1
|
Wang X, Zhang T, Lu X, Zhang Y, Tian M, Chen Y, Wang Y, Liu N, Li S, Zhang J, Wei L. The σNS protein of NDRV antagonizes TRIM59-mediated antiviral innate immune response of Cherry Valley duck. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 128:105724. [PMID: 39894289 DOI: 10.1016/j.meegid.2025.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
In recent years, outbreak of the novel duck reovirus (NDRV) disease has occurred frequently in duck populations. Due to its rapid spreading, absence of effective control methods, and high treatment costs, the NDRV disease has caused huge losses to waterfowl breeding in China. As reported, four non-structural (NS) proteins are encoded by the NDRV genome, among which the σNS protein is an RNA-binding protein that can improve the stability of bound RNA by forming oligomers (Adams and Cory, 1998). Nevertheless, the mechanism by which it facilitates reovirus replication remains ambiguous. According to previous studies, the NS protein 11 of the porcine reproductive and respiratory syndrome virus (PRRSV) can interact with tripartite motif-containing 59 (TRIM59) to regulate viral infection. However, the specific role of TRIM59 in NDRV infection remains unclear. This study focused on full-length amplification of duTRIM59, the mRNA distribution of duTRIM59 in Cherry Valley duck and successive biological examinations. The homology with Anas platyrhynchos TRIM59 was 98.6 %. The mRNA distribution level of duTRIM59 showed that duTRIM59 was widely expressed in bursae and thymus of the immune organs. Nevertheless, TRIM59 comprises three domains, including the transmembrane (TM), B-box (B), and RING-finger (R) domains. It also has the activity of ubiquitin-protein ligase (E3). It has been demonstrated that NDRV replication is inhibited by TRIM59 overexpression in duck embryonic fibroblasts (DEF) cells, particularly when the R domain is intact, suggesting that the R domain plays a key role in the spreading of the NDRV virus. In contrast, NDRV infection in DEF cells increased when TRIM59 was depleted by using small interfering RNA. Moreover, the σNS protein can be co-localized with duTRIM59 and stimulate NDRV replication in DEF cells in cases of NDRV infection. This study clarifies the correlation of NDRV infection and TRIM59-mediated antiviral innate immunity, and provides a sound theoretical basis for further understanding this disease.
Collapse
Affiliation(s)
- Xiuyuan Wang
- Shandong Provincial Key Laboratory of Zoonoses, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'An 271018, China
| | - Tingting Zhang
- Shandong Provincial Key Laboratory of Zoonoses, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'An 271018, China; Collaborative innovation center for the origin and control of emerging infectious diseases, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, JiNan 250024, China
| | - Xiaoyu Lu
- Shandong Provincial Key Laboratory of Zoonoses, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'An 271018, China
| | - Yirui Zhang
- Shandong Provincial Key Laboratory of Zoonoses, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'An 271018, China
| | - Mingzhuo Tian
- Shandong Provincial Key Laboratory of Zoonoses, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'An 271018, China
| | - Yujing Chen
- Shandong Provincial Key Laboratory of Zoonoses, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'An 271018, China
| | - Yikun Wang
- Shandong Provincial Key Laboratory of Zoonoses, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'An 271018, China
| | - Nan Liu
- Shandong Provincial Key Laboratory of Zoonoses, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'An 271018, China
| | - Shuhan Li
- Shandong Provincial Key Laboratory of Zoonoses, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'An 271018, China
| | - Jie Zhang
- Shandong Provincial Key Laboratory of Zoonoses, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'An 271018, China; College of Biology and Brewing Engineering, Taishan University, Dongyue Street 525, Tai'An 271000, China
| | - Liangmeng Wei
- Shandong Provincial Key Laboratory of Zoonoses, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'An 271018, China.
| |
Collapse
|
2
|
Mohapatra B, Lavudi K, Kokkanti RR, Patnaik S. Regulation of NLRP3/TRIM family signaling in gut inflammation and colorectal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189271. [PMID: 39864469 DOI: 10.1016/j.bbcan.2025.189271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
CRC (Colorectal cancer) ranks among the most prevalent tumors in humans and remains a leading cause of cancer-related mortality worldwide. Numerous studies have highlighted the connection between inflammasome over-activation and the initiation and progression of CRC. The activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome is dependent on the nuclear NF-kβ (Nuclear Factor kappa-light-chain-enhancer of activated B cells) pathway, leading to the maturation and release of inflammatory cytokines such as IL-1ß (Interleukin 1 beta) and IL-18 (Interleukin 18). While inflammation is crucial for defense mechanisms and tissue repair, excessive information can pose significant risks. Mounting evidence suggests that overactivation of the inflammasome contributes to the pathogenesis of inflammatory diseases. Consequently, there is a concerted effort to tightly regulate inflammasome activity and mitigate excessive inflammatory responses, particularly in conditions such as IBD (Inflammatory Bowel Disease), which includes Ulcerative Colitis and Crohn's Disease. The tripartite motif (TRIM) protein family, characterized by a conserved structure and rapid evolutionary diversification, includes members with critical roles in ubiquitination and other regulatory functions. Their importance in modulating inflammatory responses is widely acknowledged. This article aims to investigate the interplay between TRIM proteins and the NLRP3 Inflammasome in CRC and gut inflammation, offering insights for future research endeavors and potential therapeutic strategies.
Collapse
Affiliation(s)
- Bibhashee Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive cancer center, The Ohio State University, Columbus, OH, United States
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
3
|
Li X, Bai Y, Feng K, Chu Z, Li H, Lin Z, Tian L. Therapeutic, diagnostic and prognostic values of TRIM proteins in prostate cancer. Pharmacol Rep 2023; 75:1445-1453. [PMID: 37921966 DOI: 10.1007/s43440-023-00534-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 11/05/2023]
Abstract
Prostate cancer is the second most prevalent cancer in men worldwide. The TRIM (tripartite motif) family of proteins is involved in the regulation of various cellular processes, including antiviral immunity, apoptosis, and cancer progression. In recent years, several TRIM proteins have been found to play important roles in prostate cancer initiation and progression. TRIM proteins have indicated oncogenic activity in prostate cancer by enhancing androgen or estrogen receptor signaling and promoting cancer cell growth. Inhibition of TRIM proteins has been raised as a potential therapeutic strategy for the treatment of prostate cancer. Overall, these studies suggest that TRIM family proteins exert tumor-promoting effects in prostate cancer, and targeting these proteins can provide a promising therapeutic strategy for prostate cancer treatment. On the other hand, some TRIM proteins can be differentially expressed in prostate cancer cells compared to normal cells, thus providing novel diagnostic/prognostic biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Xiaojiang Li
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yuzhuo Bai
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Ke Feng
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Zhendong Chu
- Department of Orthopedics, Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Haijun Li
- Department of Orthopedics, Tonghua County Hospital of Traditional Chinese Medicine, Tonghua, 134100, China
| | - Zhicheng Lin
- Department of Internal Medicine, Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China.
| |
Collapse
|
4
|
Zhang J, Zhang Y, Ren Z, Yan D, Li G. The role of TRIM family in metabolic associated fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1210330. [PMID: 37867509 PMCID: PMC10585262 DOI: 10.3389/fendo.2023.1210330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) ranks among the most prevalent chronic liver conditions globally. At present, the mechanism of MAFLD has not been fully elucidated. Tripartite motif (TRIM) protein is a kind of protein with E3 ubiquitin ligase activity, which participates in highly diversified cell activities and processes. It not only plays an important role in innate immunity, but also participates in liver steatosis, insulin resistance and other processes. In this review, we focused on the role of TRIM family in metabolic associated fatty liver disease. We also introduced the structure and functions of TRIM proteins. We summarized the TRIM family's regulation involved in the occurrence and development of metabolic associated fatty liver disease, as well as insulin resistance. We deeply discussed the potential of TRIM proteins as targets for the treatment of metabolic associated fatty liver disease.
Collapse
Affiliation(s)
- Jingyue Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yingming Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Ze Ren
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Fan L, Gong Y, He Y, Gao WQ, Dong X, Dong B, Zhu HH, Xue W. TRIM59 is suppressed by androgen receptor and acts to promote lineage plasticity and treatment-induced neuroendocrine differentiation in prostate cancer. Oncogene 2023; 42:559-571. [PMID: 36544044 DOI: 10.1038/s41388-022-02498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022]
Abstract
The incidence of treatment-induced neuroendocrine prostate cancer (t-NEPC) has been greatly increasing after the usage of secondgeneration androgen receptor (AR) pathway inhibitors (ARPIs). Neuroendocrine differentiation (NED) is closely associated with ARPI treatment failure and poor prognosis in prostate cancer (PCa) patients. However, the molecular mechanisms of NED are not fully understood. Here we report that upregulation of TRIM59, a TRIM family protein, is strongly correlated with ARPI treatment mediated NED and shorter patient survival in PCas. AR binds to TRIM59 promoter and represses its transcription. ARPI treatment leads to a reversal of repressive epigenetic modifications on TRIM59 gene and the transcriptional restraint on TRIM59 by AR. Upregulated TRIM59 then drives the NED of PCa by enhancing the degradation of RB1 and P53 and upregulating downstream lineage plasticity-promoting transcription factor SOX2. Altogether, TRIM59 is negatively regulated by AR and acts as a key driver for NED in PCas. Our study provides a novel prognostic marker for PCas and shed new light on the molecular pathogenesis of t-NEPC, a deadly variant of PCa.
Collapse
Affiliation(s)
- Liancheng Fan
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yiming Gong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center & Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center & Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xuesen Dong
- Department of Urological Sciences, Vancouver Prostate Cancer Centre, University of BC, Vancouver, BC, V6H 3Z6, Canada
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Helen He Zhu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center & Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
6
|
Feng X, Yang G, Zhang L, Tao S, SHIM JS, Chen L, Wu Q. TRIM59 guards ER proteostasis and prevents Bortezomib-mediated colorectal cancer (CRC) cells’ killing. Invest New Drugs 2022; 40:1244-1253. [DOI: 10.1007/s10637-022-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
|
7
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
8
|
Dahpy MA, Salama RHM, Kamal AA, El-Deek HE, AbdelMotaleb AA, Abd-El-Rehim AS, Hassan EA, Alsanory AA, Saad MM, Ali M. Evaluation of tripartite motif 59 and its diagnostic utility in benign bowel diseases and colorectal cancer. J Biochem Mol Toxicol 2022; 36:e23065. [PMID: 35377964 DOI: 10.1002/jbt.23065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 10/31/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality in developing countries. Tripartite motif-59 (TRIM59) a member of the TRIM ubiquitin ligase family, is a surface molecule that regulates biological processes such as cell proliferation, apoptosis, and tumorigenesis. Previous studies reported that TRIM59 expression was upregulated in human CRC, however, the expression pattern and role of TRIM59 in benign colorectal lesions remain unclear. Sixty patients diagnosed with CRC and 60 patients with benign lesions (Crohn's disease, ulcerative colitis, adenoma, and familial adenomatous polyposis) were recruited to the present study. TRIM59 gene expression was assessed by real-time quantitative polymerase chain reaction. Expression of TRIM59 protein and p-AKT were determined using, enzyme-linked immunoassay while p53 expression was detected by immunohistochemistry. Antioxidant/oxidant role of glutathione (GSH)/malondialdehyde (MDA) were evaluated by colorimetric methods in all of the studied groups. Our results showed upregulated expressions of TRIM59 gene and protein levels in CRC tissues and benign colonic lesions compared to nontumor tissues. Their levels were higher in inflammatory compared to noninflammatory bowel lesions. There were significant interrelations among TRIM59 gene expression, protein levels, tumor, node, metastasis staging, and the presence of metastasis (p < 0.0001). Receiver-operator characteristic curve analyses showed that at the cutoff point of 2.5 TRIM59 mRNA expression can discriminate between CRC cases and benign bowel group (area under the curve [AUC]: 0.639, sensitivity: 86.7%, specificity: 41.7%), and between CRC and controls (AUC: 0.962, sensitivity: 90%, specificity: 91.7%). TRIM59 could be a potential biomarker in the early detection, diagnosis, and treatment of benign colonic lesions and CRC.
Collapse
Affiliation(s)
- Marwa A Dahpy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Medical Biochemistry and Molecular Biology, Armed forces collage of Medicine (AFCM), Cairo, Egypt
| | - Ragaa H M Salama
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa A Kamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Heba E El-Deek
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ali A AbdelMotaleb
- Department of Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer S Abd-El-Rehim
- Department of Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Elham A Hassan
- Department of Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Aya A Alsanory
- House Officer, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud M Saad
- House Officer, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Maha Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Integrated bioinformatics analysis reveals correlations of high TRIM59 expression with worse prognosis and immune infiltrates in lung adenocarcinoma. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Guo J, Min K, Deng L. Potential value of tripartite motif-containing 59 as a biomarker for predicting the prognosis of patients with lung cancer: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26868. [PMID: 34397900 PMCID: PMC8360424 DOI: 10.1097/md.0000000000026868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In recent years, related studies have revealed that tripartite motif-containing 59 (TRIM59) is related to the prognosis of lung cancer. However, these results have not been proved by any evidence. Therefore, this study evaluated the relationship between TRIM59 and the prognosis of lung cancer by carrying out meta-analysis. In addition, we explored the mechanism and related pathways of TRIM59 in lung cancer through bioinformatics analysis. METHODS Comprehensive literature search was performed in China National Knowledge Infrastructure, Chinese Biomedical literature Database, Chinese Scientific and Journal Database, Wan Fang, Web of Science, PubMed, and EMBASE databases, and eligible studies were obtained based on the inclusion and exclusion criteria. The pooled hazard ratios and odds ratios were applied to assess the clinical value of TRIM59 expression for overall survival and clinicopathological features. Meanwhile, meta-analysis was conducted on the Stata 16.0. The mRNA expression level of TRIM59 in lung cancer was analyzed using Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA) database. Gene Set Enrichment Analysis (GSEA) was used to predict the signaling pathways that TRIM59 might be involved in. The correlation between the expression level of TRIM59 in lung cancer and the abundance of immune cell invasion was analyzed by TIMER database. The survival analysis was verified by Kaplan-Meier Plotter database. RESULTS The results of this meta-analysis would be submitted to peer-reviewed journals for publication. CONCLUSION In this study, the application of meta-analysis and bioinformatics analysis will provide evidence support for the study on the prognosis and mechanism of TRIM59 in lung cancer.
Collapse
Affiliation(s)
- Jianfei Guo
- Department of Thoracic Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei Province, China
| | - Ke Min
- Department of Cardiothoracic Surgery, Jiujiang First People's Hospital, Jiujiang, Jiangxi Province, China
| | - Lichun Deng
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, Jiangsu Province, China
| |
Collapse
|
11
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
12
|
TRIM proteins in neuroblastoma. Biosci Rep 2020; 39:221458. [PMID: 31820796 PMCID: PMC6928532 DOI: 10.1042/bsr20192050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Outcome for children with high-risk NB remains unsatisfactory. Accumulating evidence suggests that tripartite motif (TRIM) family proteins express diversely in various human cancers and act as regulators of oncoproteins or tumor suppressor proteins. This review summarizes the TRIM proteins involving in NB and the underlying molecular mechanisms. We expect these new insights will provide important implications for the treatment of NB by targeting TRIM proteins.
Collapse
|
13
|
Wang F, Wang H, Sun L, Niu C, Xu J. TRIM59 inhibits PPM1A through ubiquitination and activates TGF-β/Smad signaling to promote the invasion of ectopic endometrial stromal cells in endometriosis. Am J Physiol Cell Physiol 2020; 319:C392-C401. [PMID: 32348176 DOI: 10.1152/ajpcell.00127.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study was conducted to define the underlying molecular mechanism of tripartite motif (TRIM) 59-induced invasion of ectopic endometrial stromal cells in endometriosis. Primary endometriosis ectopic endometrial stromal cells and normal endometrial cells were isolated and purified. Western blot was used to detect the expression of TRIM59, protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A), smad2/3, and phosphorylated (p)-smad2/3. Lentiviral vector-mediated TRIM59 interference and overexpression were established. Cell Counting Kit-8 assay was used to detect cell proliferation, and the Transwell migration assay was used to detect cell invasion. Matrix metalloproteinase (MMP-2), MMP9, smad2/3, and p-smad2/3 expressions were also detected using Western blot analysis; degradation of PPM1A was verified to be through ubiquitination. We found that TRIM59 expression levels in the endometriosis group was significantly higher compared with the normal group (P < 0.05), whereas the expression levels of PPM1A in the endometriosis group were significantly lower (P < 0.05). Endometriosis did not alter smad2/3 (P > 0.05) expression. However, after activating smad2/3 by phosphorylation, the expression of p-smad2/3 in the endometriosis group was significantly higher compared with the normal group (P < 0.05). The content of PPM1A in the TRIM59 overexpression group was significantly lower than that in the control group (P < 0.001), whereas the content of PPM1A in the siTRIM59 group was significantly higher than that in the control group (P < 0.001). In addition, there were no significant differences in the mRNA levels of PPM1A among the five groups, indicating that TRIM59 affects the expression of PPM1A at the posttranslational level (P < 0.05). Overexpression of TRIM59 significantly promoted the ubiquitination of PPM1A. We conclude that TRIM59 inhibits PPM1A through ubiquitination and activates the transforming growth factor-β/Smad pathway to promote the invasion of ectopic endometrial stromal cells in endometriosis.
Collapse
Affiliation(s)
- Fengyu Wang
- Henan Provincial Research Institute for Population and Family Planning, Key Laboratory of Birth Defects Prevention, National Health Commission, and Key Laboratory of Population Defects Intervention Technology of Henan Province, Zhengzhou, China
| | - Haili Wang
- Henan Provincial Research Institute for Population and Family Planning, Key Laboratory of Birth Defects Prevention, National Health Commission, and Key Laboratory of Population Defects Intervention Technology of Henan Province, Zhengzhou, China
| | - Lei Sun
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Chengling Niu
- Henan Provincial Research Institute for Population and Family Planning, Key Laboratory of Birth Defects Prevention, National Health Commission, and Key Laboratory of Population Defects Intervention Technology of Henan Province, Zhengzhou, China
| | - Jie Xu
- Department of Gynecology and Obstetrics, Yancheng Third People's Hospital, Yancheng, China
| |
Collapse
|
14
|
Tong X, Mu P, Zhang Y, Zhao J, Wang X. TRIM59, amplified in ovarian cancer, promotes tumorigenesis through the MKP3/ERK pathway. J Cell Physiol 2020; 235:8236-8245. [PMID: 31951023 DOI: 10.1002/jcp.29478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/07/2020] [Indexed: 01/30/2023]
Abstract
Tripartite motif containing 59 (TRIM59) functions as an oncoprotein in various human cancers including ovarian cancer. In this study, we found that TRIM59 gene amplification was prevalent in ovarian cancer tissues, and its amplification was significantly correlated with poorer overall survival. Moreover, knockdown of TRIM59 in SKOV3 and OVCAR3 cells, which had relatively high level of TRIM59, suppressed glucose uptake and lactate production. TRIM59 knockdown also decreased the expression of c-Myc and lactate dehydrogenase A, and the phosphorylation of extracellular signal-regulated kinase (ERK). TRIM59 overexpression in A2780 cells, which expressed low level of TRIM59, showed reverse effects. Notably, treatment with an ERK inhibitor (PD98059) completely abolished the oncogenic effects of TRIM59 overexpression. Interestingly, TRIM59 increased the ubiquitination of MAP kinase phosphatase 3 (MKP3), which may dephosphorylate and inactivate ERK. Ectopic expression of MKP3 inhibited the promoting effects of TRIM59 on glycolysis and the phosphorylation of ERK. TRIM59 protein expression was negatively correlated with MKP3 protein expression in ovarian cancer tissues. Finally, TRIM59 amplification potently affected the anticancer effect of 3-bromopyruvate, an inhibitor of glycolysis, in ovarian cancer cells and patient-derived xenograft. In conclusion, these results suggest that TRIM59 may regulate glycolysis in ovarian cancer via the MKP3/ERK pathway.
Collapse
Affiliation(s)
- Xiaojing Tong
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Peng Mu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yuhua Zhang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jiao Zhao
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xiaobin Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
15
|
Ying H, Ji L, Xu Z, Fan X, Tong Y, Liu H, Zhao J, Cai X. TRIM59 promotes tumor growth in hepatocellular carcinoma and regulates the cell cycle by degradation of protein phosphatase 1B. Cancer Lett 2019; 473:13-24. [PMID: 31875525 DOI: 10.1016/j.canlet.2019.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/28/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022]
Abstract
Tripartite motif 59 (TRIM59) is a member of Tripartite motif protein family, which is frequently increased in many human cancers. However, the molecular mechanism of TRIM59 in hepatocellular carcinoma (HCC) has not been fully elucidated. In this study, we report that TRIM59 plays an essential role in growth of HCC. We analyzed RNA sequencing data to explore abnormally expressed TRIM59 in HCC. The effects of TRIM59 on HCC were investigated through in vitro and in vivo assays (i.e., CCK-8 assay, colony formation assay, flow cytometry assay, xenograft model, immunohistochemistry, immunofluorescence and western blot). The mechanism of TRIM59 action was explored through co-immunoprecipitation, immunofluorescence, mass spectrometry and bioinformatics. TRIM59 expression is up-regulated in HCC tissues. A high level of TRIM59 expression is correlated with poor overall and disease-free survival of HCC patients. Knockdown of TRIM59 attenuated proliferation, induced cells arrested at G1/S phase and reduced tumor growth in the mouse xenograft model. Ectopic expression of TRIM59 had the opposite results. Mechanistically, TRIM59 promoted growth and regulated cell cycle. Further studies indicated that TRIM59 might interacted physically with PPM1B, which has been reported to negatively regulate CDKs phosphorylation. We also discovered that TRIM59 increased degradation of PPM1B. TRIM59 overexpression in HCC patients correlated with reduced expression of PPM1B and increased CDKs phosphorylation and cell cycle proteins. Our findings demonstrate that TRIM59 promotes growth by PPM1B/CDKs signaling pathway, indicating a new prognostic biomarker candidate and a potential antitumor target for HCC.
Collapse
Affiliation(s)
- Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyao Xu
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Liu
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Zhao
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Lou M, Gao Z, Zhu T, Mao X, Wang Y, Yuan K, Tong J. TRIM59 as a novel molecular biomarker to predict the prognosis of patients with NSCLC. Oncol Lett 2019; 19:1400-1408. [PMID: 31966070 PMCID: PMC6956412 DOI: 10.3892/ol.2019.11199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
As a member of the tripartite motif family, tripartite motif-containing protein 59 (TRIM59) serves as an E3 ubiquitin ligase in various cellular processes, including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy and carcinogenesis. The present study aimed to investigate the expression and prognostic value of TRIM59 in patients with non-small cell lung cancer (NSCLC). Expression of TRIM59 in patients with NSCLC was measured by immunohistochemistry in tissue microarrays. Datasets from The Cancer Genome Atlas (TCGA) were used to further verify the expression level of TRIM59 in NSCLC, lung adenocarcinoma and lung squamous cell carcinoma (LUSC). The prognostic value of TRIM59 in NSCLC was also analyzed. Immunohistochemistry revealed that TRIM59 was primarily located in the cytoplasm of tumor cells. Analysis of TCGA datasets revealed that TRIM59 was more highly expressed in tumor tissues than in normal tissues (P<0.0001). Furthermore, the TRIM59 expression level was associated with tumor differentiation (P=0.012), while no association was observed between TRIM59 expression and any other clinicopathological parameters. However, the average overall survival rate of patients with NSCLC in the high TRIM59 expression group was significantly lower than that in the low expression group (P=0.014), especially in patients with LUSC (P=0.016) and patients with poor differentiation (P=0.033). The multivariate analysis indicated that high TRIM59 expression is an independent prognostic factor in patients with NSCLC (P=0.018) and was associated with poor prognosis in patients with NSCLC. Therefore, TRIM59 may serve as a novel molecular biomarker to predict the prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Ming Lou
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China.,Department of Heart and Lung Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Zhaojia Gao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Tao Zhu
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaoliang Mao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Yeming Wang
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Kai Yuan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China.,Department of Heart and Lung Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Jichun Tong
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
17
|
Wang M, Chao C, Luo G, Wang B, Zhan X, Di D, Qian Y, Zhang X. Prognostic significance of TRIM59 for cancer patient survival: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e18024. [PMID: 31770215 PMCID: PMC6890323 DOI: 10.1097/md.0000000000018024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The family of tripartite motif (TRIM) proteins, which includes 80 known TRIM protein genes in humans, play a key role in cellular processes. TRIM59, a member of the TRIM family of proteins, has been reported to be involved in the carcinogenesis of multiple types of tumors. However, the prognostic value of TRIM59 in the survival of tumor patients remains controversial. We therefore conducted a meta-analysis to assess the prognostic significance of TRIM59 in cancer patients. MATERIALS AND METHODS PubMed, Embase, VIP, CNKI and Wanfang Data were searched for eligible reports published before September 30, 2018. The hazard ratio (HR) and 95% confidence intervals (CIs) were adopted to estimate the association between TRIM59 and overall survival (OS). RESULTS Six studies with 1584 patients were included to assess the effect. The results showed that high levels of TRIM59 were significantly associated with poor OS in cancer patients (HR = 1.43, 95%CI: 1.24-1.66, P < .001), indicating that higher TRIM59 expression could be an independent prognostic factor for poor survival in cancer patients. CONCLUSION Our meta-analysis suggests that higher TRIM59 expression predicts poor prognosis in cancer patients, and it may therefore serve as a promising prognostic factor.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiothoracic Surgery
| | - Ce Chao
- Department of Cardiothoracic Surgery
| | - Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Wang
- Department of Cardiothoracic Surgery
| | | | | | | | | |
Collapse
|
18
|
Spólnicka M, Pośpiech E, Adamczyk JG, Freire-Aradas A, Pepłońska B, Zbieć-Piekarska R, Makowska Ż, Pięta A, Lareu MV, Phillips C, Płoski R, Żekanowski C, Branicki W. Modified aging of elite athletes revealed by analysis of epigenetic age markers. Aging (Albany NY) 2019; 10:241-252. [PMID: 29466246 PMCID: PMC5842850 DOI: 10.18632/aging.101385] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/09/2018] [Indexed: 11/25/2022]
Abstract
Recent progress in epigenomics has led to the development of prediction systems that enable accurate age estimation from DNA methylation data. Our objective was to track responses to intense physical exercise of individual age-correlated DNA methylation markers and to infer their potential impact on the aging processes. The study showed accelerated DNA hypermethylation for two CpG sites in TRIM59 and KLF14. Both markers predicted the investigated elite athletes to be several years older than controls and this effect was more substantial in subjects involved in power sports. Accordingly, the complete 5-CpG model revealed age acceleration of elite athletes (P=1.503x10-7) and the result was more significant amongst power athletes (P=1.051x10-9). The modified methylation of TRIM59 and KLF14 in top athletes may be accounted for by the biological roles played by these genes. Their known anti-tumour and anti-inflammatory activities suggests that intense physical training has a complex influence on aging and potentially launches signalling networks that contribute to the observed lower risk of elite athletes to develop cardiovascular disease and cancer.
Collapse
Affiliation(s)
| | - Ewelina Pośpiech
- Malopolska Centre of Biotechnology of the Jagiellonian University, Krakow, Poland
| | - Jakub Grzegorz Adamczyk
- Department of Theory of Sport, Józef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland.,Department of Rehabilitation, Physiotherapy Division, Medical University of Warsaw, Warsaw, Poland
| | - Ana Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Beata Pepłońska
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Anna Pięta
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | - Maria Victoria Lareu
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rafał Płoski
- Department of Medical Genetics, Centre for Biostructure, Medical University of Warsaw, Warsaw, Poland
| | - Cezary Żekanowski
- Department of Theory of Sport, Józef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Wojciech Branicki
- Central Forensic Laboratory of the Police, Warsaw, Poland.,Malopolska Centre of Biotechnology of the Jagiellonian University, Krakow, Poland
| |
Collapse
|
19
|
Zhang P, Zhang H, Wang Y, Zhang P, Qi Y. Tripartite Motif-Containing Protein 59 (TRIM59) Promotes Epithelial Ovarian Cancer Progression via the Focal Adhesion Kinase(FAK)/AKT/Matrix Metalloproteinase (MMP) Pathway. Med Sci Monit 2019; 25:3366-3373. [PMID: 31062766 PMCID: PMC6519306 DOI: 10.12659/msm.916299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background The tripartite motif-containing protein 59 (TRIM59) is an important member of the TRIM family, which regulates biological processes. However, the relationship between TRIM59 and epithelial ovarian cancer (EOC) is not clear. Material/Methods The TRIM59 expression level was detected in EOC tissues and cell lines. CCK-8 assay, Transwell assay, and wound healing assay were performed to determine the effects of TRIM59 on EOC cell proliferation, invasion, and migration. Silencing of the expression of TRIM59 in EOC cells and expression of FAK/AKT/MMP pathway-related protein were detected by Western blot analysis. Results Through bioinformatics analysis, TRIM59 was found to be highly expressed in EOC and was correlated with prognosis of patients. TRIM59 was upregulated in EOC tissues and cells. Silencing TRIM59 significantly suppressed EOC cell proliferation, migration, and invasion. In terms of molecular mechanism, silencing TRIM59 inhibited the FAK/AKT/MMP pathway. Conclusions TRIM59 is a biomarker for the prognosis of EOC. It is also oncogenic and a potential target for EOC therapy.
Collapse
Affiliation(s)
- Pei Zhang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| | - Hengliang Zhang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| | - Yan Wang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| | - Pan Zhang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| | - Yan Qi
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| |
Collapse
|
20
|
TRIM59 knockdown inhibits cell proliferation by down-regulating the Wnt/β-catenin signaling pathway in neuroblastoma. Biosci Rep 2019; 39:BSR20181277. [PMID: 30389710 PMCID: PMC6340953 DOI: 10.1042/bsr20181277] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 01/22/2023] Open
Abstract
Neuroblastoma is the most common tumor in children, with a very poor prognosis. It is urgent to identify novel biomarkers to treat neuroblastoma, together with surgery, chemotherapy, and radiation. Human tripartite motif 59 (TRIM59), a member of the TRIM family, has been reported to participate in several human tumors. However, the exact role of TRIM59 in neuroblastoma is unknown. In the present study, real-time PCR and Western blot were used to measure mRNA and protein levels of TRIM59 in four neuroblastoma cell lines and in neuroblastoma tissues. Lentiviruses targeting TRIM59 were used to up/down-regulate TRIM59 expression levels. Cell Counting Kit-8 and Annexin-V/PI were used to analyze cell proliferation and apoptosis in neuroblastoma cell lines. Our data showed that TRIM59 knockdown inhibits cell proliferation while inducing apoptosis in SH-SY5Y and SK-N-SH neuroblastoma cell lines. TRIM59 knockdown up-regulated expression of Bax and Bim and down-regulated levels of Survivin, β-catenin, and c-myc. Interestingly, the inhibition of cell proliferation caused by TRIM59 knockdown could be blocked by LiCl, which is an agonist of Wnt/β-catenin signaling pathway. In contrast, TRIM59 overexpression could increase cell proliferation, up-regulate Survivin, β-catenin and c-myc, down-regulate Bax and Bim, and these effects could be blocked by XAV939, which is an inhibitor of Wnt/β-catenin signaling pathway. In addition, TRIM59 was up-regulated and positively related with β-catenin in neuroblastoma tissues. In conclusion, TRIM59 was up-regulated in neuroblastoma, and TRIM59 knockdown inhibited cell proliferation by down-regulating the Wnt/β-catenin signaling pathway in neuroblastoma.
Collapse
|
21
|
Wang Y, Zhou Z, Wang X, Zhang X, Chen Y, Bai J, Di W. TRIM59 Is a Novel Marker of Poor Prognosis and Promotes Malignant Progression of Ovarian Cancer by Inducing Annexin A2 Expression. Int J Biol Sci 2018; 14:2073-2082. [PMID: 30585270 PMCID: PMC6299375 DOI: 10.7150/ijbs.28757] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/26/2018] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer is the fifth common cause of death in woman worldwide. The tripartite motif-containing (TRIM) proteins consist of more than 70 known protein members. Studies have showed that TRIM proteins are involved in cancer and play important roles in cancer cell proliferation, migration, adhesion and metastasis. Recent studies have indicated that TRIM59, as a putative ubiquitin ligase, is up-regulated in some cancers and associated with poor prognosis of gastric cancer. However, the exact roles of TRIM59 in ovarian cancer are still unknown. In this study, we found that TRIM59 expression was increased and positively associated with histological grades (P = 0.000), FIGO stages (P = 0.016), and metastasis (P = 0.027) in ovarian cancer. A integrative data analysis tool revealed that ovarian cancer patients with high TRIM59 expression were correlated with more unfavorable overall and progression-free survival than the rest patients with low TRIM59 expression (P = 0.0024 and P = 7.5×10-6, respectively). Based on the finding in the clinical data, we performed a series of cell line and animal experiments, and found that TRIM59 knockdown could significantly inhibit the ovarian cancer cell proliferation, clone formation, and invasion in vitro and the ovarian cancer growth of the subcutaneous and orthotopic implantation in vivo. Furthermore, TRIM59 was found to interact with Annexin A2 and induce Annexin A2 expression. Our data imply that TRIM59 can serve as a promising prognostic marker and a potential therapeutic target.
Collapse
Affiliation(s)
- You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.,Shanghai Key Laboratory of Gynecologic Oncology, Focus Construction Subject of Shanghai Education Department, Shanghai
| | - Zhicheng Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinran Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.,Shanghai Key Laboratory of Gynecologic Oncology, Focus Construction Subject of Shanghai Education Department, Shanghai
| | - Xuping Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Yansu Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
22
|
Tan P, Ye Y, He L, Xie J, Jing J, Ma G, Pan H, Han L, Han W, Zhou Y. TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10. PLoS Biol 2018; 16:e3000051. [PMID: 30408026 PMCID: PMC6245796 DOI: 10.1371/journal.pbio.3000051] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer cells adopt various modes of migration during metastasis. How the ubiquitination machinery contributes to cancer cell motility remains underexplored. Here, we report that tripartite motif (TRIM) 59 is frequently up-regulated in metastatic breast cancer, which is correlated with advanced clinical stages and reduced survival among breast cancer patients. TRIM59 knockdown (KD) promoted apoptosis and inhibited tumor growth, while TRIM59 overexpression led to the opposite effects. Importantly, we uncovered TRIM59 as a key regulator of cell contractility and adhesion to control the plasticity of metastatic tumor cells. At the molecular level, we identified programmed cell death protein 10 (PDCD10) as a target of TRIM59. TRIM59 stabilized PDCD10 by suppressing RING finger and transmembrane domain-containing protein 1 (RNFT1)-induced lysine 63 (K63) ubiquitination and subsequent phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa (p62)-selective autophagic degradation. TRIM59 promoted PDCD10-mediated suppression of Ras homolog family member A (RhoA)-Rho-associated coiled-coil kinase (ROCK) 1 signaling to control the transition between amoeboid and mesenchymal invasiveness. PDCD10 overexpression or administration of a ROCK inhibitor reversed TRIM59 loss-induced contractile phenotypes, thereby accelerating cell migration, invasion, and tumor formation. These findings establish the rationale for targeting deregulated TRIM59/PDCD10 to treat breast cancer.
Collapse
Affiliation(s)
- Peng Tan
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, United States of America
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Jiansheng Xie
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Hongming Pan
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, United States of America
| | - Weidong Han
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
- Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, Texas, United States of America
| |
Collapse
|
23
|
Han T, Guo M, Gan M, Yu B, Tian X, Wang JB. TRIM59 regulates autophagy through modulating both the transcription and the ubiquitination of BECN1. Autophagy 2018; 14:2035-2048. [PMID: 30231667 PMCID: PMC6984771 DOI: 10.1080/15548627.2018.1491493] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macroautophagy/autophagy is a multistep cellular process that sequesters cytoplasmic components for lysosomal degradation. BECN1/Beclin1 is a central protein that assembles cofactors for the formation of a BECN1-PIK3C3-PIK3R4 complex to trigger the autophagy protein cascade. Discovering the regulators of BECN1 is important for understanding the mechanism of autophagy induction. Here, we demonstrate that TRIM59, a tripartite motif protein, plays an important role in autophagy regulation in non-small cell lung cancer (NSCLC). On the one hand, TRIM59 regulates the transcription of BECN1 through negatively modulating the NFKB pathway. On the other hand, TRIM59 regulates TRAF6 induced K63-linked ubiquitination of BECN1, thus affecting the formation of the BECN1-PIK3C3 complex. We further demonstrate that TRIM59 can mediate K48-linked ubiquitination of TRAF6 and promote the proteasomal degradation of TRAF6. Taken together, our findings reveal novel dual roles for TRIM59 in autophagy regulation by affecting both the transcription and the ubiquitination of BECN1. Abbreviations: ACTB: actin beta; BECN1: beclin 1; CHX: cycloheximide; CQ: chloroquine; GFP: green fluorescent protein; HA: haemagglutinin tag; His: polyhistidine tag; LC3B: microtubule associated protein 1 light chain 3 beta; NFKB: nuclear factor kappa B; NFKBIA: NFKB inhibitor alpha; NSCLC: non-small cell lung cancer; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; RELA: RELA proto-oncogene, NF-kB subunit; SQSTM1: sequestosome 1; tGFP: Turbo green fluorescent protein; TRAF6: TNF receptor associated factor 6; TRIM59: tripartite motif containing 59; B: ubiquitin
Collapse
Affiliation(s)
- Tianyu Han
- a Institute of Translational Medicine , Nanchang University , Nanchang , Jiangxi , China.,b School of Life Sciences , Nanchang University , Nanchang , Jiangxi , China
| | - Meng Guo
- a Institute of Translational Medicine , Nanchang University , Nanchang , Jiangxi , China
| | - Mingxi Gan
- a Institute of Translational Medicine , Nanchang University , Nanchang , Jiangxi , China
| | - Bentong Yu
- c Department of Cardiovascular Surgery , The First Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Xiaoli Tian
- b School of Life Sciences , Nanchang University , Nanchang , Jiangxi , China
| | - Jian-Bin Wang
- a Institute of Translational Medicine , Nanchang University , Nanchang , Jiangxi , China
| |
Collapse
|
24
|
Gao R, Lv G, Zhang C, Wang X, Chen L. TRIM59 induces epithelial-to-mesenchymal transition and promotes migration and invasion by PI3K/AKT signaling pathway in medulloblastoma. Oncol Lett 2018; 15:8253-8260. [PMID: 29805559 PMCID: PMC5950029 DOI: 10.3892/ol.2018.8432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Despite remarkable advances over previous decades, the long-term survival of patients with medulloblastoma remains poor due to the frequent metastatic nature of this malignancy. The aim of the present study was to examine the role of tripartite motif containing 59 (TRIM59) in cell metastasis in medulloblastoma. It was initially demonstrated that TRIM59 expression was significantly increased in clinical medulloblastoma tissues compared with adjacent non-cancerous tissues and differentially expressed in a series of medulloblastoma cell lines. The knockdown of TRIM59 in D283 cells resulted in epithelial-to-mesenchymal transition (EMT), and decreased cell migratory and invasive capacities. By contrast, the overexpression of TRIM59 in Daoy cells was able to inhibit the EMT process and increase migratory and invasive capacities of the cells. Notably, the knockdown of TRIM59 was able to decrease the protein level of matrix metalloproteinase (MMP)-2 without altering the levels of MMP-9, and conversely the overexpression of TRIM59 was able to increase the protein level of MMP-2. Importantly, the downregulation of TRIM59 in D283 cells was able to inhibit the levels of phosphorylated (p)-AKT (Ser473), glycogen synthase kinase 3 β(GSK3β; Ser9) and phosphoinositide 3-kinase (PI3K) p85 (Tyr458) without altering the levels of total protein. The data from the present study suggest that TRIM59 induces epithelial-to-mesenchymal transition and promotes migration and invasion by PI3K/AKT signaling pathway in medulloblastoma. This data may provide novel insight into tumor metastasis and pave the way for the development of therapeutic strategies for the treatment of medulloblastoma in the clinic.
Collapse
Affiliation(s)
- Ran Gao
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| | - Guoqing Lv
- Department of Children's Health Prevention and Rehabilitation, Affiliated Hospital of Jining Medical University, Jining, Shandong 272001, P.R. China
| | - Cuicui Zhang
- Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, Shandong 272001, P.R. China
| | - Xiaoli Wang
- Department of Pediatrics, Shandong Provincial Hospital, Jinan, Shandong 250021, P.R. China
| | - Lijing Chen
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| |
Collapse
|
25
|
Sang Y, Li Y, Song L, Alvarez AA, Zhang W, Lv D, Tang J, Liu F, Chang Z, Hatakeyama S, Hu B, Cheng SY, Feng H. TRIM59 Promotes Gliomagenesis by Inhibiting TC45 Dephosphorylation of STAT3. Cancer Res 2018; 78:1792-1804. [PMID: 29386185 DOI: 10.1158/0008-5472.can-17-2774] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/21/2017] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Aberrant EGFR signaling is a common driver of glioblastoma (GBM) pathogenesis; however, the downstream effectors that sustain this oncogenic pathway remain unclarified. Here we demonstrate that tripartite motif-containing protein 59 (TRIM59) acts as a new downstream effector of EGFR signaling by regulating STAT3 activation in GBM. EGFR signaling led to TRIM59 upregulation through SOX9 and enhanced the interaction between TRIM59 and nuclear STAT3, which prevents STAT3 dephosphorylation by the nuclear form of T-cell protein tyrosine phosphatase (TC45), thereby maintaining transcriptional activation and promoting tumorigenesis. Silencing TRIM59 suppresses cell proliferation, migration, and orthotopic xenograft brain tumor formation of GBM cells and glioma stem cells. Evaluation of GBM patient samples revealed an association between EGFR activation, TRIM59 expression, STAT3 phosphorylation, and poor prognoses. Our study identifies TRIM59 as a new regulator of oncogenic EGFR/STAT3 signaling and as a potential therapeutic target for GBM patients with EGFR activation.Significance: These findings identify a novel component of the EGFR/STAT3 signaling axis in the regulation of glioma tumorigenesis. Cancer Res; 78(7); 1792-804. ©2018 AACR.
Collapse
Affiliation(s)
- Youzhou Sang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanxin Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lina Song
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Angel A Alvarez
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Weiwei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Deguan Lv
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianming Tang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Liu
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijie Chang
- School of Medicine, Tsinghua University, Beijing, China
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Bo Hu
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shi-Yuan Cheng
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Wu W, Chen J, Wu J, Lin J, Yang S, Yu H. Knockdown of tripartite motif-59 inhibits the malignant processes in human colorectal cancer cells. Oncol Rep 2017; 38:2480-2488. [PMID: 28849218 DOI: 10.3892/or.2017.5896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to clarify the clinical implication and functional role of tripartite motif-59 (TRIM59) in colorectal carcinoma (CRC) and explore the underlying mechanism of aberrant high expression of TRIM59 in cancer. We validated that TRIM59 was upregulated in CRC samples, and also demonstrated that its upregulation was associated with advanced tumor stage of CRC patients; and its high expression indicated shorter overall survival and faster recurrence. Knockdown of TRIM59 significantly inhibited cell proliferation, migration and invasion. Cell cycle analysis showed that TRIM59-depleted cells accumulated in S-phase. In addition, the cell cycle regulators CDC25C, cyclin B1 and cyclin D1 were decreased by TRIM59 siRNA mediated knockdown. Furthermore, the depletion of TRIM59 promoted apoptosis in cell culture as indicated by the cleavage of caspase-3 and PARP when TRIM59 was depleted. These results suggested that TRIM59 is upregulated in human colorectal tumors compared with non-tumor tissues. The level of TRIM59 is correlated with malignant features of CRC and may serve as potential therapeutic and preventive strategies for CRC.
Collapse
Affiliation(s)
- Wei Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jingdi Chen
- 73th Contingent, 95969 Troops, The Airborne Force of Chinese PLA, Wuhan, Hubei 430300, P.R. China
| | - Jicheng Wu
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Sheng Yang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
27
|
Hao L, Du B, Xi X. TRIM59 is a novel potential prognostic biomarker in patients with non-small cell lung cancer: A research based on bioinformatics analysis. Oncol Lett 2017; 14:2153-2164. [PMID: 28789440 PMCID: PMC5530082 DOI: 10.3892/ol.2017.6467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/14/2017] [Indexed: 12/28/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide and its prognosis is poor. Few effective biomarkers for non-small cell lung cancer (NSCLC) have been translated into the clinical practice aiming to assist in the treatment plan design and prognosis evaluation. The aim of the present study was to identify novel potential prognostic biomarkers for NSCLC. Tripartite motif 59 (TRIM59) was identified from a microarray dataset of matched-samples and was verified as an aberrantly upregulated gene in NSCLC tissue. The expression level of TRIM59 in NSCLC subtypes was observed to be significantly increased in large cell lung carcinoma and squamous cell carcinoma as compared with that in adenocarcinoma. Its expression correlated with several clinicopathological features, including gender, smoking habits, and unfavorable tumor node and pathological stages. Notably, TRIM59 demonstrated a negative correlation with survival time and its overexpression indicated a poor prognosis in NSCLC. Furthermore, univariate and multivariate Cox's regression analyses indicated that TRIM59 was an independent prognostic factor in tumor tissue as compared with age, gender, tumor stage, node stage, and metastasis. Gene set enrichment analysis and protein-protein interaction network construction revealed that TRIM59 was associated with oncogenic mammalian target of rapamycin (MTOR) and eukaryotic initiation factor 4E (EIF4E) signaling through ubiquitin C binding. In conclusion, it was revealed that TRIM59 is a novel prognostic biomarker modulating oncogenic MTOR and EIF4E signaling pathways in NSCLC. These findings provided a novel insight into the clinical application of TRIM59. Therefore, TRIM59 may serve as an independent predictor for prognosis and a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ling Hao
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Boyu Du
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xueyan Xi
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
28
|
Sun Y, Ji B, Feng Y, Zhang Y, Ji D, Zhu C, Wang S, Zhang C, Zhang D, Sun Y. TRIM59 facilitates the proliferation of colorectal cancer and promotes metastasis via the PI3K/AKT pathway. Oncol Rep 2017; 38:43-52. [PMID: 28534983 PMCID: PMC5492839 DOI: 10.3892/or.2017.5654] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Tripartite motif-containing 59 (TRIM59) belongs to the tripartite motif (TRIM) protein family and is upregulated in various malignancies. However, its expression in colorectal cancer (CRC) is still unknown. In the present study, we examined the expression and biological function of TRIM59 in CRC. We analyzed CRC tissues and cells by quantitative real-time polymerase chain reaction. Kaplan-Meier survival analysis was used to evaluate the prognostic significance of TRIM59 in CRC patients. Furthermore, we investigated the role of TRIM59 in CRC growth and metastasis. The potential mechanism underlying the regulation of cell metastasis by TRIM59 was determined by western blotting. TRIM59 expression was conspicuously overexpressed in CRC tissues and CRC cell lines compared to that noted in the corresponding normal control cells. Patients with higher TRIM59 expression had poorer prognosis. Furthermore, knockdown of TRIM59 suppressed cell proliferation through the induction of apoptosis and inhibited migration and invasion significantly in vitro. Further investigation revealed that knockdown of TRIM59 effectively reversed the expression of epithelial-mesenchymal transformation-related proteins vimentin, Snail and E-cadherin. Our preliminary results confirm that TRIM59 can be mediated by PI3K/AKT signaling. TRIM59 functions as an oncogene in CRC progression, which could be a novel target for the detection and treatment of CRC.
Collapse
Affiliation(s)
- Ye Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bing Ji
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yifei Feng
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dongjian Ji
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chunyan Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Sen Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chuan Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dongsheng Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yueming Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
29
|
Chen W, Zhao K, Miao C, Xu A, Zhang J, Zhu J, Su S, Wang Z. Silencing Trim59 inhibits invasion/migration and epithelial-to-mesenchymal transition via TGF-β/Smad2/3 signaling pathway in bladder cancer cells. Onco Targets Ther 2017; 10:1503-1512. [PMID: 28331343 PMCID: PMC5352237 DOI: 10.2147/ott.s130139] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved genes that encode the tripartite motif (TRIM) protein family are involved in various biological processes, including cellular immunity, inflammatory reaction, antiviral activity, and tumor progression. One member of this protein family, Trim59, has been reported as a novel biomarker for the occurrence and progression of multiple human carcinomas, such as lung cancer, gastric cancer, cervical cancer, and osteosarcoma. However, little is known about the relationship between Trim59 and bladder carcinogenesis. In this study, we examined the expression of Trim59 in bladder cancer (Bca) specimens and cell lines, and investigated its biological roles in Bca cell lines. We found that Trim59 was upregulated in Bca tissues and cell lines. In addition, using transwell chamber assays and the cell scratch test, we determined that knockdown of Trim59 significantly inhibited the epithelial-mesenchymal transition (EMT) and the processes of cell invasion and migration in Bca cell lines. Furthermore, we found that downregulated Trim59 expression could also inhibit cell proliferation and promote apoptosis. As a result, we demonstrated that the effects of Trim59-induced EMT and invasion/migration in Bca cells were achieved by the activation of the transforming growth factor beta/Smad2/3 signaling pathway. Our findings also revealed that Trim59 can present oncogenic activity, and may serve as a novel candidate target for bladder carcinoma treatment.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University
| | - Kai Zhao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chenkui Miao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Aiming Xu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianzhong Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jundong Zhu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shifeng Su
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
30
|
Expression profiling of TRIM protein family in THP1-derived macrophages following TLR stimulation. Sci Rep 2017; 7:42781. [PMID: 28211536 PMCID: PMC5314404 DOI: 10.1038/srep42781] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 01/16/2017] [Indexed: 01/28/2023] Open
Abstract
Activated macrophages play an important role in many inflammatory diseases including septic shock and atherosclerosis. However, the molecular mechanisms limiting macrophage activation are not completely understood. Members of the tripartite motif (TRIM) family have recently emerged as important players in innate immunity and antivirus. Here, we systematically analyzed mRNA expressions of representative TRIM molecules in human THP1-derived macrophages activated by different toll-like receptor (TLR) ligands. Twenty-nine TRIM members were highly induced (>3 fold) by one or more TLR ligands, among which 19 of them belong to TRIM C-IV subgroup. Besides TRIM21, TRIM22 and TRIM38 were shown to be upregulated by TLR3 and TLR4 ligands as previous reported, we identified a novel group of TRIM genes (TRIM14, 15, 31, 34, 43, 48, 49, 51 and 61) that were significantly up-regulated by TLR3 and TLR4 ligands. In contrast, the expression of TRIM59 was down-regulated by TLR3 and TLR4 ligands in both human and mouse macrophages. The alternations of the TRIM proteins were confirmed by Western blot. Finally, overexpression of TRIM59 significantly suppressed LPS-induced macrophage activation, whereas siRNA-mediated knockdown of TRIM59 enhanced LPS-induced macrophage activation. Taken together, the study provided an insight into the TLR ligands-induced expressions of TRIM family in macrophages.
Collapse
|
31
|
Aierken G, Seyiti A, Alifu M, Kuerban G. Knockdown of Tripartite-59 (TRIM59) Inhibits Cellular Proliferation and Migration in Human Cervical Cancer Cells. Oncol Res 2016; 25:381-388. [PMID: 27662486 PMCID: PMC7841184 DOI: 10.3727/096504016x14741511303522] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The tripartite motif (TRIM) family of proteins is a class of highly conservative proteins that have been implicated in multiple processes. TRIM59, one member of the TRIM family, has now received recognition as a key regulator in the development and progression of human diseases. However, its role in human tumorigenesis has remained largely unknown. In this study, the effects of TRIM59 expression on cell proliferation and migration were investigated in human cervical cancer cells. The expression of TRIM59 in clinical cervical cancer tissues and cervical cancer cells was initially determined by RT-PCR and Western blot. Specific shRNA against TRIM59 was then employed to knock down the expression of TRIM59 in cervical cancer lines HeLa and SiHa. The effects of TRIM59 knockdown on cell proliferation was assessed by MTT assay and colony formation assay. Transwell assay was conducted to reveal cell migration and invasion abilities before and after TRIM59 knockdown. Our results showed that the expression of TRIM59 was significantly elevated in cervical cancers. Knockdown of TRIM59 significantly inhibited cell proliferation and colony formation as well as cell migration and invasion abilities in cervical cancer HeLa and SiHa cells. Cell cycle progression analysis showed that TRIM59-depleted cells preferred to accumulate in the S phase. These data suggest that TRIM59 is a potential target that promotes the progression of cervical cancer.
Collapse
|
32
|
Liang J, Xing D, Li Z, Shen J, Zhao H, Li S. TRIM59 is upregulated and promotes cell proliferation and migration in human osteosarcoma. Mol Med Rep 2016; 13:5200-6. [PMID: 27121462 DOI: 10.3892/mmr.2016.5183] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 02/22/2016] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma is a prevalent type of cancer and has a high metastatic ability, particularly for metastasis to the lungs. Effective treatment strategies have improved, however, the detailed molecular mechanism underlying the onset of this malignancy remains to be fully elucidated. The current study investigated the role of the tripartite motif (TRIM) family protein TRIM59 in osteosarcoma growth and metastasis. It was identified that TRIM59 was overexpressed in clinical osteosarcoma tissues and cultured osteosarcoma cell lines. In addition, the MTT assay demonstrated that in U2OS and MG63 cells, knockdown of TRIM59 by specific siRNA inhibited proliferation, whereas overexpression of TRIM59 promoted cell proliferation. Furthermore, overexpression of TRIM59 significantly increased the U2OS cell migrative and invasive abilities in a Transwell chamber assay. In addition, TRIM59 was able to negatively regulate the protein levels of P53 without significantly affecting the mRNA levels in U2OS and MG63 cells. These data suggest the oncogenic abilities of TRIM59 in osteosarcoma, which promote osteosarcoma cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Jinqian Liang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Dan Xing
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Hong Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Shugang Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
33
|
Zhan W, Han T, Zhang C, Xie C, Gan M, Deng K, Fu M, Wang JB. TRIM59 Promotes the Proliferation and Migration of Non-Small Cell Lung Cancer Cells by Upregulating Cell Cycle Related Proteins. PLoS One 2015; 10:e0142596. [PMID: 26599082 PMCID: PMC4658198 DOI: 10.1371/journal.pone.0142596] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/23/2015] [Indexed: 11/25/2022] Open
Abstract
TRIM protein family is an evolutionarily conserved gene family implicated in a number of critical processes including inflammation, immunity, antiviral and cancer. In an effort to profile the expression patterns of TRIM superfamily in several non-small cell lung cancer (NSCLC) cell lines, we found that the expression of 10 TRIM genes including TRIM3, TRIM7, TRIM14, TRIM16, TRIM21, TRIM22, TRIM29, TRIM59, TRIM66 and TRIM70 was significantly upregulated in NSCLC cell lines compared with the normal human bronchial epithelial (HBE) cell line, whereas the expression of 7 other TRIM genes including TRIM4, TRIM9, TRIM36, TRIM46, TRIM54, TRIM67 and TRIM76 was significantly down-regulated in NSCLC cell lines compared with that in HBE cells. As TRIM59 has been reported to act as a proto-oncogene that affects both Ras and RB signal pathways in prostate cancer models, we here focused on the role of TRIM59 in the regulation of NSCLC cell proliferation and migration. We reported that TRIM59 protein was significantly increased in various NSCLC cell lines. SiRNA-induced knocking down of TRIM59 significantly inhibited the proliferation and migration of NSCLC cell lines by arresting cell cycle in G2 phase. Moreover, TRIM59 knocking down affected the expression of a number of cell cycle proteins including CDC25C and CDK1. Finally, we knocked down TRIM59 and found that p53 protein expression levels did not upregulate, so we proposed that TRIM59 may promote NSCLC cell growth through other pathways but not the p53 signaling pathway.
Collapse
Affiliation(s)
- Weihua Zhan
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Tianyu Han
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Chenfu Zhang
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Caifeng Xie
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Mingxi Gan
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Keyu Deng
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Mingui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri Kansas City, Kansas City, MO, 64108, United States of America
| | - Jian-Bin Wang
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
- * E-mail:
| |
Collapse
|
34
|
Zhou Z, Ji Z, Wang Y, Li J, Cao H, Zhu HH, Gao WQ. TRIM59 is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. Gastroenterology 2014; 147:1043-54. [PMID: 25046164 DOI: 10.1053/j.gastro.2014.07.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Little is known about factors that promote gastric carcinogenesis. We analyzed multiple microarray data sets for messenger RNAs (mRNAs) that were increased significantly in human gastric tumor samples, compared with the adjacent normal gastric tissue. We found expression of tripartite motif 59 (TRIM59), which encodes a putative ubiquitin ligase, to be increased, and investigated its effects in gastric cancer cell lines. METHODS We analyzed microarray data sets from the Oncomine database. We used quantitative polymerase chain reaction and immunoblotting to measure levels of TRIM59 mRNA and protein in 50 human gastric cancer and paired normal tissues, obtained from Renji Hospital and the First Affiliated Hospital of Nanchang University, in China. We also measured protein levels in the gastric epithelial cell line GES-1; the cancer cell lines MKN45, AGS, SGC7901, BGC823, Snu5, N87, and Snu1; and in tissue arrays of 108 human gastric tumors. TRIM59 was knocked down and overexpressed in gastric cancer cell lines, and the effects on proliferation, clone formation, migration, and growth of xenograft tumors in nude mice were assessed. TRIM59-related signaling pathways were examined by immunoblotting and quantitative polymerase chain reaction. We analyzed interactions among TRIM59, P53, and ubiquitin in immunoprecipitation studies. RESULTS Levels of TRIM59 mRNA and protein were increased significantly in gastric tumors compared with nontumor tissues; increased levels were associated with advanced tumor stage and shorter patient survival times. TRIM59 knockdown reduced proliferation, clone formation, and migration of gastric cancer cell lines, as well as growth of xenograft tumors in nude mice; overexpression of TRIM59 had the opposite effects. TRIM59 interacted physically with P53, increasing its ubiquitination and degradation. Increased levels of TRIM59 in human gastric tumors correlated with reduced expression of P53 target genes. CONCLUSIONS The putative ubiquitin ligase TRIM59 is up-regulated in human gastric tumors compared with nontumor tissues. Levels of TRIM59 correlate with tumor progression and patient survival times. TRIM59 interacts with P53, promoting its ubiquitination and degradation, and TRIM59 might promote gastric carcinogenesis via this mechanism.
Collapse
Affiliation(s)
- Zhicheng Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - You Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Li
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hui Cao
- Department of General Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Kelly JN, Barr SD. In silico analysis of functional single nucleotide polymorphisms in the human TRIM22 gene. PLoS One 2014; 9:e101436. [PMID: 24983760 PMCID: PMC4077803 DOI: 10.1371/journal.pone.0101436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/06/2014] [Indexed: 01/18/2023] Open
Abstract
Tripartite motif protein 22 (TRIM22) is an evolutionarily ancient protein that plays an integral role in the host innate immune response to viruses. The antiviral TRIM22 protein has been shown to inhibit the replication of a number of viruses, including HIV-1, hepatitis B, and influenza A. TRIM22 expression has also been associated with multiple sclerosis, cancer, and autoimmune disease. In this study, multiple in silico computational methods were used to identify non-synonymous or amino acid-changing SNPs (nsSNP) that are deleterious to TRIM22 structure and/or function. A sequence homology-based approach was adopted for screening nsSNPs in TRIM22, including six different in silico prediction algorithms and evolutionary conservation data from the ConSurf web server. In total, 14 high-risk nsSNPs were identified in TRIM22, most of which are located in a protein interaction module called the B30.2 domain. Additionally, 9 of the top high-risk nsSNPs altered the putative structure of TRIM22's B30.2 domain, particularly in the surface-exposed v2 and v3 regions. These same regions are critical for retroviral restriction by the closely-related TRIM5α protein. A number of putative structural and functional residues, including several sites that undergo post-translational modification, were also identified in TRIM22. This study is the first extensive in silico analysis of the highly polymorphic TRIM22 gene and will be a valuable resource for future targeted mechanistic and population-based studies.
Collapse
Affiliation(s)
- Jenna N. Kelly
- Western University, Schulich School of Medicine and Dentistry, Center for Human Immunology, Department of Microbiology and Immunology, Dental Sciences Building, London, Ontario, Canada
| | - Stephen D. Barr
- Western University, Schulich School of Medicine and Dentistry, Center for Human Immunology, Department of Microbiology and Immunology, Dental Sciences Building, London, Ontario, Canada
| |
Collapse
|
36
|
Padilla-Nash HM, McNeil NE, Yi M, Nguyen QT, Hu Y, Wangsa D, Mack DL, Hummon AB, Case C, Cardin E, Stephens R, Difilippantonio MJ, Ried T. Aneuploidy, oncogene amplification and epithelial to mesenchymal transition define spontaneous transformation of murine epithelial cells. Carcinogenesis 2013; 34:1929-39. [PMID: 23619298 DOI: 10.1093/carcin/bgt138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human epithelial cancers are defined by a recurrent distribution of specific chromosomal aneuploidies, a trait less typical for murine cancer models induced by an oncogenic stimulus. After prolonged culture, mouse epithelial cells spontaneously immortalize, transform and become tumorigenic. We assessed genome and transcriptome alterations in cultures derived from bladder and kidney utilizing spectral karyotyping, array CGH, FISH and gene expression profiling. The results show widespread aneuploidy, yet a recurrent and tissue-specific distribution of genomic imbalances, just as in human cancers. Losses of chromosome 4 and gains of chromosome 15 are common and occur early during the transformation process. Global gene expression profiling revealed early and significant transcriptional deregulation. Chromosomal aneuploidy resulted in expression changes of resident genes and consequently in a massive deregulation of the cellular transcriptome. Pathway interrogation of expression changes during the sequential steps of transformation revealed enrichment of genes associated with DNA repair, centrosome regulation, stem cell characteristics and aneuploidy. Genes that modulate the epithelial to mesenchymal transition and genes that define the chromosomal instability phenotype played a dominant role and were changed in a directionality consistent with loss of cell adhesion, invasiveness and proliferation. Comparison with gene expression changes during human bladder and kidney tumorigenesis revealed remarkable overlap with changes observed in the spontaneously transformed murine cultures. Therefore, our novel mouse models faithfully recapitulate the sequence of genomic and transcriptomic events that define human tumorigenesis, hence validating them for both basic and preclinical research.
Collapse
Affiliation(s)
- Hesed M Padilla-Nash
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Khatamianfar V, Valiyeva F, Rennie PS, Lu WY, Yang BB, Bauman GS, Moussa M, Xuan JW. TRIM59, a novel multiple cancer biomarker for immunohistochemical detection of tumorigenesis. BMJ Open 2012; 2:e001410. [PMID: 23048060 PMCID: PMC3488719 DOI: 10.1136/bmjopen-2012-001410] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/20/2012] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES AND DESIGN We identified a novel TRIM59 gene, as an early signal transducer in two (SV40Tag and Ras) oncogene pathways in murine prostate cancer (CaP) models. We explore its clinical applications as a multitumour marker detecting early tumorigenesis by immunohistochemistry (IHC). SETTING AND PARTICIPANTS 88 CaP patients were from a tissue microarray (TMA) of radical prostatectomy specimen, 42 patients from a 35 multiple tumour TMA, 75 patients with renal cell carcinoma (RCC) and 92 patients from eight different tumour groups (breast, lung, parotid, gastrointestinal, female genital tract, bladder, kidney and prostate cancer). RESULTS TRIM59 upregulation specifically in tumour area was determined by IHC in 291 cases of 37 tumour types. To demonstrate that TRIM59 upregulation is 'tumour-specific', we characterised a significant correlation of TRIM59 IHC signals with tumorigenesis and progression, while in control and normal area, TRIM59 IHC signal was all negative or significantly low. TRIM59 protein upregulation in prostate and kidney cancers was detectable in both intensity and extent in early tumorigenesis of prostate intraepithelial neoplasia (p<0.05) and grade 1 of RCC (p<0.05), and stopped until high grades cancer. The results of the correlation in these two large cohorts of tumour types confirmed and repeated murine CaP model studies. Enhanced TRIM59 expression was identified in most of the 37 different tumours, while the highest intensities were in lung, breast, liver, skin, tongue and mouth (squamous cell cancer) and endometrial cancers. Multiple tumour upregulation was further confirmed by comparing relative scores of TRIM59 IHC signals in eight tumours with a larger patient population; and by a mouse whole-mount embryo (14.5 days post conception) test on the origin of TRIM59 upregulation in epithelial cells. CONCLUSIONS TRIM59 may be used a novel multiple tumour marker for immunohistochemical detecting early tumorigenesis and could direct a novel strategy for molecular-targeted diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Vida Khatamianfar
- Department of Surgery, Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Fatma Valiyeva
- Department of Surgery, Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Paul S Rennie
- Department of Surgery, University of British Columbia, Vancovour, British Columbia, Canada
| | - Wei-yang Lu
- Department of Physiology, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Burton B Yang
- Department of Laboratory Medicine and Pathbiology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Glenn S Bauman
- London Regional Cancer Program, Western University, London, Ontario, Canada
| | - Madeleine Moussa
- Department of Pathology, Western University, London, Ontario, Canada
| | - Jim W Xuan
- Department of Surgery, Lawson Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
38
|
Zhao X, Liu Q, Du B, Li P, Cui Q, Han X, Du B, Yan D, Zhu X. A novel accessory molecule Trim59 involved in cytotoxicity of BCG-activated macrophages. Mol Cells 2012; 34:263-70. [PMID: 22949172 PMCID: PMC3887842 DOI: 10.1007/s10059-012-0089-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/05/2012] [Accepted: 07/23/2012] [Indexed: 10/27/2022] Open
Abstract
BCG-activated macrophages (BAM) could kill the tumor cells through cell-cell contact. In this process membrane proteins play an important role. However, up to date, few membrane proteins were revealed. In this study, we selected a surface molecule named Trim59, which was specifically expressed on BAM membrane (compared with the negative control). We cloned and prokaryoticly expressed the extracellular domain of Trim59, purified the recombinant protein and generated polyclonal antibodies. Immunohistochemistry showed that Trim59 abundantly expressed in spleen, stomach and ovary; intermediately expressed in brain, lung, kidney, muscle and intestine; but not in thymus, liver, heart, uterus. Using the antibodies to block Trim59 on BAM significantly reduced BAM cytotoxicity against MCA207 cells. This demonstrated that Trim59 serves as an indispensable molecule in maintaining BAM activity. Overexpression of Trim59 in Raw264.7 cell line failed to lyse target MCA207 cells, which potentiated Trim59 per se could not enhance macrophage cytotoxicity; on another hand, overexpression of Trim59 enhance the pinocytosis and Phagocytosis activity of Raw-264.7, which imply Trim59 might mediate the cell-molecule interaction. Our results indicate Trim59 might be an essential accessory molecule in mediating BAM tumoricidal functions; and Trim59 is a phagocytosis-correlated molecule.
Collapse
Affiliation(s)
- Xiangfeng Zhao
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kondo T, Watanabe M, Hatakeyama S. TRIM59 interacts with ECSIT and negatively regulates NF-κB and IRF-3/7-mediated signal pathways. Biochem Biophys Res Commun 2012; 422:501-7. [DOI: 10.1016/j.bbrc.2012.05.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/07/2012] [Indexed: 01/08/2023]
|