1
|
Muddassar M, Furqan M, Yousaf N, Khalid MS, Mahmood N, Dar S, Fozail S, Saleem RSZ, Ul Hussan SS, Faisal A. Computational identification and experimental characterization of an aurora kinase inhibitor. Bioorg Med Chem 2025; 123:118160. [PMID: 40156935 DOI: 10.1016/j.bmc.2025.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025]
Abstract
The serine/threonine kinases of the aurora family are critical for completing various stages of mitotic cell division. They are frequently overexpressed in various cancers, associated with poor prognosis, and have been validated as an attractive drug target. Despite promising preclinical results, the clinical development of small molecule inhibitors targeting aurora kinases is often hampered by limited efficacy as single agents and severe side effects. Recent discoveries of the synthetic interaction of aurora A with various tumor suppressors and its involvement in the development of resistance to third-generation EGFR inhibitors have renewed interest in finding aurora kinase inhibitors. This study utilized computational approaches to discover an aurora kinase inhibitor. Chemical features of two structurally distinct inhibitors of aurora kinase were exploited to develop a molecular shape and color-based model for the virtual screening of small synthetic molecules in the Enamine database. Six hit compounds validated through docking and Molecular Dynamics (MD) simulation studies were evaluated in a cell-based assay. Only MC-688 inhibited both aurora kinases (A and B) and bound to both kinases in a competition binding assay. Analysis of STD-NMR and 2D NOESY spectra confirmed the computationally predicted binding mode of MC-688 with the ATP binding pocket of aurora A. MC-688 inhibited cell proliferation and long-term treatment of HCT116 colorectal cancer cells with MC-688 induced abrogated mitosis, ultimately leading to apoptotic cell death. In conclusion, MC-688 was computationally identified and experimentally validated as a new pan-aurora inhibitor that induces aurora phenotype in cells and can be used as a lead for further optimization.
Collapse
Affiliation(s)
- Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Muhammad Furqan
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Muhammad Saad Khalid
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Natasha Mahmood
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Saira Dar
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Salman Fozail
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Syed Shahzad Ul Hussan
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Amir Faisal
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan.
| |
Collapse
|
2
|
Kondratowski S, Cohen D, Deyell RJ, Sandhu A, Bush JW. Immunohistochemical study of histone protein 3 modification in pediatric osteosarcoma identifies reduced H3K27me3 as a marker of poor treatment response. PLoS One 2024; 19:e0309471. [PMID: 39570878 PMCID: PMC11581320 DOI: 10.1371/journal.pone.0309471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/07/2024] [Indexed: 11/24/2024] Open
Abstract
The most common pediatric primary malignant bone tumor, osteosarcoma, is often described as genetically non-recurrent and heterogeneous. Neoadjuvant chemotherapy is typically followed by resection and assessment of treatment response, which helps inform prognosis. Identifying biomarkers that may impact chemotherapy response and survival could aid in upfront risk stratification and identify patients in highest need of innovative therapies for future clinical trials. Relative to conventional genetics, little is known about osteosarcoma epigenetics. We aimed to characterize the methylation and phosphorylation status in osteosarcoma using histone markers found in primary diagnostic biopsies and their paired metastases. We constructed two tissue microarray sets from 58 primary diagnostic samples and 54 temporally-separated but related metastatic or recurrent samples, with tissue blocks available from 2002-2022. Clinical charts were reviewed for post-therapy necrosis response, presence of metastatic disease or recurrence, and overall survival. We evaluated 6 histone H3 residues using immunohistochemistry, including H3K4me3, H3K9me3, H3K27me2, H3K27me3, H3S10T11phos, and H3S28phos. Tumors were scored with low (<25%) or high (≥25%) nuclear staining of tumor cells. Diagnostic biopsies with low H3K27me3 nuclear staining were associated with poor treatment response (≤90% necrosis) at the time of definitive excision (P<0.05). We observed loss of H3S10T11phos expression in metastatic and recurrent resections specimens compared to the primary tumor (P<0.05). Expression patterns for the remaining histone markers did not show significant associations with disease parameters or survival. Although larger cohort studies are needed, these results support the expanded evaluation of histone markers, particularly H3K27me3 and H3S10T11phos, in osteosarcoma biology and risk stratification.
Collapse
Affiliation(s)
| | - Danielle Cohen
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca J. Deyell
- Department of Pediatrics and Division of Hematology, Oncology, and Bone Marrow Transplant, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ash Sandhu
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jonathan W. Bush
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Division of Anatomical Pathology, BC Children’s and Women’s Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Moraes B, Gomes H, Saramago L, Braz V, Parizi LF, Braz G, da Silva Vaz I, Logullo C, Moraes J. Aurora kinase as a putative target to tick control. Parasitology 2024; 151:983-991. [PMID: 39542861 PMCID: PMC11770520 DOI: 10.1017/s003118202400101x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 11/17/2024]
Abstract
Aurora kinases (AURK) play a central role in controlling cell cycle in a wide range of organisms. They belong to the family of serine-threonine kinase proteins. Their role in the cell cycle includes, among others, the entry into mitosis, maturation of the centrosome and formation of the mitotic spindle. In mammals, 3 isoforms have been described: A, B and C, which are distinguished mainly by their function throughout the cell cycle. Two aurora kinase coding sequences have been identified in the transcriptome of the cattle tick Rhipicephalus microplus (Rm-AURKA and Rm-AURKB) containing the aurora kinase-specific domain. For both isoforms, the highest number of AURK coding transcripts is found in ovaries. Based on deduced amino acid sequences, it was possible to identify non-conserved threonine residues which are essential to AURK functions in vertebrates and which are not present in R. microplus sequences. A pan AURK inhibitor (CCT137690) caused cell viability decline in the BME26 tick embryonic cell line. In silico docking assay showed an interaction between Aurora kinase and CCT137690 with exclusive interaction sites in Rm-AURKA. The characterization of exclusive regions of the enzyme will enable new studies aimed at promoting species-specific enzymatic inhibition in ectoparasites.
Collapse
Affiliation(s)
- Bruno Moraes
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Helga Gomes
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Luiz Saramago
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Valdir Braz
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gloria Braz
- Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Carlos Logullo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Hua Z, Chen B, Gong B, Lin M, Ma Y, Li Z. SESN1 functions as a new tumor suppressor gene via Toll-like receptor signaling pathway in neuroblastoma. CNS Neurosci Ther 2024; 30:e14664. [PMID: 38516781 PMCID: PMC10958400 DOI: 10.1111/cns.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
AIMS Neuroblastoma (NB) is the most common extracranial solid tumor in children, with a 5-year survival rate of <50% in high-risk patients. MYCN amplification is an important factor that influences the survival rate of high-risk patients. Our results indicated MYCN regulates the expression of SESN1. Therefore, this study aimed to investigate the role and mechanisms of SESN1 in NB. METHODS siRNAs or overexpression plasmids were used to change MYCN, SESN1, or MyD88's expression. The role of SESN1 in NB cell proliferation, migration, and invasion was elucidated. Xenograft mice models were built to evaluate SESN1's effect in vivo. The correlation between SESN1 expression and clinicopathological data of patients with NB was analyzed. RNA-Seq was done to explore SESN1's downstream targets. RESULTS SESN1 was regulated by MYCN in NB cells. Knockdown SESN1 promoted NB cell proliferation, cell migration, and cell invasion, and overexpressing SESN1 had opposite functions. Knockdown SESN1 promoted tumor growth and shortened tumor-bearing mice survival time. Low expression of SESN1 had a positive correlation with poor prognosis in patients with NB. RNA-Seq showed that Toll-like receptor (TLR) signaling pathway, and PD-L1 expression and PD-1 checkpoint pathway in cancer were potential downstream targets of SESN1. Knockdown MyD88 or TLRs inhibitor HCQ reversed the effect of knockdown SESN1 in NB cells. High expression of SESN1 was significantly associated with a higher immune score and indicated an active immune microenvironment for patients with NB. CONCLUSIONS SESN1 functions as a new tumor suppressor gene via TLR signaling pathway in NB.
Collapse
Affiliation(s)
- Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Bo Chen
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Baocheng Gong
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Meizhen Lin
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Yifan Ma
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
5
|
Smiles WJ, Catalano L, Stefan VE, Weber DD, Kofler B. Metabolic protein kinase signalling in neuroblastoma. Mol Metab 2023; 75:101771. [PMID: 37414143 PMCID: PMC10362370 DOI: 10.1016/j.molmet.2023.101771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric malignancy of incredibly complex aetiology. Oncogenic protein kinase signalling in neuroblastoma has conventionally focussed on transduction through the well-characterised PI3K/Akt and MAPK pathways, in which the latter has been implicated in treatment resistance. The discovery of the receptor tyrosine kinase ALK as a target of genetic alterations in cases of familial and sporadic neuroblastoma, was a breakthrough in the understanding of the complex genetic heterogeneity of neuroblastoma. However, despite progress in the development of small-molecule inhibitors of ALK, treatment resistance frequently arises and appears to be a feature of the disease. Moreover, since the identification of ALK, several additional protein kinases, including the PIM and Aurora kinases, have emerged not only as drivers of the disease phenotype, but also as promising druggable targets. This is particularly the case for Aurora-A, given its intimate engagement with MYCN, a driver oncogene of aggressive neuroblastoma previously considered 'undruggable.' SCOPE OF REVIEW Aided by significant advances in structural biology and a broader understanding of the mechanisms of protein kinase function and regulation, we comprehensively outline the role of protein kinase signalling, emphasising ALK, PIM and Aurora in neuroblastoma, their respective metabolic outputs, and broader implications for targeted therapies. MAJOR CONCLUSIONS Despite massively divergent regulatory mechanisms, ALK, PIM and Aurora kinases all obtain significant roles in cellular glycolytic and mitochondrial metabolism and neuroblastoma progression, and in several instances are implicated in treatment resistance. While metabolism of neuroblastoma tends to display hallmarks of the glycolytic "Warburg effect," aggressive, in particular MYCN-amplified tumours, retain functional mitochondrial metabolism, allowing for survival and proliferation under nutrient stress. Future strategies employing specific kinase inhibitors as part of the treatment regimen should consider combinatorial attempts at interfering with tumour metabolism, either through metabolic pathway inhibitors, or by dietary means, with a view to abolish metabolic flexibility that endows cancerous cells with a survival advantage.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Victoria E Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| |
Collapse
|
6
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
7
|
Cupit-Link M, Hagiwara K, Zhang J, Federico SM. Clinical Response to a PARP Inhibitor and Chemotherapy in a Child with BARD1-Mutated Refractory Neuroblastoma: A Case Report. RESEARCH SQUARE 2023:rs.3.rs-3250117. [PMID: 37645774 PMCID: PMC10462232 DOI: 10.21203/rs.3.rs-3250117/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Despite advances in the treatment of high-risk neuroblastoma, approximately half of these patients die from the disease. Targeted therapy based on synthetic lethality associated with homologous recombination deficiency (HRD) caused by germline mutations in homologous recombination repair genes has shown great efficacy in several adult solid tumors. Here we report the first successful treatment of a pediatric patient with refractory neuroblastoma and a germline pathogenic mutation in BARD1 using a PARP inhibitor, talazoparib, in combination with cytotoxic chemotherapy and radiation therapy. Allele-specific expression in RNA-seq indicates bi-allelic loss of BARD1 in tumor; however, the HRD score was below the threshold currently used for HRD classification in adult cancers. Our study demonstrates that the use of PARP inhibition in combination with DNA-damaging agents should be considered in children with BARD1-mutated neuroblastoma and cautions against the use of HRD score alone as a biomarker for this pediatric population.
Collapse
Affiliation(s)
- Maggie Cupit-Link
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Sara M. Federico
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
8
|
Zhang X, Cong X, Jin X, Liu Y, Zhang T, Fan X, Shi X, Zhang X, Wang X, Yang YG, Dai X. Deficiency of BAP1 inhibits neuroblastoma tumorigenesis through destabilization of MYCN. Cell Death Dis 2023; 14:504. [PMID: 37543638 PMCID: PMC10404282 DOI: 10.1038/s41419-023-06030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
The transcription factor MYCN is frequently amplified and overexpressed in a variety of cancers including high-risk neuroblastoma (NB) and promotes tumor cell proliferation, survival, and migration. Therefore, MYCN is being pursued as an attractive therapeutic target for selective inhibition of its upstream regulators because MYCN is considered a "undruggable" target. Thus, it is important to explore the upstream regulators for the transcription and post-translational modification of MYCN. Here, we report that BRCA1-associated protein-1 (BAP1) promotes deubiquitination and subsequent stabilization of MYCN by directly binding to MYCN protein. Furthermore, BAP1 knockdown inhibits NB tumor cells growth and migration in vitro and in vivo, which can be rescued partially by ectopic expression of MYCN. Importantly, depletion of BAP1 confers cellular resistance to bromodomain and extraterminal (BET) protein inhibitor JQ1 and Aurora A kinase inhibitor Alisertib. Furthermore, IHC results of NB tissue array confirmed the positive correlation between BAP1 and MYCN protein. Altogether, our work not only uncovers an oncogenic function of BAP1 by stabilizing MYCN, but also reveals a critical mechanism for the post-translational regulation of MYCN in NB. Our findings further indicate that BAP1 could be a potential therapeutic target for MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China.
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiangting Jin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xinyuan Fan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiyao Shi
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiaoying Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xue Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China.
- International Center of Future Science, Jilin University, Changchun, China.
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Zhou Y, Yan H, Zhou Q, Wang P, Yang F, Yuan Z, Du Q, Zhai B. CCNB1IP1 prevents ubiquitination-mediated destabilization of MYCN and potentiates tumourigenesis of MYCN-amplificated neuroblastoma. Clin Transl Med 2023; 13:e1328. [PMID: 37461251 PMCID: PMC10352605 DOI: 10.1002/ctm2.1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND MYCN amplification as a common genetic alteration that correlates with a poor prognosis for neuroblastoma (NB) patients. However, given the challenge of directly targeting MYCN, indirect strategies to modulate MYCN by interfering with its cofactors are attractive in NB treatment. Although cyclin B1 interacting protein 1 (CCNB1IP1) has been found to be upregulated in MYCN-driven mouse NB tissues, its regulation with MYCN and collaboration in driving the biological behaviour of NB remains unknown. METHODS To evaluate the expression and clinical significance of CCNB1IP1 in NB patients, public datasets, clinical NB samples and cell lines were explored. MTT, EdU incorporation, colony and tumour sphere formation assays, and a mouse xenograft tumour model were utilized to examine the biological function of CCNB1IP1. The reciprocal manipulation of CCNB1IP1 and MYCN and the underlying mechanisms involved were investigated by gain- and loss-of-function approaches, dual-luciferase assay, chromatin immunoprecipitation (CHIP) and co-immunoprecipitation (Co-IP) experiments. RESULTS CCNB1IP1 was upregulated in MYCN-amplified (MYCN-AM) NB cell lines and patients-derived tumour tissues, which was associated with poor prognosis. Phenotypic studies revealed that CCNB1IP1 facilitated the proliferation and tumourigenicity of NB cells in cooperation with MYCN in vitro and in vivo. Mechanistically, MYCN directly mediates the transcription of CCNB1IP1, which in turn attenuated the ubiquitination and degradation of MYCN protein, thus enhancing CCNB1IP1-MYCN cooperativity. Moreover, CCNB1IP1 competed with F box/WD-40 domain protein 7 (FBXW7) for MYCN binding and enabled MYCN-mediated tumourigenesis in a C-terminal domain-dependent manner. CONCLUSIONS Our study revealed a previously uncharacterized mechanism of CCNB1IP1-mediated MYCN protein stability and will provide new prospects for precise treatment of MYCN-AM NB based on MYCN-CCNB1IP1 interaction.
Collapse
Affiliation(s)
- Yang Zhou
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Hui Yan
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qiang Zhou
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Penggao Wang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Fang Yang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Bo Zhai
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Krawczyk E, Kitlińska J. Preclinical Models of Neuroblastoma-Current Status and Perspectives. Cancers (Basel) 2023; 15:3314. [PMID: 37444423 PMCID: PMC10340830 DOI: 10.3390/cancers15133314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Preclinical in vitro and in vivo models remain indispensable tools in cancer research. These classic models, including two- and three-dimensional cell culture techniques and animal models, are crucial for basic and translational studies. However, each model has its own limitations and typically does not fully recapitulate the course of the human disease. Therefore, there is an urgent need for the development of novel, advanced systems that can allow for efficient evaluation of the mechanisms underlying cancer development and progression, more accurately reflect the disease pathophysiology and complexity, and effectively inform therapeutic decisions for patients. Preclinical models are especially important for rare cancers, such as neuroblastoma, where the availability of patient-derived specimens that could be used for potential therapy evaluation and screening is limited. Neuroblastoma modeling is further complicated by the disease heterogeneity. In this review, we present the current status of preclinical models for neuroblastoma research, discuss their development and characteristics emphasizing strengths and limitations, and describe the necessity of the development of novel, more advanced and clinically relevant approaches.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
11
|
Kovacs AH, Zhao D, Hou J. Aurora B Inhibitors as Cancer Therapeutics. Molecules 2023; 28:3385. [PMID: 37110619 PMCID: PMC10144992 DOI: 10.3390/molecules28083385] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The Aurora kinases (A, B, and C) are a family of three isoform serine/threonine kinases that regulate mitosis and meiosis. The Chromosomal Passenger Complex (CPC), which contains Aurora B as an enzymatic component, plays a critical role in cell division. Aurora B in the CPC ensures faithful chromosome segregation and promotes the correct biorientation of chromosomes on the mitotic spindle. Aurora B overexpression has been observed in several human cancers and has been associated with a poor prognosis for cancer patients. Targeting Aurora B with inhibitors is a promising therapeutic strategy for cancer treatment. In the past decade, Aurora B inhibitors have been extensively pursued in both academia and industry. This paper presents a comprehensive review of the preclinical and clinical candidates of Aurora B inhibitors as potential anticancer drugs. The recent advances in the field of Aurora B inhibitor development will be highlighted, and the binding interactions between Aurora B and inhibitors based on crystal structures will be presented and discussed to provide insights for the future design of more selective Aurora B inhibitors.
Collapse
Affiliation(s)
- Antal H. Kovacs
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Dong Zhao
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
12
|
Cheng C, He T, Chen K, Cai Y, Gu Y, Pan L, Duan P, Wu Y, Wu Z. P300 Interacted With N-Myc and Regulated Its Protein Stability via Altering Its Post-Translational Modifications in Neuroblastoma. Mol Cell Proteomics 2023; 22:100504. [PMID: 36708875 PMCID: PMC9984901 DOI: 10.1016/j.mcpro.2023.100504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
MYCN amplification is an independent risk factor for poor prognosis in neuroblastoma (NB), but its protein product cannot be directly targeted because of protein structure. Thus, this study aimed to explore novel ways to indirectly target N-Myc by regulating its post-translational modifications (PTMs) and therefore protein stability. N-Myc coimmunoprecipitation combined with HPLC-MS/MS identified 16 PTM residues and 114 potential N-Myc-interacting proteins. Notably, both acetylation and ubiquitination were identified on lysine 199 of N-Myc. We then discovered that p300, which can interact with N-Myc, modulated the protein stability of N-Myc in MYCN-amplified NB cell lines and simultaneously regulated the acetylation level and ubiquitination level on lysine-199 of N-Myc protein in vitro. Furthermore, p300 correlated with poor prognosis in NB patients. Taken together, p300 can be considered as a potential therapeutic target to treat MYCN-amplified NB patients, and other identified PTMs and interacting proteins also provide potential targets for further study.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Tian He
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yuanxia Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yaoyao Gu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Lijia Pan
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Peiwen Duan
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China.
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Lee IG, Lee BJ. Aurora Kinase A Regulation by Cysteine Oxidative Modification. Antioxidants (Basel) 2023; 12:antiox12020531. [PMID: 36830089 PMCID: PMC9952272 DOI: 10.3390/antiox12020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Aurora kinase A (AURKA), which is a member of serine/threonine kinase family, plays a critical role in regulating mitosis. AURKA has drawn much attention as its dysregulation is critically associated with various cancers, leading to the development of AURKA inhibitors, a new class of anticancer drugs. As the spatiotemporal activity of AURKA critically depends on diverse intra- and inter-molecular factors, including its interaction with various protein cofactors and post-translational modifications, each of these pathways should be exploited for the development of a novel class of AURKA inhibitors other than ATP-competitive inhibitors. Several lines of evidence have recently shown that redox-active molecules can modify the cysteine residues located on the kinase domain of AURKA, thereby regulating its activity. In this review, we present the current understanding of how oxidative modifications of cysteine residues of AURKA, induced by redox-active molecules, structurally and functionally regulate AURKA and discuss their implications in the discovery of novel AURKA inhibitors.
Collapse
Affiliation(s)
- In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence:
| |
Collapse
|
14
|
Firdous F, Ibrahim R, Furqan M, Khan H, Raza H, Singh U, Emwas A, Jaremko M, Chotana GA, Faisal A, Saleem RSZ. Synthesis and Characterization of Griseofulvin Derivatives as Microtubule‐Stabilizing Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202202832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Farhat Firdous
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Rida Ibrahim
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Muhammad Furqan
- Department of Life Sciences Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Hina Khan
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Hadeeqa Raza
- Department of Life Sciences Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Upendra Singh
- Division of Biological and Environmental Sciences and Engineering King Abdullah University of Science and Technology Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Abdul‐Hamid Emwas
- KAUST Core Labs King Abdullah University of Science and Technology Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering King Abdullah University of Science and Technology Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ghayoor Abbas Chotana
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Amir Faisal
- Department of Life Sciences Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| |
Collapse
|
15
|
Furqan M, Fayyaz A, Firdous F, Raza H, Bilal A, Saleem RSZ, Shahzad-Ul-Hussan S, Wang D, Youssef FS, Al Musayeib NM, Ashour ML, Hussain H, Faisal A. Identification and Characterization of Natural and Semisynthetic Quinones as Aurora Kinase Inhibitors. JOURNAL OF NATURAL PRODUCTS 2022; 85:1503-1513. [PMID: 35687347 DOI: 10.1021/acs.jnatprod.1c01222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aurora kinases (Aurora A, B, and C) are a family of serine/threonine kinases that play critical roles during mitotic initiation and progression. Aurora A and B kinases are ubiquitously expressed, and their overexpression and/or amplification in many cancers have been associated with poor prognosis. Several inhibitors that target Aurora kinases A, B, or both have been developed during the past decade with efficacy in different in vitro and in vivo models for a variety of cancers. Recent studies have also identified Aurora A as a synthetic lethal target for different tumor suppressors, including RB1, SMARCA4, and ARID1A, which signifies the need for Aurora-A-selective inhibitors. Here, we report the screening of a small library of quinones (nine naphthoquinones, one orthoquinone, and one anthraquinone) in a biochemical assay for Aurora A kinase that resulted in the identification of several quinones as inhibitors. IC50 determination against Aurora A and B kinases revealed the inhibition of both kinases with selectivity toward Aurora A. Two of the compounds, natural quinone naphthazarin (1) and a pseudo anthraquinone, 2-(chloromethyl)quinizarin (11), potently inhibited the proliferation of various cancer cell lines with IC50 values ranging from 0.16 ± 0.15 to 1.7 ± 0.06 and 0.15 ± 0.04 to 6.3 ± 1.8 μM, respectively. Treatment of cancer cells with these compounds for 24 h resulted in abrogated mitosis and apoptotic cell death. Direct binding of both the compounds with Aurora A kinase was also confirmed through STD NMR analysis. Docking studies predicted the binding of both compounds to the ATP binding pocket of Aurora A kinase. We have, therefore, identified quinones as Aurora kinase inhibitors that can serve as a lead for future drug discovery endeavors.
Collapse
Affiliation(s)
- Muhammad Furqan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Alishba Fayyaz
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Farhat Firdous
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Hadeeqa Raza
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Aishah Bilal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| | - Nawal M Al Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| | - Hidayat Hussain
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| |
Collapse
|
16
|
Shatara M, Schieffer KM, Klawinski D, Thomas DL, Pierson CR, Sribnick EA, Jones J, Rodriguez DP, Deeg C, Hamelberg E, LaHaye S, Miller KE, Fitch J, Kelly B, Leraas K, Pfau R, White P, Magrini V, Wilson RK, Mardis ER, Abdelbaki MS, Finlay JL, Boué DR, Cottrell CE, Ghasemi DR, Pajtler KW, Osorio DS. Clinically aggressive pediatric spinal ependymoma with novel MYC amplification demonstrates molecular and histopathologic similarity to newly described MYCN-amplified spinal ependymomas. Acta Neuropathol Commun 2021; 9:192. [PMID: 34895332 PMCID: PMC8665631 DOI: 10.1186/s40478-021-01296-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/20/2021] [Indexed: 12/21/2022] Open
Abstract
Primary spinal cord tumors contribute to ≤ 10% of central nervous system tumors in individuals of pediatric or adolescent age. Among intramedullary tumors, spinal ependymomas make up ~ 30% of this rare tumor population. A twelve-year-old male presented with an intradural, extramedullary mass occupying the dorsal spinal canal from C6 through T2. Gross total resection and histopathology revealed a World Health Organization (WHO) grade 2 ependymoma. He recurred eleven months later with extension from C2 through T1-T2. Subtotal resection was achieved followed by focal proton beam irradiation and chemotherapy. Histopathology was consistent with WHO grade 3 ependymoma. Molecular profiling of the primary and recurrent tumors revealed a novel amplification of the MYC (8q24) gene, which was confirmed by fluorescence in situ hybridization studies. Although MYC amplification in spinal ependymoma is exceedingly rare, a newly described classification of spinal ependymoma harboring MYCN (2p24) amplification (SP-MYCN) has been defined by DNA methylation-array based profiling. These individuals typically present with a malignant progression and dismal outcomes, contrary to the universally excellent survival outcomes seen in other spinal ependymomas. DNA methylation array-based classification confidently classified this tumor as SP-MYCN ependymoma. Notably, among the cohort of 52 tumors comprising the SP-MYCN methylation class, none harbor MYC amplification, highlighting the rarity of this genomic amplification in spinal ependymoma. A literature review comparing our individual to reported SP-MYCN tumors (n = 26) revealed similarities in clinical, histopathologic, and molecular features. Thus, we provide evidence from a single case to support the inclusion of MYC amplified spinal ependymoma within the molecular subgroup of SP-MYCN.
Collapse
|
17
|
Pezeshki PS, Moeinafshar A, Ghaemdoust F, Razi S, Keshavarz-Fathi M, Rezaei N. Advances in pharmacotherapy for neuroblastoma. Expert Opin Pharmacother 2021; 22:2383-2404. [PMID: 34254549 DOI: 10.1080/14656566.2021.1953470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neuroblastoma is the most prevalent cancer type diagnosed within the first year after birth and accounts for 15% of deaths from pediatric cancer. Despite the improvements in survival rates of patients with neuroblastoma, the incidence of the disease has increased over the last decade. Neuroblastoma tumor cells harbor a vast range of variable and heterogeneous histochemical and genetic alterations which calls for the need to administer individualized and targeted therapies to induce tumor regression in each patient. AREAS COVERED This paper provides reviews the recent clinical trials which used chemotherapeutic and/or targeted agents as either monotherapies or in combination to improve the response rate in patients with neuroblastoma, and especially high-risk neuroblastoma. It also reviews some of the prominent preclinical studies which can provide the rationale for future clinical trials. EXPERT OPINION Although some distinguished advances in pharmacotherapy have been made to improve the survival rate and reduce adverse events in patients with neuroblastoma, a more comprehensive understanding of the mechanisms of tumorigenesis, resistance to therapies or relapse, identifying biomarkers of response to each specific drug, and developing predictive preclinical models of the tumor can lead to further breakthroughs in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Parmida Sadat Pezeshki
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghaemdoust
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
18
|
Ansari KI, Bhan A, Saotome M, Tyagi A, De Kumar B, Chen C, Takaku M, Jandial R. Autocrine GM-CSF signaling contributes to growth of HER2+ breast leptomeningeal carcinomatosis. Cancer Res 2021; 81:4723-4735. [PMID: 34247146 DOI: 10.1158/0008-5472.can-21-0259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Leptomeningeal carcinomatosis (LC) occurs when tumor cells spread to the cerebrospinal fluid-containing leptomeninges surrounding the brain and spinal cord. LC is an ominous complication of cancer with a dire prognosis. Although any malignancy can spread to the leptomeninges, breast cancer, particularly the HER2+ subtype, is its most common origin. HER2+ breast LC (HER2+ LC) remains incurable, with few treatment options, and the molecular mechanisms underlying proliferation of HER2+ breast cancer cells in the acellular, protein, and cytokine-poor leptomeningeal environment remain elusive. Therefore, we sought to characterize signaling pathways that drive HER2+ LC development as well as those that restrict its growth to leptomeninges. Primary HER2+ LC patient-derived ("Lepto") cell lines in co-culture with various central nervous system (CNS) cell types revealed that oligodendrocyte progenitor cells (OPC), the largest population of dividing cells in the CNS, inhibited HER2+ LC growth in vitro and in vivo, thereby limiting the spread of HER2+ LC beyond the leptomeninges. Cytokine array-based analyses identified Lepto cell-secreted granulocyte-macrophage colony-stimulating factor (GM-CSF) as an oncogenic autocrine driver of HER2+ LC growth. Liquid chromatography-tandem mass spectrometry-based analyses revealed that the OPC-derived protein TPP1 proteolytically degrades GM-CSF, decreasing GM-CSF signaling and leading to suppression of HER2+ LC growth and limiting its spread. Lastly, intrathecal delivery of neutralizing anti-GM-CSF antibodies and a pan-Aurora kinase inhibitor (CCT137690) synergistically inhibited GM-CSF and suppressed activity of GM-CSF effectors, reducing HER2+ LC growth in vivo. Thus, OPC suppress GM-CSF-driven growth of HER2+ LC in the leptomeningeal environment, providing a potential targetable axis.
Collapse
|
19
|
Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer 2021; 20:15. [PMID: 33451333 PMCID: PMC7809767 DOI: 10.1186/s12943-020-01305-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Aurora kinase A (AURKA) belongs to the family of serine/threonine kinases, whose activation is necessary for cell division processes via regulation of mitosis. AURKA shows significantly higher expression in cancer tissues than in normal control tissues for multiple tumor types according to the TCGA database. Activation of AURKA has been demonstrated to play an important role in a wide range of cancers, and numerous AURKA substrates have been identified. AURKA-mediated phosphorylation can regulate the functions of AURKA substrates, some of which are mitosis regulators, tumor suppressors or oncogenes. In addition, enrichment of AURKA-interacting proteins with KEGG pathway and GO analysis have demonstrated that these proteins are involved in classic oncogenic pathways. All of this evidence favors the idea of AURKA as a target for cancer therapy, and some small molecules targeting AURKA have been discovered. These AURKA inhibitors (AKIs) have been tested in preclinical studies, and some of them have been subjected to clinical trials as monotherapies or in combination with classic chemotherapy or other targeted therapies.
Collapse
Affiliation(s)
- Ruijuan Du
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
| | - Chuntian Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China. .,College of medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
20
|
Abstract
Informative and realistic mouse models of high-risk neuroblastoma are central to understanding mechanisms of tumour initiation, progression, and metastasis. They also play vital roles in validating tumour drivers and drug targets, as platforms for assessment of new therapies and in the generation of drug sensitivity data that can inform treatment decisions for individual patients. This review will describe genetically engineered mouse models of specific subsets of high-risk neuroblastoma, the development of patient-derived xenograft models that more broadly represent the diversity and heterogeneity of the disease, and models of primary and metastatic disease. We discuss the research applications, advantages, and limitations of each model type, the importance of model repositories and data standards for supporting reproducible, high-quality research, and potential future directions for neuroblastoma mouse models.
Collapse
Affiliation(s)
- Alvin Kamili
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Caroline Atkinson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia. .,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
21
|
Aurora kinases and DNA damage response. Mutat Res 2020; 821:111716. [PMID: 32738522 DOI: 10.1016/j.mrfmmm.2020.111716] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
It is well established that Aurora kinases perform critical functions during mitosis. It has become increasingly clear that the Aurora kinases also perform a myriad of non-mitotic functions including DNA damage response. The available evidence indicates that inhibition Aurora kinase A (AURKA) may contribute to the G2 DNA damage checkpoint through AURKA's functions in PLK1 and CDC25B activation. Both AURKA and Aurora kinase B (AURKB) are also essential in mitotic DNA damage response that guard against DNA damage-induced chromosome segregation errors, including the control of abscission checkpoint and prevention of micronuclei formation. Dysregulation of Aurora kinases can trigger DNA damage in mitosis that is sensed in the subsequent G1 by a p53-dependent postmitotic checkpoint. Aurora kinases are themselves linked to the G1 DNA damage checkpoint through p53 and p73 pathways. Finally, several lines of evidence provide a connection between Aurora kinases and DNA repair and apoptotic pathways. Although more studies are required to provide a comprehensive picture of how cells respond to DNA damage, these findings indicate that both AURKA and AURKB are inextricably linked to pathways guarding against DNA damage. They also provide a rationale to support more detailed studies on the synergism between small-molecule inhibitors against Aurora kinases and DNA-damaging agents in cancer therapies.
Collapse
|
22
|
Lakkaniga NR, Zhang L, Belachew B, Gunaganti N, Frett B, Li HY. Discovery of SP-96, the first non-ATP-competitive Aurora Kinase B inhibitor, for reduced myelosuppression. Eur J Med Chem 2020; 203:112589. [PMID: 32717530 DOI: 10.1016/j.ejmech.2020.112589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
Aurora Kinase B is a serine-threonine kinase known to be overexpressed in several cancers, with no inhibitors approved for clinical use. Herein, we present the discovery and optimization of a series of novel quinazoline-based Aurora Kinase B inhibitors. The lead inhibitor SP-96 shows sub-nanomolar potency in Aurora B enzymatic assays (IC50 = 0.316 ± 0.031 nM). We identified the important pharmacophore features resulting in selectivity against receptor tyrosine kinases. Particularly, SP-96 shows >2000 fold selectivity against FLT3 and KIT which is important for normal hematopoiesis. This could diminish the adverse effect of neutropenia reported in the clinical trials of the Aurora B inhibitor Barasertib, which inhibits FLT3 and KIT in addition to Aurora B. Enzyme kinetics of SP-96 shows non-ATP-competitive inhibition which makes it a first-in-class inhibitor. Further, SP-96 shows selective growth inhibition in NCI60 screening, including inhibition of MDA-MD-468, a Triple Negative Breast Cancer cell line.
Collapse
Affiliation(s)
- Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lingtian Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Binyam Belachew
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
23
|
Wang J, Yao W, Li K. Applications and prospects of targeted therapy for neuroblastoma. WORLD JOURNAL OF PEDIATRIC SURGERY 2020; 3:e000164. [DOI: 10.1136/wjps-2020-000164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 11/04/2022] Open
Abstract
BackgroundNeuroblastoma is an extremely malignant tumor in children. For advanced or recurrent cases, existing treatment modalities are limited and efficacy remains disappointing. With the improvement in understanding of molecular biology of neuroblastoma and the development of clinical trials of targeted drug therapy, a variety of targeted therapies for neuroblastoma have appeared.Data sourcesAll the recent literatures on targeted therapies of neuroblastoma on PubMed were searched and reviewed.ResultsThis article reviewed targeted therapies of neuroblastoma going through clinical trials and obtained preliminary results. The features, advantages and disadvantages of targeted radiation therapy,immunotherapy, gene and pathway molecular inhibitor and angiogenesis inhibitor were discussed.ConclusionThis study provides references for better understanding the current progress of targeted therapies for neuroblastoma.
Collapse
|
24
|
Sun Y, Bailey CP, Sadighi Z, Zaky W, Chandra J. Pediatric high-grade glioma: aberrant epigenetics and kinase signaling define emerging therapeutic opportunities. J Neurooncol 2020; 150:17-26. [PMID: 32504402 PMCID: PMC10141680 DOI: 10.1007/s11060-020-03546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Supratentorial pediatric high-grade gliomas (pHGGs) are aggressive malignancies that lack effective treatment options. Deep genomic sequencing by multiple groups has revealed that the primary alterations unique to pHGGs occur in epigenetic and kinase genes. These mutations, fusions, and deletions present a therapeutic opportunity by use of small molecules targeting epigenetic modifiers and kinases that contribute to pHGG growth. METHODS Using a targeted search of the pre-clinical literature and clinicaltrials.gov for kinase and epigenetic pathways in pHGG, we collectively describe how these mechanisms are being targeted in pre-clinical animal models and in current clinical trials, as well as propose unexplored therapeutic possibilities for future investigations. RESULTS Relevant pHGG kinases are targetable by several FDA-approved or clinical-stage kinase inhibitors, including altered BRAF/MET/NTRK/ALK and wild-type PI3K/EGFR/PDGFR/VEGF/AXL. Epigenetic proteins implicated in pHGG are also clinically targetable and include histone erasers, writers and readers such as HDACs, demethylases LSD1/JMJD3, methyltransferase EZH2, chromatin reader bromodomains, and chromatin remodeler subunit BMI-1. Crosstalk between these pathways can occur involving kinases such as EGFR and AMPK interacting with epigenetic modifiers such as HDACs or EZH2. Single agent trial results of kinase inhibitors or epigenetic targets alone are underwhelming and hampered by poor pharmacokinetics, adaptive resistance, and broad inclusion criteria. CONCLUSIONS The genetic and phenotypic diversity of pHGGs is now well characterized after large-scale sequencing studies on patient tissue. However, clinical treatment paradigms have not yet shifted in response to this information. Combination therapies targeting multiple kinases or epigenetic targets may hold more promise, especially if attempted in selected patient populations with hemispheric pHGG tumors and relevant targeted therapeutic biomarkers.
Collapse
Affiliation(s)
- Yusha Sun
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA
| | - Cavan P Bailey
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA
| | - Zsila Sadighi
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Wafik Zaky
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Joya Chandra
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA. .,Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Tamizharasan N, Gajendran C, Kristam R, Sulochana SP, Sivanandhan D, Mullangi R, Mathivathanan L, Hallur G, Suresh P. Discovery and optimization of novel phenyldiazepine and pyridodiazepine based Aurora kinase inhibitors. Bioorg Chem 2020; 99:103800. [DOI: 10.1016/j.bioorg.2020.103800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
|
26
|
Sussman RT, Rokita JL, Huang K, Raman P, Rathi KS, Martinez D, Bosse KR, Lane M, Hart LS, Bhatti T, Pawel B, Maris JM. CAMKV Is a Candidate Immunotherapeutic Target in MYCN Amplified Neuroblastoma. Front Oncol 2020; 10:302. [PMID: 32211329 PMCID: PMC7069022 DOI: 10.3389/fonc.2020.00302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/20/2020] [Indexed: 01/22/2023] Open
Abstract
We developed a computational pipeline designed to use RNA sequencing (n = 136) and gene expression profiling (n = 250) data from neuroblastoma tumors to identify cell surface proteins predicted to be highly expressed in MYCN amplified neuroblastomas and with little or no expression in normal human tissues. We then performed ChIP-seq in the MYCN amplified cell lines KELLY, NB-1643, and NGP to identify gene promoters that are occupied by MYCN protein to define the intersection with the differentially-expressed gene list. We initially identified 116 putative immunotherapy targets with predicted transmembrane domains, with the most significant differentially-expressed of these being the calmodulin kinase-like vesicle-associated gene (CAMKV, p = 2 × 10-6). CAMKV encodes a protein that binds calmodulin in the presence of calcium, but lacks the kinase activity of other calmodulin kinase family members. We confirmed that CAMKV is selectively expressed in 7/7 MYCN amplified neuroblastoma cell lines and showed that the transcription of CAMKV is directly controlled by MYCN. From membrane fractionation and immunohistochemistry, we verified that CAMKV is membranous in MYCN amplified neuroblastoma cell lines and patient-derived xenografts. Finally, immunohistochemistry showed that CAMKV is not expressed on normal tissues outside of the central nervous system. Together, these data demonstrate that CAMKV is a differentially-expressed cell surface protein that is transcriptionally regulated by MYCN, making it a candidate for targeting with antibodies or antibody-drug conjugates that do not cross the blood brain barrier.
Collapse
Affiliation(s)
- Robyn T. Sussman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jo Lynne Rokita
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kevin Huang
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Pichai Raman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Komal S. Rathi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Daniel Martinez
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology, Children's Hospital of Los Angeles, Los Angeles, CA, United States
| | - Maria Lane
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lori S. Hart
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tricia Bhatti
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Bruce Pawel
- Department of Pathology, Children's Hospital of Los Angeles, Los Angeles, CA, United States
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
27
|
Balcı Okcanoğlu T, Kayabaşı Ç, Gündüz C. Effect of CCT137690 on long non-coding RNA expression profiles in MCF-7 and MDA-MB-231 cell lines. Bosn J Basic Med Sci 2020; 20:56-62. [PMID: 31319040 PMCID: PMC7029211 DOI: 10.17305/bjbms.2019.4155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in a range of biological processes, such as cellular differentiation, migration, apoptosis, invasion, proliferation, and transcriptional regulation. The aberrant expression of lncRNAs plays a significant role in several cancer types. Aurora kinases are increasingly expressed in various malignancies; accordingly, the inhibition of these enzymes may represent a novel approach for the treatment of various cancers. CCT137690, an Aurora kinase inhibitor, displays an anti-proliferative activity in human cancer cell lines. The aim of the present study was to investigate the anti-proliferative and cytotoxic effects of CCT137690 on estrogen receptor (ER)-positive human breast cancer cell line (MCF-7) and ER-negative human breast cancer cell line (MDA-MB-231). In addition, this study was targeted toward determining the changes induced in lncRNA expression levels following the initiation of Aurora kinase inhibitor treatment. The cytotoxic effects of CCT137690 were determined by means of the xCELLigence system. Furthermore, the anti-proliferative role of CCT137690 in breast cancer was investigated by checking the changes in lncRNA expression profiles using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The half-maximal inhibitory concentrations (IC50) of CCT137690 were determined as 4.5 µM (MCF-7) and 7.27 µM (MDA-MB-231). Several oncogenic lncRNAs (e.g., PRINS, HOXA1AS, and NCRMS) were downregulated in both ER-negative and ER-positive cell lines. On the other hand, tumor suppressor lncRNAs (e.g., DGCR5 and IGF2AS) were upregulated in the ER-positive cell line. After CCT137690 treatment, HOXA11AS and PCAT-14 lncRNAs were downregulated in the ER-positive cell lines. In addition, MER11C, SCA8, BC200, HOTAIR, PCAT-1, UCA1, SOX2OT, and HULC lncRNAs were downregulated in the ER-negative cell lines. The results of the present study indicated that Aurora kinase inhibitor CCT137690 could be a potential anti-cancer agent for breast cancer treatment.
Collapse
Affiliation(s)
- Tuğçe Balcı Okcanoğlu
- Medical Biology Department, Vocational School of Health Services, Near East University, Nicosia, TRNC.
| | - Çağla Kayabaşı
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| | - Cumhur Gündüz
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
28
|
Furqan M, Huma Z, Ashfaq Z, Nasir A, Ullah R, Bilal A, Iqbal M, Khalid MH, Hussain I, Faisal A. Identification and evaluation of novel drug combinations of Aurora kinase inhibitor CCT137690 for enhanced efficacy in oral cancer cells. Cell Cycle 2019; 18:2281-2292. [PMID: 31318643 PMCID: PMC6738527 DOI: 10.1080/15384101.2019.1643658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/01/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
Oral cancer is the most prevalent subtype of head and neck cancers and arises mainly from squamous cells of the oral cavity. Patients with advanced metastatic disease have poor overall survival resulting primarily from limited treatment options. Recent advances in the understanding of molecular basis of oral tumorigenesis provide an opportunity for identification and validation of new drug targets. The deregulated expression of the Aurora family of mitotic kinases, for example, has been associated with pathogenesis and poor prognosis in oral cancer. Here, we have evaluated the efficacy of the pan-Aurora inhibitor (CCT137690) alone and in combination with different chemotherapeutic and targeted drugs to identify its synergistic partners in oral cancer cell lines (ORL-48 and ORL-115). CCT137690 effectively inhibits Aurora kinases in both the cell lines and displays potent antiproliferative activity towards them. Prolonged treatment of these cells with CCT137690 results in abrogated mitotic spindle formation, misaligned chromosome attachment and polyploidy that ultimately leads to apoptotic cell death. We further identified that inhibitors of EGFR (gefitinib) and PI3-kinase (pictilisib) synergize with CCT137690 to inhibit the proliferation of the oral cancer cell lines. Moreover, we demonstrate that polyethylene glycol-based nanocapsules harboring combinations of CCT137690 with gefitinib or pictilisib inhibit the growth of oral cancer cell lines in 3D spheroid cultures and induce apoptosis that is comparable to free drug combinations. In conclusion, we have demonstrated the in vitro efficacy of CCT137690 in oral cancer cell lines, identified novel drug combinations with CCT137690 and synthesized nanocapsules containing these drug combinations for co-administration.
Collapse
Affiliation(s)
- Muhammad Furqan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zille Huma
- Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zainab Ashfaq
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Apsra Nasir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Aishah Bilal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Maheen Iqbal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Hashaam Khalid
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
29
|
Pastor ER, Mousa SA. Current management of neuroblastoma and future direction. Crit Rev Oncol Hematol 2019; 138:38-43. [PMID: 31092383 DOI: 10.1016/j.critrevonc.2019.03.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma is the most common solid extracranial tumor in pediatrics and can regress spontaneously or grow and metastasize with resistance to multiple therapeutic approaches. The prognosis and approach to treatment depends on the tumor presentation and whether it expresses certain drivers such as MYCN, ALK, and TrkB. Expression or mutation of these genes and kinases correlates with high-risk and poor prognosis. Multiple therapeutic approaches are being used to target MYCN, ALK, and TrkB, as well as GD2, a surface antigen present on the surface of neuroblastoma tumor cells. This review discusses the nature of these targets and several current therapies for neuroblastoma. A focus is placed on recent therapeutic developments including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy.
Collapse
Affiliation(s)
- Elizabeth R Pastor
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Childhood blastomas, unlike adult cancers, originate from developing organs in which molecular and cellular features exhibit differentiation arrest and embryonic characteristics. Conventional cancer therapies, which rely on the generalized cytotoxic effect on rapidly dividing cells, may damage delicate organs in young children, leading to multiple late effects. Deep understanding of the biology of embryonal cancers is crucial in reshaping the cancer treatment paradigm for children. RECENT FINDINGS p53 plays a major physiological role in embryonic development, by controlling cell proliferation, differentiation and responses to cellular stress. Tumor suppressor function of p53 is commonly lost in adult cancers through genetic alterations. However, both somatic and germline p53 mutations are rare in childhood blastomas, suggesting that in these cancers, p53 may be inactivated through other mechanisms than mutation. In this review, we summarize current knowledge about p53 pathway inactivation in childhood blastomas (specifically neuroblastoma, retinoblastoma and Wilms' tumor) through various upstream mechanisms. Laboratory evidence and clinical trials of targeted therapies specific to exploiting p53 upstream regulators are discussed. SUMMARY Despite the low rate of inherent TP53 mutations, p53 pathway inactivation is a common denominator in childhood blastomas. Exploiting p53 and its regulators is likely to translate into more effective targeted therapies with minimal late effects for children. (see Video Abstract, Supplemental Digital Content 1, http://links.lww.com/COON/A23).
Collapse
Affiliation(s)
- Lixian Oh
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| | - Hind Hafsi
- Institute of Advanced Biosciences, University of Grenoble-Alpes, La Tronche, France
| | - Pierre Hainaut
- Institute of Advanced Biosciences, University of Grenoble-Alpes, La Tronche, France
| | - Hany Ariffin
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Vriend J, Tate RB. Differential Expression of Genes for Ubiquitin Ligases in Medulloblastoma Subtypes. THE CEREBELLUM 2019; 18:469-488. [PMID: 30810905 DOI: 10.1007/s12311-019-1009-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using publically available datasets on gene expression in medulloblastoma (MB) subtypes, we selected genes for ubiquitin ligases and identified statistically those that best predicted each of the four major MB subgroups as separate disease entities. We identify a gene coding for an ubiquitin ligase, ZNRF3, whose overexpression alone can predict the WNT subgroup for 100% in the Pfister dataset. For the SHH subgroup, we identify a gene for a regulatory subunit of the protein phosphatase 2A (PP2A), PPP2R2C, as the major predictor among the E3 ligases genes. The ubiquitin and ubiquitin-like conjugation database (UUCD) lists PPP2R2C as coding for a Cullin Ring ubiquitin ligase adaptor. For group 3 MBs, the best ubiquitin ligase predictor was PPP2R2B, a gene which codes for another regulatory subunit of the PP2A holoenzyme. For group 4, the best E3 gene predictors were MID2, ZBTB18, and PPP2R2A, which codes for a third PP2A regulatory subunit. Heatmap analysis of the E3 gene data shows that expression of ten genes for ubiquitin ligases can be used to classify MBs into the four major consensus subgroups. This was illustrated by analysis of gene expression of ubiquitin ligases of the Pfister dataset and confirmed in the dataset of Cavalli. We conclude that genes for ubiquitin ligases can be used as genetic markers for MB subtypes and that the proteins coded for by these genes should be investigated as subtype specific therapeutic targets for MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm134, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Robert B Tate
- Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
32
|
Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance. Sci Rep 2018; 8:3305. [PMID: 29459693 PMCID: PMC5818492 DOI: 10.1038/s41598-018-21642-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Microtubules are highly dynamic structures that form spindle fibres during mitosis and are one of the most validated cancer targets. The success of drugs targeting microtubules, however, is often limited by the development of multidrug resistance. Here we describe the discovery and characterization of SSE15206, a pyrazolinethioamide derivative [3-phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] that has potent antiproliferative activities in cancer cell lines of different origins and overcomes resistance to microtubule-targeting agents. Treatment of cells with SSE15206 causes aberrant mitosis resulting in G2/M arrest due to incomplete spindle formation, a phenotype often associated with drugs that interfere with microtubule dynamics. SSE15206 inhibits microtubule polymerization both in biochemical and cellular assays by binding to colchicine site in tubulin as shown by docking and competition studies. Prolonged treatment of cells with the compound results in apoptotic cell death [increased Poly (ADP-ribose) polymerase cleavage and Annexin V/PI staining] accompanied by p53 induction. More importantly, we demonstrate that SSE15206 is able to overcome resistance to chemotherapeutic drugs in different cancer cell lines including multidrug-resistant KB-V1 and A2780-Pac-Res cell lines overexpressing MDR-1, making it a promising hit for the lead optimization studies to target multidrug resistance.
Collapse
|
33
|
Xie Y, Zhu S, Zhong M, Yang M, Sun X, Liu J, Kroemer G, Lotze M, Zeh HJ, Kang R, Tang D. Inhibition of Aurora Kinase A Induces Necroptosis in Pancreatic Carcinoma. Gastroenterology 2017; 153:1429-1443.e5. [PMID: 28764929 PMCID: PMC5670014 DOI: 10.1053/j.gastro.2017.07.036] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/07/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Induction of nonapoptotic cell death could be an approach to eliminate apoptosis-resistant tumors. We investigated necroptosis-based therapies in mouse models of pancreatic ductal adenocarcinoma cancer (PDAC). METHODS We screened 273 commercially available kinase inhibitors for cytotoxicity against a human PDAC cell line (PANC1). We evaluated the ability of the aurora kinase inhibitor CCT137690 to stimulate necroptosis in PDAC cell lines (PANC1, PANC2.03, CFPAC1, MiaPaCa2, BxPc3, and PANC02) and the HEK293 cell line, measuring loss of plasma membrane integrity, gain in cell volume, swollen organelles, and cytoplasmic vacuoles. We tested the effects of CCT137690 in colon formation assays, and the effects of the necroptosis (necrostatin-1 and necrosulfonamide), apoptosis, autophagy, and ferroptosis inhibitors. We derived cells from tumors that developed in Pdx1-Cre;K-RasG12D/+;p53R172H/+ (KPC) mice. Genes encoding proteins in cell death pathways were knocked out, knocked down, or expressed from transgenes in PDAC cell lines. Athymic nude or B6 mice were given subcutaneous injections of PDAC cells or tail-vein injections of KPC tumor cells. Mice were given CCT137690 (80 mg/kg) or vehicle and tumor growth was monitored; tumor tissues were collected and analyzed by immunohistochemistry. We compared gene expression levels between human pancreatic cancer tissues (n = 130) with patient survival times using the online R2 genomics analysis and visualization platform. RESULTS CCT137690 induced necrosis-like death in PDAC cell lines and reduced colony formation; these effects required RIPK1, RIPK3, and MLKL, as well as inhibition of aurora kinase A (AURKA). AURKA interacted directly with RIPK1 and RIPK3 to reduce necrosome activation. AURKA-mediated phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine 9 inhibited activation of the RIPK3 and MLKL necrosome. Mutations in AURKA (D274A) or GSK3β (S9A), or pharmacologic inhibitors of RIPK1 signaling via RIPK3 and MLKL, reduced the cytotoxic activity of CCT137690 in PDAC cells. Oral administration of CCT137690 induced necroptosis and immunogenic cell death in subcutaneous and orthotopic tumors in mice, and reduced tumor growth and tumor cell phosphorylation of AURKA and GSK3β. CCT137690 increased survival times of mice with orthotopic KPC PDACs and reduced tumor growth, stroma, and metastasis. Increased expression of AURKA and GSK3β mRNAs associated with shorter survival times of patients with pancreatic cancer. CONCLUSIONS We identified the aurora kinase inhibitor CCT137690 as an agent that induces necrosis-like death in PDAC cells, via RIPK1, RIPK3, and MLKL. CCT137690 slowed growth of orthotopic tumors from PDAC cells in mice, and expression of AURKA and GSK3β associate with patient survival times. AURKA might be targeted for treatment of pancreatic cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Aurora Kinase A/antagonists & inhibitors
- Aurora Kinase A/genetics
- Aurora Kinase A/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Imidazoles/pharmacology
- Mice, Nude
- Mice, Transgenic
- Necrosis
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Protein Kinase Inhibitors/pharmacology
- Pyridines/pharmacology
- Signal Transduction/drug effects
- Time Factors
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yangchun Xie
- The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Protein Modification and Degradation Laboratory, Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shan Zhu
- The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Protein Modification and Degradation Laboratory, Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manhua Yang
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaofan Sun
- The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Protein Modification and Degradation Laboratory, Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinbao Liu
- The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Protein Modification and Degradation Laboratory, Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France; Université Pierre et Marie Curie, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Lotze
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Herbert J Zeh
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rui Kang
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daolin Tang
- The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Protein Modification and Degradation Laboratory, Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
34
|
Borisa AC, Bhatt HG. A comprehensive review on Aurora kinase: Small molecule inhibitors and clinical trial studies. Eur J Med Chem 2017; 140:1-19. [DOI: 10.1016/j.ejmech.2017.08.045] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/30/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022]
|
35
|
Currier MA, Sprague L, Rizvi TA, Nartker B, Chen CY, Wang PY, Hutzen BJ, Franczek MR, Patel AV, Chaney KE, Streby KA, Ecsedy JA, Conner J, Ratner N, Cripe TP. Aurora A kinase inhibition enhances oncolytic herpes virotherapy through cytotoxic synergy and innate cellular immune modulation. Oncotarget 2017; 8:17412-17427. [PMID: 28147331 PMCID: PMC5392259 DOI: 10.18632/oncotarget.14885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) and neuroblastoma models respond to the investigational small molecule Aurora A kinase inhibitor, alisertib. We previously reported that MPNST and neuroblastomas are also susceptible to oncolytic herpes virus (oHSV) therapy. Herein, we show that combination of alisertib and HSV1716, a virus derived from HSV-1 and attenuated by deletion of RL1, exhibits significantly increased antitumor efficacy compared to either monotherapy. Alisertib and HSV1716 reduced tumor growth and increased survival in two xenograft models of MPNST and neuroblastoma. We found the enhanced antitumor effect was due to multiple mechanisms that likely each contribute to the combination effect. First, oncolytic herpes virus increased the sensitivity of uninfected cells to alisertib cytotoxicity, a process we term virus-induced therapeutic adjuvant (VITA). Second, alisertib increased peak virus production and slowed virus clearance from tumors, both likely a consequence of it preventing virus-mediated increase of intratumoral NK cells. We also found that alisertib inhibited virus-induced accumulation of intratumoral myeloid derived suppressor cells, which normally are protumorigenic. Our data suggest that clinical trials of the combination of oHSV and alisertib are warranted in patients with neuroblastoma or MPNST.
Collapse
Affiliation(s)
- Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Les Sprague
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Brooke Nartker
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Chun-Yu Chen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Pin-Yi Wang
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Brian J Hutzen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Meghan R Franczek
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Ami V Patel
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Keri A Streby
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | | | - Joe Conner
- Virttu Biologics, Ltd, Biocity, Scotland, Newhouse, United Kingdom
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
36
|
Esposito MR, Aveic S, Seydel A, Tonini GP. Neuroblastoma treatment in the post-genomic era. J Biomed Sci 2017; 24:14. [PMID: 28178969 PMCID: PMC5299732 DOI: 10.1186/s12929-017-0319-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is an embryonic malignancy of early childhood originating from neural crest cells and showing heterogeneous biological, morphological, genetic and clinical characteristics. The correct stratification of neuroblastoma patients within risk groups (low, intermediate, high and ultra-high) is critical for the adequate treatment of the patients. High-throughput technologies in the Omics disciplines are leading to significant insights into the molecular pathogenesis of neuroblastoma. Nonetheless, further study of Omics data is necessary to better characterise neuroblastoma tumour biology. In the present review, we report an update of compounds that are used in preclinical tests and/or in Phase I-II trials for neuroblastoma. Furthermore, we recapitulate a number of compounds targeting proteins associated to neuroblastoma: MYCN (direct and indirect inhibitors) and downstream targets, Trk, ALK and its downstream signalling pathways. In particular, for the latter, given the frequency of ALK gene deregulation in neuroblastoma patients, we discuss on second-generation ALK inhibitors in preclinical or clinical phases developed for the treatment of neuroblastoma patients resistant to crizotinib. We summarise how Omics drive clinical trials for neuroblastoma treatment and how much the research of biological targets is useful for personalised medicine. Finally, we give an overview of the most recent druggable targets selected by Omics investigation and discuss how the Omics results can provide us additional advantages for overcoming tumour drug resistance.
Collapse
Affiliation(s)
- Maria Rosaria Esposito
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy.
| | - Sanja Aveic
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy
| | - Anke Seydel
- Department of Biology, University of Padua, Padua, Italy
| | - Gian Paolo Tonini
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy
| |
Collapse
|
37
|
Bogen D, Wei JS, Azorsa DO, Ormanoglu P, Buehler E, Guha R, Keller JM, Mathews Griner LA, Ferrer M, Song YK, Liao H, Mendoza A, Gryder BE, Sindri S, He J, Wen X, Zhang S, Shern JF, Yohe ME, Taschner-Mandl S, Shohet JM, Thomas CJ, Martin SE, Ambros PF, Khan J. Aurora B kinase is a potent and selective target in MYCN-driven neuroblastoma. Oncotarget 2016; 6:35247-62. [PMID: 26497213 PMCID: PMC4742102 DOI: 10.18632/oncotarget.6208] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/30/2015] [Indexed: 01/11/2023] Open
Abstract
Despite advances in multimodal treatment, neuroblastoma (NB) is often fatal for children with high-risk disease and many survivors need to cope with long-term side effects from high-dose chemotherapy and radiation. To identify new therapeutic targets, we performed an siRNA screen of the druggable genome combined with a small molecule screen of 465 compounds targeting 39 different mechanisms of actions in four NB cell lines. We identified 58 genes as targets, including AURKB, in at least one cell line. In the drug screen, aurora kinase inhibitors (nine molecules) and in particular the AURKB-selective compound, barasertib, were the most discriminatory with regard to sensitivity for MYCN-amplified cell lines. In an expanded panel of ten NB cell lines, those with MYCN-amplification and wild-type TP53 were the most sensitive to low nanomolar concentrations of barasertib. Inhibition of the AURKB kinase activity resulted in decreased phosphorylation of the known target, histone H3, and upregulation of TP53 in MYCN-amplified, TP53 wild-type cells. However, both wild-type and TP53 mutant MYCN-amplified cell lines arrested in G2/M phase upon AURKB inhibition. Additionally, barasertib induced endoreduplication and apoptosis. Treatment of MYCN-amplified/TP53 wild-type neuroblastoma xenografts resulted in profound growth inhibition and tumor regression. Therefore, aurora B kinase inhibition is highly effective in aggressive neuroblastoma and warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Dominik Bogen
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David O Azorsa
- Clinical Translational Research Division, Translational Genomics Research Institute (TGen), Scottsdale, AZ, USA
| | - Pinar Ormanoglu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Eugen Buehler
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jonathan M Keller
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Lesley A Mathews Griner
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Young K Song
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hongling Liao
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Berkley E Gryder
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sivasish Sindri
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jianbin He
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shile Zhang
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John F Shern
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marielle E Yohe
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sabine Taschner-Mandl
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jason M Shohet
- Texas Children's Cancer Center and Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Scott E Martin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Peter F Ambros
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Vaughan L, Clarke PA, Barker K, Chanthery Y, Gustafson CW, Tucker E, Renshaw J, Raynaud F, Li X, Burke R, Jamin Y, Robinson SP, Pearson A, Maira M, Weiss WA, Workman P, Chesler L. Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget 2016; 7:57525-57544. [PMID: 27438153 PMCID: PMC5295370 DOI: 10.18632/oncotarget.10544] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
MYC oncoproteins deliver a potent oncogenic stimulus in several human cancers, making them major targets for drug development, but efforts to deliver clinically practical therapeutics have not yet been realized. In childhood cancer, aberrant expression of MYC and MYCN genes delineates a group of aggressive tumours responsible for a major proportion of pediatric cancer deaths. We designed a chemical-genetic screen that identifies compounds capable of enhancing proteasomal elimination of MYCN oncoprotein. We isolated several classes of compound that selectively kill MYCN expressing cells and we focus on inhibitors of PI3K/mTOR pathway in this study. We show that PI3K/mTOR inhibitors selectively killed MYCN-expressing neuroblastoma tumor cells, and induced significant apoptosis of transgenic MYCN-driven neuroblastoma tumors concomitant with elimination of MYCN protein in vivo. Mechanistically, the ability of these compounds to degrade MYCN requires complete blockade of mTOR but not PI3 kinase activity and we highlight NVP-BEZ235 as a PI3K/mTOR inhibitor with an ideal activity profile. These data establish that MYCN expression is a marker indicative of likely clinical sensitivity to mTOR inhibition, and provide a rationale for the selection of clinical candidate MYCN-destabilizers likely to be useful for the treatment of MYCN-driven cancers.
Collapse
Affiliation(s)
- Lynsey Vaughan
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Karen Barker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yvan Chanthery
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Clay W. Gustafson
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Elizabeth Tucker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Jane Renshaw
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Clinical Pharmacology and Trials Team, Sutton, Surrey, UK
| | - Xiaodun Li
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Target Selection and Hit Discovery Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yann Jamin
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Simon P. Robinson
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Andrew Pearson
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Michel Maira
- Novartis Pharma AG, Basel, Switzerland
- Present address: Basilea Pharmaceutica International AG, Basel, Switzerland
| | - William A. Weiss
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
- The Royal Marsden NHS Trust, Children and Young People's Unit, Sutton, Surrey, UK
| |
Collapse
|
39
|
Cicenas J. The Aurora kinase inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 2016; 142:1995-2012. [PMID: 26932147 DOI: 10.1007/s00432-016-2136-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Compounds that affect enzymatic function of kinases are valuable for the understanding of the complex biochemical processes in cells. Aurora kinases (AURKs) play a key role in the control of the mitosis. These kinases are frequently deregulated in different human cancers: overexpression, amplifications, translocations and deletions were reported in many cancer cell lines as well as patient tissues. These findings steered a rigorous hunt for small-molecule AURK inhibitors not only for research purposes as well as for therapeutic uses. In this review, we describe a number of AURK inhibitors and their use in cancer research and/or therapy. We hope to assist researchers and clinicians in deciding which inhibitor is most appropriate for their specific purpose. The review will also provide a broad overview of the clinical studies performed with some of these inhibitors (if such studies have been performed).
Collapse
Affiliation(s)
- Jonas Cicenas
- CALIPHO Group, Swiss Institute of Bioinformatics, CMU-1, rue Michel Servet, 1211, Geneva 4, Switzerland.
- MAP Kinase Resource, Melchiorstrasse 9, 3027, Bern, Switzerland.
- Proteomics Centre, Vilnius University Institute of Biochemistry, 08662, Vilnius, Lithuania.
| |
Collapse
|
40
|
Yan M, Wang C, He B, Yang M, Tong M, Long Z, Liu B, Peng F, Xu L, Zhang Y, Liang D, Lei H, Subrata S, Kelley KW, Lam EWF, Jin B, Liu Q. Aurora-A Kinase: A Potent Oncogene and Target for Cancer Therapy. Med Res Rev 2016; 36:1036-1079. [PMID: 27406026 DOI: 10.1002/med.21399] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The Aurora kinase family is comprised of three serine/threonine kinases, Aurora-A, Aurora-B, and Aurora-C. Among these, Aurora-A and Aurora-B play central roles in mitosis, whereas Aurora-C executes unique roles in meiosis. Overexpression or gene amplification of Aurora kinases has been reported in a broad range of human malignancies, pointing to their role as potent oncogenes in tumorigenesis. Aurora kinases therefore represent promising targets for anticancer therapeutics. A number of Aurora kinase inhibitors (AKIs) have been generated; some of which are currently undergoing clinical evaluation. Recent studies have unveiled novel unexpected functions of Aurora kinases during cancer development and the mechanisms underlying the anticancer actions of AKIs. In this review, we discuss the most recent advances in Aurora-A kinase research and targeted cancer therapy, focusing on the oncogenic roles and signaling pathways of Aurora-A kinases in promoting tumorigenesis, the recent preclinical and clinical AKI data, and potential alternative routes for Aurora-A kinase inhibition.
Collapse
Affiliation(s)
- Min Yan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mengying Yang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Mengying Tong
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zijie Long
- Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bing Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Lingzhi Xu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yan Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sen Subrata
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith W Kelley
- Laboratory of Immunophysiology, Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. .,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China. .,Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
41
|
Spindle Assembly Checkpoint as a Potential Target in Colorectal Cancer: Current Status and Future Perspectives. Clin Colorectal Cancer 2016; 16:1-8. [PMID: 27435760 DOI: 10.1016/j.clcc.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC), one of the most common malignancies worldwide, is often diagnosed at an advanced stage, and resistance to chemotherapeutic and existing targeted therapy is a major obstacle to its successful treatment. New targets that offer alternative clinical options are therefore urgently needed. Recently, perturbation of the spindle assembly checkpoint (SAC), the surveillance mechanism that maintains anaphase inhibition until all chromosomes reach the metaphase plate, has been regarded as a promising target to fight cancer cells, either alone or in combination regimens. Consistent with this strategy, many cancers, including CRC, exhibit altered expression of SAC genes. In this article, we review our current knowledge on SAC activity status in CRC, and on current anti-CRC strategies and future therapeutic perspectives on the basis of SAC targeting experiments in vitro and in animal models.
Collapse
|
42
|
Ham J, Costa C, Sano R, Lochmann TL, Sennott EM, Patel NU, Dastur A, Gomez-Caraballo M, Krytska K, Hata AN, Floros KV, Hughes MT, Jakubik CT, Heisey DAR, Ferrell JT, Bristol ML, March RJ, Yates C, Hicks MA, Nakajima W, Gowda M, Windle BE, Dozmorov MG, Garnett MJ, McDermott U, Harada H, Taylor SM, Morgan IM, Benes CH, Engelman JA, Mossé YP, Faber AC. Exploitation of the Apoptosis-Primed State of MYCN-Amplified Neuroblastoma to Develop a Potent and Specific Targeted Therapy Combination. Cancer Cell 2016; 29:159-72. [PMID: 26859456 PMCID: PMC4749542 DOI: 10.1016/j.ccell.2016.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/14/2015] [Accepted: 01/07/2016] [Indexed: 01/30/2023]
Abstract
Fewer than half of children with high-risk neuroblastoma survive. Many of these tumors harbor high-level amplification of MYCN, which correlates with poor disease outcome. Using data from our large drug screen we predicted, and subsequently demonstrated, that MYCN-amplified neuroblastomas are sensitive to the BCL-2 inhibitor ABT-199. This sensitivity occurs in part through low anti-apoptotic BCL-xL expression, high pro-apoptotic NOXA expression, and paradoxical, MYCN-driven upregulation of NOXA. Screening for enhancers of ABT-199 sensitivity in MYCN-amplified neuroblastomas, we demonstrate that the Aurora Kinase A inhibitor MLN8237 combines with ABT-199 to induce widespread apoptosis. In diverse models of MYCN-amplified neuroblastoma, including a patient-derived xenograft model, this combination uniformly induced tumor shrinkage, and in multiple instances led to complete tumor regression.
Collapse
Affiliation(s)
- Jungoh Ham
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Carlotta Costa
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Renata Sano
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Timothy L Lochmann
- Department of Microbiology and Immunology, Massey Cancer Center, Richmond, VA 23298, USA
| | - Erin M Sennott
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Neha U Patel
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Anahita Dastur
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Gomez-Caraballo
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Konstantinos V Floros
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mark T Hughes
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Charles T Jakubik
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel A R Heisey
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Justin T Ferrell
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Molly L Bristol
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Ryan J March
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Craig Yates
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mark A Hicks
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki 211-8533, Japan
| | - Madhu Gowda
- Department of Pediatrics, Children's Hospital of Richmond, VCU, Richmond, VA 23298, USA
| | - Brad E Windle
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mathew J Garnett
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Ultan McDermott
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Hisashi Harada
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Shirley M Taylor
- Department of Microbiology and Immunology, Massey Cancer Center, Richmond, VA 23298, USA
| | - Iain M Morgan
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anthony C Faber
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA.
| |
Collapse
|
43
|
Stafman LL, Beierle EA. Cell Proliferation in Neuroblastoma. Cancers (Basel) 2016; 8:E13. [PMID: 26771642 PMCID: PMC4728460 DOI: 10.3390/cancers8010013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed.
Collapse
Affiliation(s)
- Laura L Stafman
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| | - Elizabeth A Beierle
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
44
|
Bavetsias V, Linardopoulos S. Aurora Kinase Inhibitors: Current Status and Outlook. Front Oncol 2015; 5:278. [PMID: 26734566 PMCID: PMC4685048 DOI: 10.3389/fonc.2015.00278] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/27/2015] [Indexed: 11/24/2022] Open
Abstract
The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions.
Collapse
Affiliation(s)
- Vassilios Bavetsias
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research , London , UK
| | - Spiros Linardopoulos
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK; Breast Cancer Now, Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| |
Collapse
|
45
|
Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, Jones V, Bodycombe NE, Soule CK, Gould J, Alexander B, Li A, Montgomery P, Wawer MJ, Kuru N, Kotz JD, Hon CSY, Munoz B, Liefeld T, Dančík V, Bittker JA, Palmer M, Bradner JE, Shamji AF, Clemons PA, Schreiber SL. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov 2015; 5:1210-23. [PMID: 26482930 DOI: 10.1158/2159-8290.cd-15-0235] [Citation(s) in RCA: 516] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/21/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). SIGNIFICANCE We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses.
Collapse
Affiliation(s)
| | - Matthew G Rees
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Jaime H Cheah
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Murat Cokol
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Edmund V Price
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Matthew E Coletti
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Victor Jones
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Nicole E Bodycombe
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Christian K Soule
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Joshua Gould
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Benjamin Alexander
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Ava Li
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Philip Montgomery
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Mathias J Wawer
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Nurdan Kuru
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Joanne D Kotz
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - C Suk-Yee Hon
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Benito Munoz
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Ted Liefeld
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Vlado Dančík
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Joshua A Bittker
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Michelle Palmer
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - James E Bradner
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts. Cancer Biology and Medical Oncology, Harvard Medical School, Boston, Massachusetts
| | - Alykhan F Shamji
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts.
| | - Paul A Clemons
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts.
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
46
|
Ramani P, Nash R, Sowa-Avugrah E, Rogers C. High levels of polo-like kinase 1 and phosphorylated translationally controlled tumor protein indicate poor prognosis in neuroblastomas. J Neurooncol 2015; 125:103-11. [PMID: 26318737 DOI: 10.1007/s11060-015-1900-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/24/2015] [Indexed: 01/15/2023]
Abstract
Despite multimodality treatment, the long-term survival of high-risk patients with neuroblastomas is below 50%. New anti-mitotic drugs against targets, such as polo-like kinase 1 (PLK1), are being evaluated in early phase clinical trials. PLK1 phosphorylates the translationally controlled tumor protein (TCTP). We investigated the expression of PLK1 and the phosphorylated substrate, pTCTP, by immunostaining eighty-eight neuroblastomas. Digitally scanned slides were scored using image analysis software. The median PLK1 and pTCTP proliferation indices (PIs) were 4.6 and 1% respectively. There was moderate positive correlation between PLK1 and pTCTP (ρ = 0.65). The PIs for both markers were significantly higher in neuroblastomas from patients with adverse clinical (advanced-stage, high-risk group, primary abdominal compared to extra-abdominal sites), biological (MYCN amplification, 1p deletion, 17q gain) and pathological (undifferentiated or poorly differentiated status, high mitosis-karyorrhexis index, [MKI], unfavorable histology) factors. Using Cox regression models, higher-than-median PLK1 and pTCTP PIs were associated with a shorter overall survival (OS) and event-free survival (EFS) in the univariate analyses. In the multivariate analyses, a high PLK1 PI count was associated with significantly shorter OS and EFS, independent of MYCN amplification and MKI; in addition, the significantly shorter EFS was independent of the risk-group. After adjustment for MKI and MYCN amplification, and for risk-group, high pTCTP PI was also associated with significantly shorter OS. Our study shows that PLK1 provides valuable prognostic information in patients with neuroblastomas.
Collapse
Affiliation(s)
- Pramila Ramani
- School of Cellular and Molecular Medicine, University of Bristol, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK.
- Department of Histopathology, University Hospitals Bristol NHS Foundation Trust, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.
| | - Rachel Nash
- Clinical Trials and Evaluation Unit, University of Bristol, School of Clinical Sciences, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Emile Sowa-Avugrah
- Department of Histopathology, University Hospitals Bristol NHS Foundation Trust, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Chris Rogers
- Clinical Trials and Evaluation Unit, University of Bristol, School of Clinical Sciences, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| |
Collapse
|
47
|
Michaelis M, Selt F, Rothweiler F, Wiese M, Cinatl J. ABCG2 impairs the activity of the aurora kinase inhibitor tozasertib but not of alisertib. BMC Res Notes 2015; 8:484. [PMID: 26415506 PMCID: PMC4587578 DOI: 10.1186/s13104-015-1405-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/31/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recently, we have shown that the ATP-binding cassette (ABC) transporter ABCB1 interferes with the anti-cancer activity of the pan-aurora kinase inhibitor tozasertib (VX680, MK-0457) but not of the aurora kinase A and B inhibitor alisertib (MLN8237). Preliminary data had suggested tozasertib also to be a substrate of the ABC transporter ABCG2, another ABC transporter potentially involved in cancer cell drug resistance. Here, we studied the effect of ABCG2 on the activity of tozasertib and alisertib. RESULTS The tozasertib concentration that reduces cell viability by 50% (IC50) was dramatically increased in ABCG2-transduced UKF-NB-3(ABCG2) cells (48.8-fold) compared to UKF-NB-3 cells and vector-transduced control cells. The ABCG2 inhibitor WK-X-34 reduced tozasertib IC50 to the level of non-ABCG2-expressing UKF-NB-3 cells. Furthermore, ABCG2 depletion from UKF-NB-3(ABCG2) cells using another lentiviral vector expressing an shRNA against the bicistronic mRNA of ABCG2 and eGFP largely re-sensitised these cells to tozasertib. In contrast, alisertib activity was not affected by ABCG2 expression. CONCLUSIONS Tozasertib but not alisertib activity is affected by ABCG2 expression. This should be considered within the design and analysis of experiments and clinical trials investigating these compounds.
Collapse
Affiliation(s)
- Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Str. 40, 60596, Frankfurt Am Main, Germany. .,Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| | - Florian Selt
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Str. 40, 60596, Frankfurt Am Main, Germany. .,Deutsches Krebsforschungszentrum (DKFZ), Klinische Kooperationseinheit Pädiatrische Onkologie (G340) and Pädiatrie III, Zentrum für Kinder- und Jugendmedizin, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Str. 40, 60596, Frankfurt Am Main, Germany.
| | - Michael Wiese
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Str. 40, 60596, Frankfurt Am Main, Germany.
| |
Collapse
|
48
|
Niu H, Manfredi M, Ecsedy JA. Scientific Rationale Supporting the Clinical Development Strategy for the Investigational Aurora A Kinase Inhibitor Alisertib in Cancer. Front Oncol 2015; 5:189. [PMID: 26380220 PMCID: PMC4547019 DOI: 10.3389/fonc.2015.00189] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 01/08/2023] Open
Abstract
Alisertib (MLN8237) is a selective small molecule inhibitor of Aurora A kinase that is being developed in multiple cancer indications as a single agent and in combination with other therapies. A significant amount of research has elucidated a role for Aurora A in orchestrating numerous activities of cells transiting through mitosis and has begun to shed light on potential non-mitotic roles for Aurora A as well. These biological insights laid the foundation for multiple clinical trials evaluating the antitumor activity of alisertib in both solid cancers and heme-lymphatic malignancies. Several key facets of Aurora A biology as well as empirical data collected in experimental systems and early clinical trials have directed the development of alisertib toward certain cancer types, including neuroblastoma, small cell lung cancer, neuroendocrine prostate cancer, atypical teratoid/rhabdoid tumors, and breast cancer among others. In addition, these scientific insights provided the rationale for combining alisertib with other therapies, including microtubule perturbing agents, such as taxanes, EGFR inhibitors, hormonal therapies, platinums, and HDAC inhibitors among others. Here, we link the key aspects of the current clinical development of alisertib to the originating scientific rationale and provide an overview of the alisertib clinical experience to date.
Collapse
Affiliation(s)
- Huifeng Niu
- Department of Translational Medicine, Takeda Pharmaceuticals International Co, Cambridge, MA, USA
| | - Mark Manfredi
- Department of Oncology Biology, Takeda Pharmaceuticals International Co, Cambridge, MA, USA
| | - Jeffrey A. Ecsedy
- Department of Translational Medicine, Takeda Pharmaceuticals International Co, Cambridge, MA, USA
| |
Collapse
|
49
|
High proliferation index, as determined by immunohistochemical expression of Aurora kinase B and geminin, indicates poor prognosis in neuroblastomas. Virchows Arch 2015. [PMID: 26199132 DOI: 10.1007/s00428-015-1806-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Expression profile analysis of cell cycle biomarkers provides a powerful index of the proliferative state of tumors, which is linked to disease aggressiveness. We investigated the impact of the biomarkers of S-G2-M phases of cell cycle, Aurora kinase B (AURKB) and geminin (GMNN), on disease progression in neuroblastomas. The expression of AURKB and GMNN was studied by immunostaining 84 neuroblastomas. A proliferation index (PI) was obtained on scanned immunostained slides using image analysis software. The median PI was 8.5 % for AURKB- and 16.8 % for GMNN-stained slides with a high correlation between the two (r s = 0.72, P < 0.001). The PI for both markers was significantly higher in neuroblastomas from patients with unfavorable clinical (high-risk group, advanced stage, age ≥18 months at presentation, primary abdominal compared to extra-abdominal sites), biological (MYCN amplification, 1p deletion, 17q gain), and pathological (undifferentiated or poorly differentiated status, high mitosis-karyorrhexis index, [MKI], unfavorable histology) factors. Using Cox regression models, a higher-than-median AURKB and GMNN PI was associated with a significantly shorter overall survival (OS) and event-free survival (EFS) in univariable analysis. In multivariable analysis, a high AURKB PI was associated with significantly shorter OS and EFS, independent of MYCN amplification, and significantly shorter EFS, independent of MKI. High GMNN PI was also associated with significantly shorter OS and EFS after adjusting for MYCN amplification but failed to reach statistical significance after adjusting for MKI. Our study shows that in neuroblastomas, AURKB- or GMNN-based PI provides valuable prognostic information and high PI indicates aggressive disease.
Collapse
|
50
|
Burgess SG, Peset I, Joseph N, Cavazza T, Vernos I, Pfuhl M, Gergely F, Bayliss R. Aurora-A-Dependent Control of TACC3 Influences the Rate of Mitotic Spindle Assembly. PLoS Genet 2015; 11:e1005345. [PMID: 26134678 PMCID: PMC4489650 DOI: 10.1371/journal.pgen.1005345] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/09/2015] [Indexed: 11/21/2022] Open
Abstract
The essential mammalian gene TACC3 is frequently mutated and amplified in cancers and its fusion products exhibit oncogenic activity in glioblastomas. TACC3 functions in mitotic spindle assembly and chromosome segregation. In particular, phosphorylation on S558 by the mitotic kinase, Aurora-A, promotes spindle recruitment of TACC3 and triggers the formation of a complex with ch-TOG-clathrin that crosslinks and stabilises kinetochore microtubules. Here we map the Aurora-A-binding interface in TACC3 and show that TACC3 potently activates Aurora-A through a domain centered on F525. Vertebrate cells carrying homozygous F525A mutation in the endogenous TACC3 loci exhibit defects in TACC3 function, namely perturbed localization, reduced phosphorylation and weakened interaction with clathrin. The most striking feature of the F525A cells however is a marked shortening of mitosis, at least in part due to rapid spindle assembly. F525A cells do not exhibit chromosome missegregation, indicating that they undergo fast yet apparently faithful mitosis. By contrast, mutating the phosphorylation site S558 to alanine in TACC3 causes aneuploidy without a significant change in mitotic duration. Our work has therefore defined a regulatory role for the Aurora-A-TACC3 interaction beyond the act of phosphorylation at S558. We propose that the regulatory relationship between Aurora-A and TACC3 enables the transition from the microtubule-polymerase activity of TACC3-ch-TOG to the microtubule-crosslinking activity of TACC3-ch-TOG-clathrin complexes as mitosis progresses. Aurora-A-dependent control of TACC3 could determine the balance between these activities, thereby influencing not only spindle length and stability but also the speed of spindle formation with vital consequences for chromosome alignment and segregation.
Collapse
Affiliation(s)
- Selena G. Burgess
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Isabel Peset
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nimesh Joseph
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Tommaso Cavazza
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mark Pfuhl
- Cardiovascular and Randall Division, King’s College London, London, United Kingdom
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Richard Bayliss
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|