingless (Wnt) signalling, certain members of the Secreted Frizzled Related Protein (sFRP) family are matricellular in nature. In this review, we outline the importance of matricellular proteins in cancer, and discuss how sFRPs may function to both inhibit and promote cancer progression in a context-dependent manner. By considering the matricellular functionality of sFRPs, we may better understand their apparently paradoxical roles in cancers.
Collapse
Affiliation(s)
- Krista Marie Vincent
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
16
|
Peterson YK, Nasarre P, Bonilla IV, Hilliard E, Samples J, Morinelli TA, Hill EG, Klauber-DeMore N. Frizzled-5: a high affinity receptor for secreted frizzled-related protein-2 activation of nuclear factor of activated T-cells c3 signaling to promote angiogenesis. Angiogenesis 2017; 20:615-628. [PMID: 28840375 DOI: 10.1007/s10456-017-9574-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/15/2017] [Indexed: 11/30/2022]
Abstract
Secreted frizzled-related protein 2 (SFRP2) is a pro-angiogenic factor expressed in the vasculature of a wide variety of human tumors, and modulates angiogenesis via the calcineurin-dependent nuclear factor of activated T-cells cytoplasmic 3 (NFATc3) pathway in endothelial cells. However, until now, SFRP2 receptor for this pathway was unknown. In the present study, we first used amino acid alignments and molecular modeling to demonstrate that SFRP2 interaction with frizzled-5 (FZD5) is typical of Wnt/FZD family members. To confirm this interaction, we performed co-immunofluorescence, co-immunoprecipitation, and ELISA binding assays, which demonstrated SFRP2/FZD5 binding. Functional knock-down studies further revealed that FZD5 is necessary for SFRP2-induced tube formation and intracellular calcium flux in endothelial cells. Using protein analysis on endothelial cell nuclear extracts, we also discovered that FZD5 is required for SFRP2-induced activation of NFATc3. Our novel findings reveal that FZD5 is a receptor for SFRP2 and mediates SFRP2-induced angiogenesis via calcineurin/NFATc3 pathway in endothelial cells.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Patrick Nasarre
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ingrid V Bonilla
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Eleanor Hilliard
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jennifer Samples
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas A Morinelli
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth G Hill
- Department of Public Health Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
17
|
P53/Rb inhibition induces metastatic adrenocortical carcinomas in a preclinical transgenic model. Oncogene 2017; 36:4445-4456. [PMID: 28368424 DOI: 10.1038/onc.2017.54] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/20/2016] [Accepted: 02/04/2017] [Indexed: 12/14/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare cancer with poor prognosis. Pan-genomic analyses identified p53/Rb and WNT/β-catenin signaling pathways as main contributors to the disease. However, isolated β-catenin constitutive activation failed to induce malignant progression in mouse adrenocortical tumors. Therefore, there still was a need for a relevant animal model to study ACC pathogenesis and to test new therapeutic approaches. Here, we have developed a transgenic mice model with adrenocortical specific expression of SV40 large T-antigen (AdTAg mice), to test the oncogenic potential of p53/Rb inhibition in the adrenal gland. All AdTAg mice develop large adrenal carcinomas that eventually metastasize to the liver and lungs, resulting in decreased overall survival. Consistent with ACC in patients, adrenal tumors in AdTAg mice autonomously produce large amounts of glucocorticoids and spontaneously activate WNT/β-catenin signaling pathway during malignant progression. We show that this activation is associated with downregulation of secreted frizzled related proteins (Sfrp) and Znrf3 that act as inhibitors of the WNT signaling. We also show that mTORC1 pathway activation is an early event during neoplasia expansion and further demonstrate that mTORC1 pathway is activated in ACC patients. Preclinical inhibition of mTORC1 activity induces a marked reduction in tumor size, associated with induction of apoptosis and inhibition of proliferation that results in normalization of corticosterone plasma levels in AdTAg mice. Altogether, these data establish AdTAg mice as the first preclinical model for metastatic ACC.
Collapse
|
18
|
Vincent KM, Postovit LM. A pan-cancer analysis of secreted Frizzled-related proteins: re-examining their proposed tumour suppressive function. Sci Rep 2017; 7:42719. [PMID: 28218291 PMCID: PMC5316967 DOI: 10.1038/srep42719] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
Secreted frizzled-related proteins (SFRPs), containing five family members (SFRPs 1-5) are putative extracellular Wnt inhibitors. Given their abilities to inhibit Wnt signalling, as well as the loss of SFRP1 in many cancers, this family is generally considered to be tumour suppressive. In this study we analyzed gene expression, promoter methylation and survival data from over 8000 tumour and normal samples from 29 cancers in order to map the context-specific associations of SFRPs 1-5 with patient survival, gene silencing and gene expression signatures. We show that only SFRP1 associates consistently with tumour suppressive functions, and that SFRP2 and SFRP4 typically associate with a poor prognosis concomitant with the expression of genes associated with epithelial-to-mesenchymal transition. Moreover, our results indicate that while SFRP1 is lost in cancer cells via the process of DNA methylation, SFRP2 and 4 are likely derived from the tumour stroma, and thus tend to increase in tumours as compared to normal tissues. This in-depth analysis highlights the need to study each SFRP as a separate entity and suggests that SFRP2 and SFRP4 should be approached as complex matricellular proteins with functions that extend far beyond their putative Wnt antagonistic ability.
Collapse
Affiliation(s)
- Krista Marie Vincent
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB, T6G 2E1, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
19
|
The thyroid hormone nuclear receptors and the Wnt/β-catenin pathway: An intriguing liaison. Dev Biol 2017; 422:71-82. [DOI: 10.1016/j.ydbio.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
|
20
|
Liu Y, Zhou Q, Zhou D, Huang C, Meng X, Li J. Secreted frizzled-related protein 2-mediated cancer events: Friend or foe? Pharmacol Rep 2017; 69:403-408. [PMID: 28273499 DOI: 10.1016/j.pharep.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023]
Abstract
Secreted frizzled-related protein (SFRP)2, an identified member of the SFRPs family of molecules, is often methylated in human cancers and its down-regulation is closely related to Wnt signaling activity and tumor progression. Although the blocker of the Wnt signaling has not been fully used in clinical trial, interest has been further enhanced by the realization of SFRPs' potential as targets to modulate Wnt signaling and cancer cell growth. Emerging evidence showed that SFRP2 was an anti-oncogene, however, a steady flow of research has indicated that it may also have tumor promotion effects in some cancer types. Furthermore, SFRP2 methylation was shown to accelerate cancer cell invasion and growth in tumor progression. In this review, we define recent understanding of the diverse roles of SFRP2 in tumorigenesis, and it might promote the development of novel drugs for curing cancer by targeting SFRP2.
Collapse
Affiliation(s)
- Yanhui Liu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Qun Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Dexi Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China.
| |
Collapse
|
21
|
Techavichit P, Gao Y, Kurenbekova L, Shuck R, Donehower LA, Yustein JT. Secreted Frizzled-Related Protein 2 (sFRP2) promotes osteosarcoma invasion and metastatic potential. BMC Cancer 2016; 16:869. [PMID: 27821163 PMCID: PMC5100268 DOI: 10.1186/s12885-016-2909-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/26/2016] [Indexed: 11/10/2022] Open
Abstract
Background Osteosarcoma (OS), which has a high potential for developing metastatic disease, is the most frequent malignant bone tumor in children and adolescents. Molecular analysis of a metastatic genetically engineered mouse model of osteosarcoma identified enhanced expression of Secreted Frizzled-Related Protein 2 (sFRP2), a putative regulator of Wnt signaling within metastatic tumors. Subsequent analysis correlated increased expression in the human disease, and within highly metastatic OS cells. However, the role of sFRP2 in osteosarcoma development and progression has not been well elucidated. Methods Studies using stable gain or loss-of-function alterations of sFRP2 within human and mouse OS cells were performed to assess changes in cell proliferation, migration, and invasive ability in vitro, via both transwell and 3D matrigel assays. In additional, xenograft studies using overexpression of sFRP2 were used to assess effects on in vivo metastatic potential. Results Functional studies revealed stable overexpression of sFRP2 within localized human and mouse OS cells significantly increased cell migration and invasive ability in vitro and enhanced metastatic potential in vivo. Additional studies exploiting knockdown of sFRP2 within metastatic human and mouse OS cells demonstrated decreased cell migration and invasion ability in vitro, thus corroborating a critical biological phenotype carried out by sFRP2. Interestingly, alterations in sFRP2 expression did not alter OS proliferation rates or primary tumor development. Conclusions While future studies further investigating the molecular mechanisms contributing towards this sFRP2-dependent phenotype are needed, our studies clearly provide evidence that aberrant expression of sFRP2 can contribute to the invasive and metastatic potential for osteosarcoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2909-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Piti Techavichit
- Department of Pediatrics, Hematology-Oncology, Bumrungrad Hospital, Bangkok, Thailand
| | - Yang Gao
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lyazat Kurenbekova
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ryan Shuck
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lawrence A Donehower
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Wnt Signaling in Renal Cell Carcinoma. Cancers (Basel) 2016; 8:cancers8060057. [PMID: 27322325 PMCID: PMC4931622 DOI: 10.3390/cancers8060057] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers.
Collapse
|
23
|
Kim M, Han JH, Kim JH, Park TJ, Kang HY. Secreted Frizzled-Related Protein 2 (sFRP2) Functions as a Melanogenic Stimulator; the Role of sFRP2 in UV-Induced Hyperpigmentary Disorders. J Invest Dermatol 2016; 136:236-44. [PMID: 26763443 DOI: 10.1038/jid.2015.365] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/16/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022]
Abstract
In this study, we found that secreted frizzled-related protein 2 (sFRP2) is overexpressed in the hyperpigmentary skin of melasma and solar lentigo and in acutely UV-irradiated skin. To investigate the effect of sFRP2 on melanogenesis, normal human melanocytes were infected with sFRP2-lentivirus or sh-sFRP2. It was found that sFRP2 stimulates melanogenesis through microphthalmia-associated transcription factor and/or tyrosinase upregulation via β-catenin signaling. The stimulatory action of sFRP2 in pigmentation was further confirmed in melanocytes cocultured with fibroblasts and in ex vivo cultured skin. The findings suggest that sFRP2 functions as a melanogenic stimulator and that it plays a role in the development of UV-induced hyperpigmentary disorders.
Collapse
Affiliation(s)
- Misun Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Science, Ajou University School of Medicine, Suwon, Korea
| | - Jae Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Jang-Hee Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Tae Jun Park
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Science, Ajou University School of Medicine, Suwon, Korea; Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea.
| | - Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Science, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
24
|
The secreted Frizzled-Related Protein 2 modulates cell fate and the Wnt pathway in the murine intestinal epithelium. Exp Cell Res 2015; 330:56-65. [DOI: 10.1016/j.yexcr.2014.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/15/2014] [Accepted: 10/16/2014] [Indexed: 11/20/2022]
|
25
|
West JD, Austin ED, Gaskill C, Marriott S, Baskir R, Bilousova G, Jean JC, Hemnes AR, Menon S, Bloodworth NC, Fessel JP, Kropski JA, Irwin D, Ware LB, Wheeler L, Hong CC, Meyrick B, Loyd JE, Bowman AB, Ess KC, Klemm DJ, Young PP, Merryman WD, Kotton D, Majka SM. Identification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension. Am J Physiol Cell Physiol 2014; 307:C415-30. [PMID: 24871858 PMCID: PMC4154073 DOI: 10.1152/ajpcell.00057.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/24/2022]
Abstract
Understanding differences in gene expression that increase risk for pulmonary arterial hypertension (PAH) is essential to understanding the molecular basis for disease. Previous studies on patient samples were limited by end-stage disease effects or by use of nonadherent cells, which are not ideal to model vascular cells in vivo. These studies addressed the hypothesis that pathological processes associated with PAH may be identified via a genetic signature common across multiple cell types. Expression array experiments were initially conducted to analyze cell types at different stages of vascular differentiation (mesenchymal stromal and endothelial) derived from PAH patient-specific induced pluripotent stem (iPS) cells. Molecular pathways that were altered in the PAH cell lines were then compared with those in fibroblasts from 21 patients, including those with idiopathic and heritable PAH. Wnt was identified as a target pathway and was validated in vitro using primary patient mesenchymal and endothelial cells. Taken together, our data suggest that the molecular lesions that cause PAH are present in all cell types evaluated, regardless of origin, and that stimulation of the Wnt signaling pathway was a common molecular defect in both heritable and idiopathic PAH.
Collapse
Affiliation(s)
- James D West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee
| | - Eric D Austin
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Christa Gaskill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Shennea Marriott
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Rubin Baskir
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Ganna Bilousova
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| | | | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee
| | - Swapna Menon
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | | | - Joshua P Fessel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee
| | - Johnathan A Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - David Irwin
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Lisa Wheeler
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Charles C Hong
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Veterans Administration Hospital, Nashville, Tennessee
| | - Barbara Meyrick
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - James E Loyd
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt Brain Institute, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee
| | - Kevin C Ess
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee; Department of Neurology, Vanderbilt Brain Institute, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee
| | - Dwight J Klemm
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| | - Pampee P Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | | | - Susan M Majka
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee; Pulmonary Vascular Research Institute, Kochi, and AnalyzeDat Consulting Services, Kerala, India; and
| |
Collapse
|
26
|
Ultrasound molecular imaging of secreted frizzled related protein-2 expression in murine angiosarcoma. PLoS One 2014; 9:e86642. [PMID: 24489757 PMCID: PMC3906081 DOI: 10.1371/journal.pone.0086642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/11/2013] [Indexed: 12/30/2022] Open
Abstract
Angiosarcoma is a biologically aggressive vascular malignancy with a high metastatic potential. In the era of targeted medicine, knowledge of specific molecular tumor characteristics has become more important. Molecular imaging using targeted ultrasound contrast agents can monitor tumor progression non-invasively. Secreted frizzled related protein 2 (SFRP2) is a tumor endothelial marker expressed in angiosarcoma. We hypothesize that SFRP2-directed imaging could be a novel approach to imaging the tumor vasculature. To develop an SFRP2 contrast agent, SFRP2 polyclonal antibody was biotinylated and incubated with streptavidin-coated microbubbles. SVR angiosarcoma cells were injected into nude mice, and when tumors were established the mice were injected intravenously with the SFRP2 -targeted contrast agent, or a control streptavidin-coated contrast agent. SFRP2 -targeted contrast agent detected tumor vasculature with significantly more signal intensity than control contrast agent: the normalized fold-change was 1.6 ± 0.27 (n = 13, p = 0.0032). The kidney was largely devoid of echogenicity with no significant difference between the control contrast agent and the SFRP2-targeted contrast agent demonstrating that the SFRP2-targeted contrast agent was specific to tumor vessels. Plotting average pixel intensity obtained from SFRP2-targeted contrast agent against tumor volume showed that the average pixel intensity increased as tumor volume increased. In conclusion, molecularly-targeted imaging of SFRP2 visualizes angiosarcoma vessels, but not normal vessels, and intensity increases with tumor size. Molecular imaging of SFRP2 expression may provide a rapid, non-invasive method to monitor tumor regression during therapy for angiosarcoma and other SFRP2 expressing cancers, and contribute to our understanding of the biology of SFRP2 during tumor development and progression.
Collapse
|
27
|
Surana R, Sikka S, Cai W, Shin EM, Warrier SR, Tan HJG, Arfuso F, Fox SA, Dharmarajan AM, Kumar AP. Secreted frizzled related proteins: Implications in cancers. Biochim Biophys Acta Rev Cancer 2013; 1845:53-65. [PMID: 24316024 DOI: 10.1016/j.bbcan.2013.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 12/31/2022]
Abstract
The Wnt (wingless-type) signaling pathway plays an important role in embryonic development, tissue homeostasis, and tumor progression becaluse of its effect on cell proliferation, migration, and differentiation. Secreted frizzled-related proteins (SFRPs) are extracellular inhibitors of Wnt signaling that act by binding directly to Wnt ligands or to Frizzled receptors. In recent years, aberrant expression of SFRPs has been reported to be associated with numerous cancers. As gene expression of SFRP members is often lost through promoter hypermethylation, inhibition of methylation through the use of epigenetic modifying agents could renew the expression of SFRP members and further antagonize deleterious Wnt signaling. Several reports have described epigenetic silencing of these Wnt signaling antagonists in various human cancers, suggesting their possible role as tumor suppressors. SFRP family members thus come across as potential tools in combating Wnt-driven tumorigenesis. However, little is known about SFRP family members and their role in different cancers. This review comprehensively covers all the available information on the role of SFRP molecules in various human cancers.
Collapse
Affiliation(s)
- Rohit Surana
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sakshi Sikka
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eun Myoung Shin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sudha R Warrier
- Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, India
| | - Hong Jie Gabriel Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Frank Arfuso
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, 6845 Western Australia, Australia
| | - Simon A Fox
- Molecular Pharmacology Laboratory, School of Pharmacy, Western Australian Biomedical Research Institute & Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Arun M Dharmarajan
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, 6845 Western Australia, Australia.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, 6845 Western Australia, Australia; Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| |
Collapse
|
28
|
Park TJ, Kim M, Kim H, Park SY, Park KC, Ortonne JP, Kang HY. Wnt inhibitory factor (WIF)-1 promotes melanogenesis in normal human melanocytes. Pigment Cell Melanoma Res 2013; 27:72-81. [DOI: 10.1111/pcmr.12168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 09/16/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Tae Jun Park
- Department of Biochemistry; Ajou University School of Medicine; Suwon Korea
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
| | - Misun Kim
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| | - Hyeran Kim
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| | - Sun Yi Park
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| | - Kyoung-Chan Park
- Department of Dermatology; Seoul National University Bundang Hospital; Seongnam Korea
| | | | - Hee Young Kang
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| |
Collapse
|
29
|
Kruck S, Eyrich C, Scharpf M, Sievert KD, Fend F, Stenzl A, Bedke J. Impact of an altered Wnt1/β-catenin expression on clinicopathology and prognosis in clear cell renal cell carcinoma. Int J Mol Sci 2013; 14:10944-57. [PMID: 23708097 PMCID: PMC3709711 DOI: 10.3390/ijms140610944] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/12/2013] [Accepted: 05/10/2013] [Indexed: 11/16/2022] Open
Abstract
In renal cell carcinoma (RCC), single members of the Wnt/β-catenin signaling cascade were recently identified to contribute to cancer progression. However, the role of Wnt1, one of the key ligands in β-catenin regulation, is currently unknown in RCC. Therefore, alterations of the Wnt1/β-catenin axis in clear cell RCC (ccRCC) were examined with regard to clinicopathology, overall survival (OS) and cancer specific survival (CSS). Corresponding ccRCCs and benign renal tissue were analyzed in 278 patients for Wnt1 and β-catenin expression by immunohistochemistry in tissue microarrays. Expression scores, including intensity and percentage of stained cells, were compared between normal kidney and ccRCCs. Data was categorized according to mean expression scores and correlated to tumor and patients' characteristics. Survival was analyzed according to the Kaplan-Meier and log-rank test. Univariable and multivariable Cox proportional hazard regression models were used to explore the independent prognostic value of Wnt1 and β-catenin. In ccRCCs, high Wnt1 was associated with increased tumor diameter, stage and vascular invasion (p ≤ 0.02). High membranous β-catenin was associated with advanced stage, vascular invasion and tumor necrosis (p ≤ 0.01). Higher diameter, stage, node involvement, grade, vascular invasion and sarcomatoid differentiation (p ≤ 0.01) were found in patients with high cytoplasmic β-catenin. Patients with a high cytoplasmic β-catenin had a significantly reduced OS (hazard ratio (HR) 1.75) and CSS (HR 2.26), which was not independently associated with OS and CSS after adjustment in the multivariable model. Increased ccRCC aggressiveness was reflected by an altered Wnt1/β-catenin signaling. Cytoplasmic β-catenin was identified as the most promising candidate associated with unfavorable clinicopathology and impaired survival. Nevertheless, the shift of membranous β-catenin to the cytoplasm with a subsequently increased nuclear expression, as shown for other malignancies, could not be demonstrated to be present in ccRCC.
Collapse
Affiliation(s)
- Stephan Kruck
- Department of Urology, Eberhard Karls University Tuebingen, Hoppe-Seyler Strasse 3, Tuebingen 72076, Germany; E-Mails: (S.K.); (C.E.); (K.-D.S.); (A.S.)
| | - Christian Eyrich
- Department of Urology, Eberhard Karls University Tuebingen, Hoppe-Seyler Strasse 3, Tuebingen 72076, Germany; E-Mails: (S.K.); (C.E.); (K.-D.S.); (A.S.)
| | - Marcus Scharpf
- Institute of Pathology, Eberhard Karls University, Tuebingen 72076, Germany; E-Mails: (M.S.); (F.F.)
| | - Karl-Dietrich Sievert
- Department of Urology, Eberhard Karls University Tuebingen, Hoppe-Seyler Strasse 3, Tuebingen 72076, Germany; E-Mails: (S.K.); (C.E.); (K.-D.S.); (A.S.)
| | - Falco Fend
- Institute of Pathology, Eberhard Karls University, Tuebingen 72076, Germany; E-Mails: (M.S.); (F.F.)
| | - Arnulf Stenzl
- Department of Urology, Eberhard Karls University Tuebingen, Hoppe-Seyler Strasse 3, Tuebingen 72076, Germany; E-Mails: (S.K.); (C.E.); (K.-D.S.); (A.S.)
| | - Jens Bedke
- Department of Urology, Eberhard Karls University Tuebingen, Hoppe-Seyler Strasse 3, Tuebingen 72076, Germany; E-Mails: (S.K.); (C.E.); (K.-D.S.); (A.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-7071-298-6613; Fax: +49-7071-295-092
| |
Collapse
|
30
|
Fontenot E, Rossi E, Mumper R, Snyder S, Siamakpour-Reihani S, Ma P, Hilliard E, Bone B, Ketelsen D, Santos C, Patterson C, Klauber-DeMore N. A novel monoclonal antibody to secreted frizzled-related protein 2 inhibits tumor growth. Mol Cancer Ther 2013; 12:685-95. [PMID: 23604067 DOI: 10.1158/1535-7163.mct-12-1066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secreted frizzled-related protein 2 (SFRP2) is overexpressed in human angiosarcoma and breast cancer and stimulates angiogenesis via activation of the calcineurin/NFATc3 pathway. There are conflicting reports in the literature as to whether SFRP2 is an antagonist or agonist of β-catenin. The aims of these studies were to assess the effects of SFRP2 antagonism on tumor growth and Wnt-signaling and to evaluate whether SFRP2 is a viable therapeutic target. The antiangiogenic and antitumor properties of SFRP2 monoclonal antibody (mAb) were assessed using in vitro proliferation, migration, tube formation assays, and in vivo angiosarcoma and triple-negative breast cancer models. Wnt-signaling was assessed in endothelial and tumor cells treated with SFRP2 mAb using Western blotting. Pharmacokinetic and biodistribution data were generated in tumor-bearing and nontumor-bearing mice. SFRP2 mAb was shown to induce antitumor and antiangiogenic effects in vitro and inhibit activation of β-catenin and nuclear factor of activated T-cells c3 (NFATc3) in endothelial and tumor cells. Treatment of SVR angiosarcoma allografts in nude mice with the SFRP2 mAb decreased tumor volume by 58% compared with control (P = 0.004). Treatment of MDA-MB-231 breast carcinoma xenografts with SFRP2 mAb decreased tumor volume by 52% (P = 0.03) compared with control, whereas bevacizumab did not significantly reduce tumor volume. Pharmacokinetic studies show the antibody is long circulating in the blood and preferentially accumulates in SFRP2-positive tumors. In conclusion, antagonizing SFRP2 inhibits activation of β-catenin and NFATc3 in endothelial and tumor cells and is a novel therapeutic approach for inhibiting angiosarcoma and triple-negative breast cancer.
Collapse
Affiliation(s)
- Emily Fontenot
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sreenivasan S, Thirumalai K, Krishnakumar S. Expression profile of genes regulated by curcumin in Y79 retinoblastoma cells. Nutr Cancer 2012; 64:607-16. [PMID: 22489823 DOI: 10.1080/01635581.2012.669875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Curcumin, a well-known chemopreventive agent from turmeric, inhibits the expression of several oncogenes and cell proliferation genes in tumor cells. This study aims to understand the precise molecular mechanism by which curcumin exerts its effects on retinoblastoma cells, by performing whole genome microarray analysis to determine the gene expression profiles altered by curcumin treatment. Curcumin suppressed cell viability and altered the cell cycle of retinoblastoma cells. We identified 903 downregulated genes and 1,319 upregulated genes when compared with the control cells after treatment with 20 μM curcumin concentration for 48 h. These genes were grouped into respective functional categories according to their biological function. We found that curcumin regulated the expression of genes that are involved in the regulation of apoptosis, tumor suppressor, cell-cycle arrest, transcription factor, and angiogenesis. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to validate the results of genome array, and the results were consistent with the obtained data. In conclusion, treatment of curcumin affects the expression of genes involved in various cellular functions and plays an important role in tumor metastasis and apoptosis. Thus, curcumin might be an effective chemopreventive agent for retinoblastoma cancer.
Collapse
|
32
|
Monaco E, Bionaz M, Rodriguez-Zas S, Hurley WL, Wheeler MB. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One 2012; 7:e32481. [PMID: 22412878 PMCID: PMC3296722 DOI: 10.1371/journal.pone.0032481] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/30/2012] [Indexed: 12/13/2022] Open
Abstract
Bone-marrow mesenchymal stem cells (BMSC) are considered the gold standard for use in tissue regeneration among mesenchymal stem cells (MSC). The abundance and ease of harvest make the adipose-derived stem cells (ASC) an attractive alternative to BMSC. The aim of the present study was to compare the transcriptome of ASC and BMSC, respectively isolated from subcutaneous adipose tissue and femur of 3 adult pigs, during in vitro osteogenic and adipogenic differentiation for up to four weeks. At 0, 2, 7, and 21 days of differentiation RNA was extracted for microarray analysis. A False Discovery Rate ≤0.05 for overall interactions effect and P<0.001 between comparisons were used to determine differentially expressed genes (DEG). Ingenuity Pathway Analysis and DAVID performed the functional analysis of the DEG. Functional analysis of highest expressed genes in MSC and genes more expressed in MSC vs. fully differentiated tissues indicated low immunity and high angiogenic capacity. Only 64 genes were differentially expressed between ASC and BMSC before differentiation. The functional analysis uncovered a potential larger angiogenic, osteogenic, migration, and neurogenic capacity in BMSC and myogenic capacity in ASC. Less than 200 DEG were uncovered between ASC and BMSC during differentiation. Functional analysis also revealed an overall greater lipid metabolism in ASC, while BMSC had a greater cell growth and proliferation. The time course transcriptomic comparison between differentiation types uncovered <500 DEG necessary to determine cell fate. The functional analysis indicated that osteogenesis had a larger cell proliferation and cytoskeleton organization with a crucial role of G-proteins. Adipogenesis was driven by PPAR signaling and had greater angiogenesis, lipid metabolism, migration, and tumorigenesis capacity. Overall the data indicated that the transcriptome of the two MSC is relatively similar across the conditions studied. In addition, functional analysis data might indicate differences in therapeutic application.
Collapse
Affiliation(s)
- Elisa Monaco
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Massimo Bionaz
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sandra Rodriguez-Zas
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Walter L. Hurley
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Matthew B. Wheeler
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hao XW, Zhu ST, He YL, Li P, Wang YJ, Zhang ST. Epigenetic inactivation of secreted frizzled-related protein 2 in esophageal squamous cell carcinoma. World J Gastroenterol 2012; 18:532-40. [PMID: 22363119 PMCID: PMC3280398 DOI: 10.3748/wjg.v18.i6.532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 09/22/2011] [Accepted: 10/28/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and methylation status of the secreted frizzled-related protein 2 (SFRP2) in esophageal squamous cell carcinoma (ESCC) and explore its role in ESCC carcinogenesis.
METHODS: Seven ESCC cell lines (KYSE 30, KYSE150, KYSE410, KYSE510, EC109, EC9706 and TE-1) and one immortalized human esophageal epithelial cell line (Het-1A), 20 ESCC tissue samples and 20 paired adjacent non-tumor esophageal epithelial tissues were analyzed in this study. Reverse-transcription polymerase chain reaction (RT-PCR) was employed to investigate the expression of SFRP2 in cell lines, primary ESCC tumor tissue, and paired adjacent normal tissue. Methylation status was evaluated by methylation-specific PCR and bisulfite sequencing. The correlation between expression and promoter methylation of the SFRP2 gene was confirmed with treatment of 5-aza-2’-deoxycytidine. To assess the potential role of SFRP2 in ESCC, we established stable SFRP2-transfected cells and examined them with regard to cell proliferation, colony formation, apoptosis and cell cycle in vivo and in vitro.
RESULTS: SFRP2 mRNA was expressed in the immortalized normal esophageal epithelial cell line but not in seven ESCC cell lines. By methylation-specific PCR, complete methylation was detected in three cell lines with silenced SFRP2 expression, and extensive methylation was observed in the other four ESCC cell lines. 5-aza-2’-deoxycytidine could restore the expression of SFRP2 mRNA in the three ESCC cell lines lacking SFRP2 expression. SFRP2 mRNA expression was obviously lower in primary ESCC tissue than in adjacent normal tissue (0.939 ± 0.398 vs 1.51 ± 0.399, P < 0.01). SFRP2 methylation was higher in tumor tissue than in paired normal tissue (95% vs 65%, P < 0.05). The DNA methylation status of the SFRP2 correlated inversely with the SFRP2 expression. To assess the potential role of SFRP2 in ESCC, we established stable SFRP2 transfectants and control counterparts by introducing pcDNA3.1/v5 hisA -SFRP2 or pcDNA3.1/v5 hisA -empty vector into KYSE30 cells lacking SFRP2 expression. After transfection, the forced-expression of SFRP2 was confirmed by the RT-PCR. In comparison with the control groups, stably-expressed SFRP2 in KYSE 30 cells significantly reduced colony formation in vitro (47.17% ± 15.61% vs 17% ± 3.6%, P = 0.031) and tumor growth in nude mice (917.86 ± 249.35 mm3vs 337.23 ± 124.43 mm3, P < 0.05). Using flow cytometry analysis, we found a significantly higher number of early apoptotic cells in SFRP2-transfected cells than in the control cells (P = 0.025). The mean cell number in the S and G2-M phases of the cell cycle was also significantly lower in SFRP2-transfected KYSE30 cells compared with mock transfected counterparts.
CONCLUSION: Silencing of SFRP2 expression through promoter hypermethylation may be a factor in ESCC carcinogenesis through loss of its tumor-suppressive activity.
Collapse
|
34
|
Majid S, Saini S, Dahiya R. Wnt signaling pathways in urological cancers: past decades and still growing. Mol Cancer 2012; 11:7. [PMID: 22325146 PMCID: PMC3293036 DOI: 10.1186/1476-4598-11-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/10/2012] [Indexed: 02/25/2023] Open
Abstract
The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and therapeutic strategies for urological cancers.
Collapse
Affiliation(s)
- Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, 4150 Clement Street, San Francisco CA 94121, USA
| | | | | |
Collapse
|
35
|
Abstract
Renal cell carcinoma (RCC) is the most lethal of all the genitourinary cancers, as it is generally refractory to current treatment regimens, including chemotherapy and radiation therapy. Targeted therapies against critical signaling pathways associated with RCC pathogenesis, such as vascular endothelial growth factor, von Hippel-Lindau tumor suppressor and mammalian target of rapamycin, have shown limited efficacy so far. Thus, Wnt signaling, which is known to be intricately involved in the pathogenesis of RCC, has attracted much interest. Several Wnt signaling components have been examined in RCC, and, while studies suggest that Wnt signaling is constitutively active in RCC, the molecular mechanisms differ considerably from other human carcinomas. Increasing evidence indicates that secreted Wnt antagonists have important roles in RCC pathogenesis. Considering these vital roles, it has been postulated--and supported by experimental evidence--that the functional loss of Wnt antagonists, for example by promoter hypermethylation, can contribute to constitutive activation of the Wnt pathway, resulting in carcinogenesis through dysregulation of cell proliferation and differentiation. However, subsequent functional studies of these Wnt antagonists have demonstrated the inherent complexities underlying their role in RCC pathogenesis.
Collapse
|
36
|
Mii Y, Taira M. Secreted Wnt "inhibitors" are not just inhibitors: regulation of extracellular Wnt by secreted Frizzled-related proteins. Dev Growth Differ 2011; 53:911-23. [PMID: 21995331 DOI: 10.1111/j.1440-169x.2011.01299.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gradient formation and signaling ranges of secreted proteins are crucial problems to understand how morphogens work for positional information and patterning in animal development. Yet, extracellular behaviors of secreted signaling molecules remain unexplored compared to their downstream pathways inside the cell. Recent advances in bioimaging make it possible to directly visualize morphogen molecules, and this simple strategy has, at least partly, succeeded in uncovering molecular behaviors of morphogens, such as Wnt (wingless-type MMTV integration site family member) and BMP (bone morphogenetic protein) as well as secreted Wnt binding proteins, sFRPs (secreted Frizzled-related proteins), in embryonic tissues. Here, we review the regulation of Wnt signaling by sFRPs, focusing on extracellular regulation of Wnt ligands in comparison with other morphogens. We also discuss evolutionary aspects with comprehensive syntenic and phylogenetic information about vertebrate sfrp genes. We newly annotated several sfrp genes including sfrp2-like 1 (sfrp2l1) in frogs and fishes and crescent in mammals.
Collapse
Affiliation(s)
- Yusuke Mii
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
37
|
Current World Literature. Curr Opin Support Palliat Care 2011; 5:297-305. [DOI: 10.1097/spc.0b013e32834a76ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|