1
|
Metebi A, Kauffman N, Xu L, Singh SK, Nayback C, Fan J, Johnson N, Diemer J, Grimm T, Zamiara M, Zinn KR. Pb-214/Bi-214-TCMC-Trastuzumab inhibited growth of ovarian cancer in preclinical mouse models. Front Chem 2024; 11:1322773. [PMID: 38333550 PMCID: PMC10850308 DOI: 10.3389/fchem.2023.1322773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction: Better treatments for ovarian cancer are needed to eliminate residual peritoneal disease after initial debulking surgery. The present study evaluated Trastuzumab to deliver Pb-214/Bi-214 for targeted alpha therapy (TAT) for HER2-positive ovarian cancer in mouse models of residual disease. This study is the first report of TAT using a novel Radon-222 generator to produce short-lived Lead-214 (Pb-214, t1/2 = 26.8 min) in equilibrium with its daughter Bismuth-214 (Bi-214, t1/2 = 19.7 min); referred to as Pb-214/Bi-214. In this study, Pb-214/Bi-214-TCMC-Trastuzumab was tested. Methods: Trastuzumab and control IgG antibody were conjugated with TCMC chelator and radiolabeled with Pb-214/Bi-214 to yield Pb-214/Bi-214-TCMC-Trastuzumab and Pb-214/Bi-214-TCMC-IgG1. The decay of Pb-214/Bi-214 yielded α-particles for TAT. SKOV3 and OVAR3 human ovarian cancer cell lines were tested for HER2 levels. The effects of Pb-214/Bi-214-TCMC-Trastuzumab and appropriate controls were compared using clonogenic assays and in mice bearing peritoneal SKOV3 or OVCAR3 tumors. Mice control groups included untreated, Pb-214/Bi-214-TCMC-IgG1, and Trastuzumab only. Results and discussion: SKOV3 cells had 590,000 ± 5,500 HER2 receptors/cell compared with OVCAR3 cells at 7,900 ± 770. In vitro clonogenic assays with SKOV3 cells showed significantly reduced colony formation after Pb-214/Bi-214-TCMC-Trastuzumab treatment compared with controls. Nude mice bearing luciferase-positive SKOV3 or OVCAR3 tumors were treated with Pb-214/Bi-214-TCMC-Trastuzumab or appropriate controls. Two 0.74 MBq doses of Pb-214/Bi-214-TCMC-Trastuzumab significantly suppressed the growth of SKOV3 tumors for 60 days, without toxicity, compared with three control groups (untreated, Pb-214/Bi-214-TCMC-IgG1, or Trastuzumab only). Mice-bearing OVCAR3 tumors had effective therapy without toxicity with two 0.74 MBq doses of Pb-214/Bi-214-TCMC-trastuzumab or Pb-214/Bi-214-TCMC-IgG1. Together, these data indicated that Pb-214/Bi-214 from a Rn-222 generator system was successfully applied for TAT. Pb-214/Bi-214-TCMC-Trastuzumab was effective to treat mouse xenograft models. Advantages of Pb-214/Bi-214 from the novel generator systems include high purity, short half-life for fractioned therapy, and hourly availability from the Rn-222 generator system. This platform technology can be applied for a variety of cancer treatment strategies.
Collapse
Affiliation(s)
- Abdullah Metebi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
- Radiological Sciences Department, Taif University, Taif, Saudi Arabia
| | - Nathan Kauffman
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Lu Xu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Satyendra Kumar Singh
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Chelsea Nayback
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Jinda Fan
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Radiology, Michigan State University, East Lansing, MI, United States
| | | | | | | | | | - Kurt R. Zinn
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
- Radiology, Michigan State University, East Lansing, MI, United States
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Khazaei Monfared Y, Heidari P, Klempner SJ, Mahmood U, Parikh AR, Hong TS, Strickland MR, Esfahani SA. DNA Damage by Radiopharmaceuticals and Mechanisms of Cellular Repair. Pharmaceutics 2023; 15:2761. [PMID: 38140100 PMCID: PMC10748326 DOI: 10.3390/pharmaceutics15122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
DNA is an organic molecule that is highly vulnerable to chemical alterations and breaks caused by both internal and external factors. Cells possess complex and advanced mechanisms, including DNA repair, damage tolerance, cell cycle checkpoints, and cell death pathways, which together minimize the potentially harmful effects of DNA damage. However, in cancer cells, the normal DNA damage tolerance and response processes are disrupted or deregulated. This results in increased mutagenesis and genomic instability within the cancer cells, a known driver of cancer progression and therapeutic resistance. On the other hand, the inherent instability of the genome in rapidly dividing cancer cells can be exploited as a tool to kill by imposing DNA damage with radiopharmaceuticals. As the field of targeted radiopharmaceutical therapy (RPT) is rapidly growing in oncology, it is crucial to have a deep understanding of the impact of systemic radiation delivery by radiopharmaceuticals on the DNA of tumors and healthy tissues. The distribution and activation of DNA damage and repair pathways caused by RPT can be different based on the characteristics of the radioisotope and molecular target. Here we provide a comprehensive discussion of the biological effects of RPTs, with the main focus on the role of varying radioisotopes in inducing direct and indirect DNA damage and activating DNA repair pathways.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Pedram Heidari
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Samuel J. Klempner
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Umar Mahmood
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Aparna R. Parikh
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Matthew R. Strickland
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Shadi A. Esfahani
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| |
Collapse
|
3
|
Deng H, Liu W, Yang X, Li K, Liao W, Zhao P, Yang Y, Wei H, Wang J, Chen Y. Preliminary evaluation and in vitro cytotoxicity studies of [131I]I-trastuzumab in HER2 expressing ovarian cancer cells. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08329-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Tamborino G, Nonnekens J, De Saint-Hubert M, Struelens L, Feijtel D, de Jong M, Konijnenberg MW. Dosimetric Evaluation of the Effect of Receptor Heterogeneity on the Therapeutic Efficacy of Peptide Receptor Radionuclide Therapy: Correlation with DNA Damage Induction and In Vivo Survival. J Nucl Med 2022; 63:100-107. [PMID: 33837068 PMCID: PMC8717202 DOI: 10.2967/jnumed.121.262122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Our rationale was to build a refined dosimetry model for 177Lu-DOTATATE in vivo experiments enabling the correlation of absorbed dose with double-strand break (DSB) induction and cell death. Methods: Somatostatin receptor type 2 expression of NCI-H69 xenografted mice, injected with 177Lu-DOTATATE, was imaged at 0, 2, 5, and 11 d. This expression was used as input to reconstruct realistic 3-dimensional heterogeneous activity distributions and tissue geometries of both cancer and heathy cells. The resulting volumetric absorbed dose rate distributions were calculated using the GATE (Geant4 Application for Tomographic Emission) Monte Carlo code and compared with homogeneous dose rate distributions. The absorbed dose (0-2 d) on micrometer-scale sections was correlated with DSB induction, measured by γH2AX foci. Moreover, the absorbed dose on larger millimeter-scale sections delivered over the whole treatment (0-14 d) was correlated to the modeled in vivo survival to determine the radiosensitivity parameters α and β for comparison with experimental data (cell death assay, volume response) and external-beam radiotherapy. The DNA-damage repair half-life Tμ and proliferation doubling time TD were obtained by fitting the DSB and tumor volume data over time. Results: A linear correlation with a slope of 0.0223 DSB/cell mGy-1 between the absorbed dose and the number of DSBs per cell has been established. The heterogeneous dose distributions differed significantly from the homogeneous dose distributions, with their corresponding average S values diverging at 11 d by up to 58%. No significant difference between modeled in vivo survival was observed in the first 5 d when using heterogeneous and uniform dose distributions. The radiosensitivity parameter analysis for the in vivo survival correlation indicated that the minimal effective dose rates for cell kill was 13.72 and 7.40 mGy/h, with an α of 0.14 and 0.264 Gy-1, respectively, and an α/β of 100 Gy; decreasing the α/β led to a decrease in the minimal effective dose rate for cell kill. Within the linear quadratic model, the best matching in vivo survival correlation (α = 0.1 Gy-1, α/β = 100 Gy, Tμ = 60 h, TD = 14.5 d) indicated a relative biological effectiveness of 0.4 in comparison to external-beam radiotherapy. Conclusion: Our results demonstrated that accurate dosimetric modeling is crucial to establishing dose-response correlations enabling optimization of treatment protocols.
Collapse
Affiliation(s)
- Giulia Tamborino
- Research in Dosimetric Application, Belgian Nuclear Research Centre, Mol, Belgium
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Julie Nonnekens
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands; and
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | | | - Lara Struelens
- Research in Dosimetric Application, Belgian Nuclear Research Centre, Mol, Belgium
| | - Danny Feijtel
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands; and
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Mark W Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands;
| |
Collapse
|
5
|
King AP, Lin FI, Escorcia FE. Why bother with alpha particles? Eur J Nucl Med Mol Imaging 2021; 49:7-17. [PMID: 34175980 DOI: 10.1007/s00259-021-05431-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
The approval of 223RaCl2 for cancer therapy in 2013 has heralded a resurgence of interest in the development of α-particle emitting radiopharmaceuticals. In the last decade, over a dozen α-emitting radiopharmaceuticals have entered clinical trials, spawned by strong preclinical studies. In this article, we explore the potential role of α-particle therapy in cancer treatment. We begin by providing a background for the basic principles of therapy with α-emitters, and we explore recent breakthroughs in therapy with α-emitting radionuclides, including conjugates with small molecules and antibodies. Finally, we discuss some outstanding challenges to the clinical adoption of α-therapies and potential strategies to address them.
Collapse
Affiliation(s)
- A Paden King
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20817, USA
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20817, USA
| | - Frank I Lin
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20817, USA
| | - Freddy E Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20817, USA.
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20817, USA.
| |
Collapse
|
6
|
Sharma R, Kameswaran M, Dash A. Comparative In Vitro Cytotoxicity Studies of 177Lu-CHX-A″-DTPA-Trastuzumab and 177Lu-CHX-A″-DTPA-F(ab') 2-Trastuzumab in HER2-Positive Cancer Cell Lines. Cancer Biother Radiopharm 2020; 35:177-189. [PMID: 32196365 DOI: 10.1089/cbr.2019.2882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Human epidermal growth factor receptor 2 (HER2) is found to be amplified in ∼15%-20% of breast cancers. In this study, the authors report the synthesis and comparative in vitro therapeutic efficacy of 177Lu-CHX-A″-DTPA-trastuzumab and 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab to determine their potential as theranostic agents for patients with breast cancer. Materials and Methods: Bivalent F(ab')2-trastuzumab was produced by enzymatic digestion of trastuzumab, conjugated with p-SCN-Bn-CHX-A″-DTPA and subsequently radiolabeled with 177Lu. Cell viability, membrane toxicity assays, and apoptosis analysis were carried out with 177Lu-CHX-A″-DTPA-trastuzumab and 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab in HER2-positive ovarian (SK-OV-3) and breast cancer (SK-BR-3 and MDA-MB-453) cells. Results: In vitro cell binding studies showed ∼20%-25% binding of 177Lu-CHX-A″-DTPA-trastuzumab and 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab to SK-OV-3, SK-BR-3, and MDA-MB-453 cells. The cells exhibited similar degree of membrane integrity and cellular toxicity when treated with same amount (activity) of 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab and 177Lu-CHX-A″-DTPA-trastuzumab, and the toxicity was dose dependent. The mode of cell death was predominantly by apoptosis and necrosis with both the radioimmunoconjugates. Conclusions: The results indicated that the efficacy of both the radioimmunoconjugates, in terms of inducing cell death, was similar thereby ascertaining their potential as good therapeutic agents for patients with breast cancer.
Collapse
Affiliation(s)
- Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Mythili Kameswaran
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
7
|
Affiliation(s)
- Ana Ruiz-Saenz
- Ana Ruiz-Saenz, University of California at San Francisco, San Francisco, CA; and Mark M. Moasser, University of California at San Francisco, San Francisco, CA
| | - Mark M Moasser
- Ana Ruiz-Saenz, University of California at San Francisco, San Francisco, CA; and Mark M. Moasser, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
8
|
Shah MA, Zhang X, Rossin R, Robillard MS, Fisher DR, Bueltmann T, Hoeben FJM, Quinn TP. Metal-Free Cycloaddition Chemistry Driven Pretargeted Radioimmunotherapy Using α-Particle Radiation. Bioconjug Chem 2017; 28:3007-3015. [DOI: 10.1021/acs.bioconjchem.7b00612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Manankumar A. Shah
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Harry S. Truman Veterans Administration Hospital, Columbia, Missouri 65201, United States
| | - Xiuli Zhang
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Harry S. Truman Veterans Administration Hospital, Columbia, Missouri 65201, United States
| | - Raffaella Rossin
- Tagworks Pharmaceuticals, Geert
Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Marc S. Robillard
- Tagworks Pharmaceuticals, Geert
Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Darrell R. Fisher
- Versant Medical Physics and Radiation Safety, Richland, Washington 99354, United States
| | - Tyler Bueltmann
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Thomas P. Quinn
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Harry S. Truman Veterans Administration Hospital, Columbia, Missouri 65201, United States
| |
Collapse
|
9
|
Milenic DE, Baidoo KE, Kim YS, Barkley R, Brechbiel MW. Comparative studies on the therapeutic benefit of targeted α-particle radiation therapy for the treatment of disseminated intraperitoneal disease. Dalton Trans 2017; 46:14591-14601. [PMID: 28675216 PMCID: PMC5664163 DOI: 10.1039/c7dt01819c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identification of the appropriate combination of radionuclide, target and targeting vehicle is critical for successful radioimmunotherapy. For the treatment of disseminated peritoneal diseases such as pancreatic or ovarian cancer, α-emitting radionuclides have been proposed for targeted radiation therapy. This laboratory has taken a systematic approach investigating targeted α-radiation therapy, allowing comparisons to now be made between 211At, 227Th, 213Bi and 212Pb. Herein, trastuzumab radiolabeled with 211At and 227Th was evaluated for therapeutic efficacy in the LS-174T i.p. tumor model. A dose escalation study was conducted with each radioimmunoconjugate (RIC). Therapeutic benefit was realized with 211At-trastuzumab with doses of 20, 30 and 40 μCi. At doses >40 μCi, toxicity was observed with greater weight loss and 2-fold higher decrease in the platelet counts. Following a second study comparing the effect of 20, 30 and 40 μCi of 211At-trastuzumab, 30 μCi was selected as the dose for future studies. A parallel study was performed evaluating 0.25, 0.5, 1.0, 2.0 and 5.0 μCi of 227Th-trastuzumab. The 0.5 and 1.0 μCi injected dose resulted in a therapeutic response; a lower degree of weight loss was experienced by the mice in the 0.5 μCi cohort. When the data is normalized for comparing 211At, 227Th, 213Bi and 212Pb, the choice of radionuclide for RIT is perhaps not entirely based on simple therapeutic efficacy, other factors may play a role in choosing the "right" radionuclide.
Collapse
Affiliation(s)
- Diane E Milenic
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD, USA.
| | | | | | | | | |
Collapse
|
10
|
Martins CD, Kramer-Marek G, Oyen WJG. Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges. Expert Opin Drug Deliv 2017; 15:185-196. [PMID: 28893110 DOI: 10.1080/17425247.2018.1378180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Radioimmunotherapy (RIT) with monoclonal antibodies and their fragments labelled with radionuclides emitting α -particles, β-particles or Auger electrons have been used for many years in the development of anticancer strategies. While RIT has resulted in approved radiopharmaceuticals for the treatment of hematological malignancies, its use in solid tumors still remains challenging. AREAS COVERED In this review, we discuss the exciting progress towards elucidating the potential of current and novel radioimmunoconjugates and address the challenges for translation into clinical practice. EXPERT OPINION There are still technical and logistical challenges associated with the use of RIT in routine clinical practice, including development of novel and more specific targeting moieties, broader access α to α-emitters and better tailoring of pre-targeting approaches. Moreover, improved understanding of the heterogeneous nature of solid tumors and the critical role of tumor microenvironments will help to optimize clinical response to RIT by delivering sufficient radiation doses to even more radioresistant tumor cells.
Collapse
Affiliation(s)
- Carlos Daniel Martins
- a Division of Radiotherapy and Imaging , The Institute of Cancer Research , London , UK
| | - Gabriela Kramer-Marek
- a Division of Radiotherapy and Imaging , The Institute of Cancer Research , London , UK
| | - Wim J G Oyen
- a Division of Radiotherapy and Imaging , The Institute of Cancer Research , London , UK.,b The Royal Marsden NHS Foundation Trust , Department of Nuclear Medicine , London , UK
| |
Collapse
|
11
|
Targeted α-Particle Radiation Therapy of HER1-Positive Disseminated Intraperitoneal Disease: An Investigation of the Human Anti-EGFR Monoclonal Antibody, Panitumumab. Transl Oncol 2017; 10:535-545. [PMID: 28577439 PMCID: PMC5458064 DOI: 10.1016/j.tranon.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022] Open
Abstract
Identifying molecular targets and an appropriate targeting vehicle, i.e., monoclonal antibodies (mAb) and their various forms, for radioimmunotherapy (RIT) remains an active area of research. Panitumumab, a fully human and less immunogenic mAb that binds to the epidermal growth factor receptor (Erb1; HER1), was evaluated for targeted α-particle radiation therapy using 212Pb, an in vivo α generator. A single dose of 212Pb-panitumumab administered to athymic mice bearing LS-174T intraperitoneal (i.p.) tumor xenografts was found to have greater therapeutic efficacy when directly compared with 212Pb-trastuzumab, which binds to HER2. A dose escalation study determined a maximum effective working dose of 212Pb-panitumumab to be 20 μCi with a median survival of 35 days versus 25 days for the untreated controls. Pretreatment of tumor-bearing mice with paclitaxel and gemcitabine 24 hours prior to injection of 212Pb-pantiumumab at 10 or 20 μCi resulted in the greatest enhanced therapeutic response at the higher dose with median survivals of 106 versus 192 days, respectively. The greatest therapeutic impact, however, was observed in the animals that were treated with topotecan 24 hours prior to RIT and then again 24 hours after RIT; the best response from this combination was also obtained with the lower 10-μCi dose of 212Pb-panitumumab (median survival >280 days). In summary, 212Pb-panitumumab is an excellent candidate for the treatment of HER1-positive disseminated i.p. disease. Furthermore, the potentiation of the therapeutic impact of 212Pb-pantiumumab by chemotherapeutics confirms and validates the importance of developing a multimodal therapy regimen.
Collapse
|
12
|
Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv Drug Deliv Rev 2017; 109:102-118. [PMID: 26705852 DOI: 10.1016/j.addr.2015.12.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/26/2015] [Accepted: 12/06/2015] [Indexed: 12/31/2022]
Abstract
Radioimmunotherapy (RIT) aims to selectively deliver radionuclides emitting α-particles, β-particles or Auger electrons to tumors by conjugation to monoclonal antibodies (mAbs) that recognize tumor-associated antigens/receptors. The approach has been most successful for treatment of non-Hodgkin's B-cell lymphoma but challenges have been encountered in extending these promising results to the treatment of solid malignancies. These challenges include the low potency of β-particle emitters such as 131I, 177Lu or 90Y which have been commonly conjugated to the mAbs, due to their low linear energy transfer (LET=0.1-1.0keV/μm). Furthermore, since the β-particles have a 2-10mm range, there has been dose-limiting non-specific toxicity to hematopoietic stem cells in the bone marrow (BM) due to the cross-fire effect. Conjugation of mAbs to α-particle-emitters (e.g. 225Ac, 213Bi, 212Pb or 211At) or Auger electron-emitters (e.g. 111In, 67Ga, 123I or 125I) would increase the potency of RIT due to their high LET (50-230keV/μm and 4 to 26keV/μm, respectively). In addition, α-particles have a range in tissues of 28-100μm and Auger electrons are nanometer in range which greatly reduces or eliminates the cross-fire effect compared to β-particles, potentially reducing their non-specific toxicity to the BM. In this review, we describe the results of preclinical and clinical studies of RIT of cancer using radioimmunoconjugates emitting α-particles or Auger electrons, and discuss the potential of these high LET forms of radiation to improve the outcome of cancer patients.
Collapse
Affiliation(s)
- Sadaf Aghevlian
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Amanda J Boyle
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute and Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
13
|
Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW. Cell Killing Mechanisms and Impact on Gene Expression by Gemcitabine and 212Pb-Trastuzumab Treatment in a Disseminated i.p. Tumor Model. PLoS One 2016; 11:e0159904. [PMID: 27467592 PMCID: PMC4965152 DOI: 10.1371/journal.pone.0159904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
In pre-clinical studies, combination therapy with gemcitabine and targeted radioimmunotherapy (RIT) using 212Pb-trastuzumab showed tremendous therapeutic potential in the LS-174T tumor xenograft model of disseminated intraperitoneal disease. To better understand the underlying molecular basis for the observed cell killing efficacy, gene expression profiling was performed after a 24 h exposure to 212Pb-trastuzumab upon gemcitabine (Gem) pre-treatment in this model. DNA damage response genes in tumors were quantified using a real time quantitative PCR array (qRT-PCR array) covering 84 genes. The combination of Gem with α-radiation resulted in the differential expression of apoptotic genes (BRCA1, CIDEA, GADD45α, GADD45γ, IP6K3, PCBP4, RAD21, and p73), cell cycle regulatory genes (BRCA1, CHK1, CHK2, FANCG, GADD45α, GTSE1, PCBP4, MAP2K6, NBN, PCBP4, and SESN1), and damaged DNA binding and repair genes (BRCA1, BTG2, DMC1, ERCC1, EXO1, FANCG, FEN1, MSH2, MSH3, NBN, NTHL1, OGG1, PRKDC, RAD18, RAD21, RAD51B, SEMA4G, p73, UNG, XPC, and XRCC2). Of these genes, the expression of CHK1, GTSE1, EXO1, FANCG, RAD18, UNG and XRCC2 were specific to Gem/212Pb-trastuzumab administration. In addition, the present study demonstrates that increased stressful growth arrest conditions induced by Gem/212Pb-trastuzumab could suppress cell proliferation possibly by up-regulating genes involved in apoptosis such as p73, by down-regulating genes involved in cell cycle check point such as CHK1, and in damaged DNA repair such as RAD51 paralogs. These events may be mediated by genes such as BRCA1/MSH2, a member of BARC (BRCA-associated genome surveillance complex). The data suggest that up-regulation of genes involved in apoptosis, perturbation of checkpoint genes, and a failure to correctly perform HR-mediated DSB repair and mismatch-mediated SSB repair may correlate with the previously observed inability to maintain the G2/M arrest, leading to cell death.
Collapse
Affiliation(s)
- Kwon Joong Yong
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda MD, United States of America
| | - Diane E. Milenic
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda MD, United States of America
| | - Kwamena E. Baidoo
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda MD, United States of America
| | - Martin W. Brechbiel
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda MD, United States of America
- * E-mail:
| |
Collapse
|
14
|
Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW. Mechanisms of Cell Killing Response from Low Linear Energy Transfer (LET) Radiation Originating from (177)Lu Radioimmunotherapy Targeting Disseminated Intraperitoneal Tumor Xenografts. Int J Mol Sci 2016; 17:ijms17050736. [PMID: 27196891 PMCID: PMC4881558 DOI: 10.3390/ijms17050736] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/28/2016] [Accepted: 05/07/2016] [Indexed: 12/23/2022] Open
Abstract
Radiolabeled antibodies (mAbs) provide efficient tools for cancer therapy. The combination of low energy β(-)-emissions (500 keVmax; 130 keVave) along with a γ-emission for imaging makes (177)Lu (T1/2 = 6.7 day) a suitable radionuclide for radioimmunotherapy (RIT) of tumor burdens possibly too large to treat with α-particle radiation. RIT with (177)Lu-trastuzumab has proven to be effective for treatment of disseminated HER2 positive peritoneal disease in a pre-clinical model. To elucidate mechanisms originating from this RIT therapy at the molecular level, tumor bearing mice (LS-174T intraperitoneal xenografts) were treated with (177)Lu-trastuzumab comparatively to animals treated with a non-specific control, (177)Lu-HuIgG, and then to prior published results obtained using (212)Pb-trastuzumab, an α-particle RIT agent. (177)Lu-trastuzumab induced cell death via DNA double strand breaks (DSB), caspase-3 apoptosis, and interfered with DNA-PK expression, which is associated with the repair of DNA non-homologous end joining damage. This contrasts to prior results, wherein (212)Pb-trastuzumab was found to down-regulate RAD51, which is involved with homologous recombination DNA damage repair. (177)Lu-trastuzumab therapy was associated with significant chromosomal disruption and up-regulation of genes in the apoptotic process. These results suggest an inhibition of the repair mechanism specific to the type of radiation damage being inflicted by either high or low linear energy transfer radiation. Understanding the mechanisms of action of β(-)- and α-particle RIT comparatively through an in vivo tumor environment offers real information suitable to enhance combination therapy regimens involving α- and β(-)-particle RIT for the management of intraperitoneal disease.
Collapse
Affiliation(s)
- Kwon Joong Yong
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive MSC-1002, Bethesda, MD 20892, USA.
| | - Diane E Milenic
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive MSC-1002, Bethesda, MD 20892, USA.
| | - Kwamena E Baidoo
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive MSC-1002, Bethesda, MD 20892, USA.
| | - Martin W Brechbiel
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive MSC-1002, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Imaging, biodistribution, and toxicology evaluation of (212)Pb-TCMC-trastuzumab in nonhuman primates. Nucl Med Biol 2016; 43:391-6. [PMID: 27179247 DOI: 10.1016/j.nucmedbio.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The biodistribution and toxicology of a radiotherapeutic (212)Pb-trastuzumab conjugate were evaluated in nonhuman primates to meet the investigational new drug requirements prior to a phase I clinical trial in human subjects. METHODS Male cynomolgus monkeys (n=3/group) were injected intraperitoneally with the (212)Pb-trastuzumab conjugate and terminated at 8h, 10d, and 90d post-injection. Quantitative imaging studies in phantoms and monkeys were conducted using a planar gamma camera and a high purity germanium (HPGe) detector out to 48h following injection. Biodistribution analyses were conducted at 8h; all tissues and time points were evaluated for macroscopic and microscopic pathology. Blood samples were taken throughout the 90d study period for assessment of hematology parameters and serum chemistry parameters. RESULTS Quantitative gamma camera imaging and region-of-interest analyses of phantoms and monkeys indicated that 95.5±5.0% of the decay-corrected (212)Pb activity was retained in the peritoneal region up to 48h following administration of the (212)Pb-trastuzumab. Gamma-ray spectroscopy analyses confirmed that 87.6±4.5% of the decay-corrected (212)Bi activity was also retained in the peritoneal cavity during this time. Serum chemistry parameters for all groups always fell within normal ranges. Gross and histopathology evaluations showed no radiation-related toxicity in any tissue at any time. CONCLUSION In vivo imaging and biodistribution analyses showed that about 90% of both (212)Pb and decay product (212)Bi remained in the monkey peritoneal cavity. The imaging methods could also be applied to human subjects. The lack of toxicity observed in monkeys following intraperitoneal injection of the (212)Pb-trastuzumab conjugate supports its clinical assessment in humans.
Collapse
|
16
|
Gorin JB, Gouard S, Ménager J, Morgenstern A, Bruchertseifer F, Faivre-Chauvet A, Guilloux Y, Chérel M, Davodeau F, Gaschet J. Alpha Particles Induce Autophagy in Multiple Myeloma Cells. Front Med (Lausanne) 2015; 2:74. [PMID: 26539436 PMCID: PMC4610207 DOI: 10.3389/fmed.2015.00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/02/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Radiation emitted by the radionuclides in radioimmunotherapy (RIT) approaches induce direct killing of the targeted cells as well as indirect killing through the bystander effect. Our research group is dedicated to the development of α-RIT, i.e., RIT using α-particles especially for the treatment of multiple myeloma (MM). γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by (213)Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of (213)Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation. METHODS Murine 5T33 and human LP-1 MM cell lines were used to study the effects of such α-particles. We first examined the effects of (213)Bi on proliferation rate, double-strand DNA breaks, cell cycle, and cell death. Then, we investigated autophagy after (213)Bi irradiation. Finally, a coculture of dendritic cells (DCs) with irradiated tumor cells or their culture media was performed to test whether it would induce DC activation. RESULTS We showed that (213)Bi induces DNA double-strand breaks, cell cycle arrest, and autophagy in both cell lines, but we detected only slight levels of early apoptosis within the 120 h following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented (213)Bi-induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s); however, no increase in membrane or extracellular expression of danger-associated molecular patterns was observed after irradiation. CONCLUSION This study demonstrates that (213)Bi induces mainly necrosis in MM cells, low levels of apoptosis, and autophagy that might be involved in tumor cell death.
Collapse
Affiliation(s)
- Jean-Baptiste Gorin
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| | - Sébastien Gouard
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| | - Jérémie Ménager
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| | | | | | - Alain Faivre-Chauvet
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France ; Nuclear Medicine Department, CHU Nantes , Nantes , France
| | - Yannick Guilloux
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| | - Michel Chérel
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France ; Institut de Cancérologie de l'Ouest , Saint-Herblain , France
| | - François Davodeau
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| | - Joëlle Gaschet
- CRCNA - UMR 892 INSERM , Nantes , France ; 6299 CNRS , Nantes , France ; Université de Nantes , Nantes , France
| |
Collapse
|
17
|
Milenic DE, Baidoo KE, Kim YS, Brechbiel MW. Evaluation of cetuximab as a candidate for targeted α-particle radiation therapy of HER1-positive disseminated intraperitoneal disease. MAbs 2015; 7:255-64. [PMID: 25587678 DOI: 10.4161/19420862.2014.985160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although the epidermal growth factor receptor (EGFR), also known as HER1, has been studied for over a decade, it continues to be a molecule of great interest and focus of investigators for development of targeted therapies. The marketed monoclonal antibody cetuximab binds to HER1, and thus might serve as the basis for creation of imaging or therapies that target this receptor. The potential of cetuximab as a vehicle for the delivery of α-particle radiation was investigated in an intraperitoneal tumor mouse model. The effective working dose of 10 μCi of (212)Pb-cetuximab was determined from a dose (10-50 μCi) escalation study. Toxicity, as indicated by the lack of animal weight loss, was not evident at the 10 μCi dose of (212)Pb-cetuximab. A subsequent study demonstrated (212)Pb-cetuximab had a therapeutic efficacy similar to that of (212)Pb-trastuzumab (p = 0.588). Gemcitabine given 24 h prior to (212)Pb-cetuximab increased the median survival from 174 d to 283 d, but carboplatin suppressed the effectiveness of (212)Pb-cetuximab. Notably, concurrent treatment of tumor-bearing mice with (212)Pb-labeled cetuximab and trastuzumab provided therapeutic benefit that was greater than either antibody alone. In conclusion, cetuximab proved to be an effective vehicle for targeting HER1-expressing tumors with α-radiation for the treatment of disseminated intraperitoneal disease. These studies provide further evidence that the multimodality therapy regimens may have greater efficacy and benefit in the treatment of cancer patients.
Collapse
Key Words
- %ID/g, percent injected dose per gram
- 212Pb
- BSA, bovine serum albumin
- EGFR, epidermal growth factor receptor
- HER1
- HulgG, human immunoglobulin
- MS, median survival
- PBS, phosphate-buffered saline
- PET, positron emission tomography
- RIT, radioimmunotherapy
- TCMC, 1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoyl methyl)-cyclododecane
- cetuximab
- i.p., intraperitoneal
- mAb, monoclonal antibody
- radioimmunotherapy
- s.c, subcutaneous
- α-particle
Collapse
Affiliation(s)
- Diane E Milenic
- a Radioimmune & Inorganic Chemistry Section; Radiation Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health ; Bethesda MD USA
| | | | | | | |
Collapse
|
18
|
Yong K, Brechbiel M. Application of 212Pb for Targeted α-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation. AIMS MEDICAL SCIENCE 2015; 2:228-245. [PMID: 26858987 DOI: 10.3934/medsci.2015.3.228] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Targeted α-particle therapy (TAT), in which an α-particle emitting radionuclide is specifically directed to a biological target, is gaining more attention to treat cancers as new targets are validated. Bio-vectors such as monoclonal antibodies are able to selectively transport α-particles to destroy targeted cancer cells. TAT has the potential for an improved therapeutic ratio over β-particle targeted conjugate therapy. The short path length and the intense ionization path generated render α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking. 212Pb is the longer-lived parent radionuclide of 212Bi and serves as an in vivo generator of 212Bi. 212Pb has demonstrated significant utility in both in vitro and in vivo models. Recent evaluation of 212Pb-TCMC-trastuzumab in a Phase I clinical trial has demonstrated the feasibility of 212Pb in TAT for the treatment of ovarian cancer patients. This review highlights progress in radionuclide production, radiolabeling chemistry, molecular mechanisms, and application of 212Pb to targeted pre-clinical and clinical radiation therapy for the management and treatment of cancer.
Collapse
Affiliation(s)
- Kwon Yong
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda MD, USA
| | - Martin Brechbiel
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
19
|
Toxicological Studies of 212Pb Intravenously or Intraperitoneally Injected into Mice for a Phase 1 Trial. Pharmaceuticals (Basel) 2015. [PMID: 26213947 PMCID: PMC4588175 DOI: 10.3390/ph8030416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Faced with the novelty of a 212Pb-labeled monoclonal antibody (mAb) for clinical translation, concerns were expressed by the Food and Drug Administration (FDA) regarding 212Pb prematurely released from the mAb-chelate conjugate. The objective of this study was to simulate the worst case scenario of such a failure. Groups of Balb/c mice (n = 9–20) were administered 212Pb by intraperitoneal (0.0925–1.85 MBq) or intravenous (0.0925–1.11 MBq) injection and then euthanized at 7 or 90 days to assess acute or chronic effects. Weights were recorded prior to injection of the 212Pb and at the end of the observation periods. Blood samples were collected for clinical chemistry and blood cell analysis. Thirty tissues were harvested and formalin fixed for histopathological examination. Treatment related effects of the 212Pb were observed in the bone marrow, spleen, kidneys and the liver. Histological alterations in these organs were considered mild to moderate, indicating low grade toxicity, and not considered severe enough to affect function. This data was presented to the FDA and determined to be acceptable. The clinical trial with 212Pb-TCMC-trastuzumab was approved in January 2011 and the trial opened at the University of Alabama at Birmingham (UAB) in July.
Collapse
|
20
|
Gorin JB, Ménager J, Gouard S, Maurel C, Guilloux Y, Faivre-Chauvet A, Morgenstern A, Bruchertseifer F, Chérel M, Davodeau F, Gaschet J. Antitumor immunity induced after α irradiation. Neoplasia 2015; 16:319-28. [PMID: 24862758 DOI: 10.1016/j.neo.2014.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 02/06/2023] Open
Abstract
Radioimmunotherapy (RIT) is a therapeutic modality that allows delivering of ionizing radiation directly to targeted cancer cells. Conventional RIT uses β-emitting radioisotopes, but recently, a growing interest has emerged for the clinical development of α particles. α emitters are ideal for killing isolated or small clusters of tumor cells, thanks to their specific characteristics (high linear energy transfer and short path in the tissue), and their effect is less dependent on dose rate, tissue oxygenation, or cell cycle status than γ and X rays. Several studies have been performed to describe α emitter radiobiology and cell death mechanisms induced after α irradiation. But so far, no investigation has been undertaken to analyze the impact of α particles on the immune system, when several studies have shown that external irradiation, using γ and X rays, can foster an antitumor immune response. Therefore, we decided to evaluate the immunogenicity of murine adenocarcinoma MC-38 after bismuth-213 ((213)Bi) irradiation using a vaccination approach. In vivo studies performed in immunocompetent C57Bl/6 mice induced a protective antitumor response that is mediated by tumor-specific T cells. The molecular mechanisms potentially involved in the activation of adaptative immunity were also investigated by in vitro studies. We observed that (213)Bi-treated MC-38 cells release "danger signals" and activate dendritic cells. Our results demonstrate that α irradiation can stimulate adaptive immunity, elicits an efficient antitumor protection, and therefore is an immunogenic cell death inducer, which provides an attractive complement to its direct cytolytic effect on tumor cells.
Collapse
Affiliation(s)
- Jean-Baptiste Gorin
- CRCNA-UMR 892 INSERM, Nantes, France; CNRS, Nantes, France; University of Nantes, Nantes, France
| | - Jérémie Ménager
- CRCNA-UMR 892 INSERM, Nantes, France; CNRS, Nantes, France; University of Nantes, Nantes, France
| | - Sébastien Gouard
- CRCNA-UMR 892 INSERM, Nantes, France; CNRS, Nantes, France; University of Nantes, Nantes, France
| | - Catherine Maurel
- CRCNA-UMR 892 INSERM, Nantes, France; CNRS, Nantes, France; University of Nantes, Nantes, France
| | - Yannick Guilloux
- CRCNA-UMR 892 INSERM, Nantes, France; CNRS, Nantes, France; University of Nantes, Nantes, France
| | - Alain Faivre-Chauvet
- CRCNA-UMR 892 INSERM, Nantes, France; CNRS, Nantes, France; University of Nantes, Nantes, France; Nuclear Medicine Department, CHU Nantes, Nantes, France
| | | | | | - Michel Chérel
- CRCNA-UMR 892 INSERM, Nantes, France; CNRS, Nantes, France; University of Nantes, Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - François Davodeau
- CRCNA-UMR 892 INSERM, Nantes, France; CNRS, Nantes, France; University of Nantes, Nantes, France
| | - Joëlle Gaschet
- CRCNA-UMR 892 INSERM, Nantes, France; CNRS, Nantes, France; University of Nantes, Nantes, France.
| |
Collapse
|
21
|
Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW. Impact of α-targeted radiation therapy on gene expression in a pre-clinical model for disseminated peritoneal disease when combined with paclitaxel. PLoS One 2014; 9:e108511. [PMID: 25268703 PMCID: PMC4182481 DOI: 10.1371/journal.pone.0108511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/31/2014] [Indexed: 11/19/2022] Open
Abstract
To better understand the molecular basis of the enhanced cell killing effected by the combined modality of paclitaxel and ²¹²Pb-trastuzumab (Pac/²¹²Pb-trastuzumab), gene expression in LS-174T i.p. xenografts was investigated 24 h after treatment. Employing a real time quantitative PCR array (qRT-PCR array), 84 DNA damage response genes were quantified. Differentially expressed genes following therapy with Pac/²¹²Pb-trastuzumab included those involved in apoptosis (BRCA1, CIDEA, GADD45α, GADD45γ, GML, IP6K3, PCBP4, PPP1R15A, RAD21, and p73), cell cycle (BRCA1, CHK1, CHK2, GADD45α, GML, GTSE1, NBN, PCBP4, PPP1R15A, RAD9A, and SESN1), and damaged DNA repair (ATRX, BTG2, EXO1, FEN1, IGHMBP2, OGG1, MSH2, MUTYH, NBN, PRKDC, RAD21, and p73). This report demonstrates that the increased stressful growth arrest conditions induced by the Pac/²¹²Pb-trastuzumab treatment suppresses cell proliferation through the regulation of genes which are involved in apoptosis and damaged DNA repair including single and double strand DNA breaks. Furthermore, the study demonstrates that ²¹²Pb-trastuzumab potentiation of cell killing efficacy results from the perturbation of genes related to the mitotic spindle checkpoint and BASC (BRCA1-associated genome surveillance complex), suggesting cross-talk between DNA damage repair and the spindle damage response.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Combined Modality Therapy
- DNA Breaks, Double-Stranded/drug effects
- DNA Breaks, Double-Stranded/radiation effects
- DNA Breaks, Single-Stranded/drug effects
- DNA Breaks, Single-Stranded/radiation effects
- DNA Repair Enzymes/genetics
- DNA Repair Enzymes/metabolism
- Drug Evaluation, Preclinical
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Injections, Intraperitoneal
- Lead Radioisotopes
- Mice
- Mice, Nude
- Oligonucleotide Array Sequence Analysis
- Paclitaxel/pharmacology
- Peritoneal Neoplasms/genetics
- Peritoneal Neoplasms/metabolism
- Peritoneal Neoplasms/pathology
- Peritoneal Neoplasms/therapy
- Radioimmunotherapy/methods
- Trastuzumab
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kwon Joong Yong
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Diane E. Milenic
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kwamena E. Baidoo
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martin W. Brechbiel
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Dutta B, Ren Y, Hao P, Sim KH, Cheow E, Adav S, Tam JP, Sze SK. Profiling of the Chromatin-associated Proteome Identifies HP1BP3 as a Novel Regulator of Cell Cycle Progression. Mol Cell Proteomics 2014; 13:2183-97. [PMID: 24830416 DOI: 10.1074/mcp.m113.034975] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Indexed: 12/31/2022] Open
Abstract
The chromatin-associated proteome (chromatome) regulates cellular gene expression by restricting access of transcriptional machinery to template DNA, and dynamic re-modeling of chromatin structure is required to regulate critical cell functions including growth and replication, DNA repair and recombination, and oncogenic transformation in progression to cancer. Central to the control of these processes is efficient regulation of the host cell cycle, which is maintained by rapid changes in chromatin conformation during normal cycle progression. A global overview of chromatin protein organization is therefore essential to fully understand cell cycle regulation, but the influence of the chromatome and chromatin binding topology on host cell cycle progression remains poorly defined. Here we used partial MNase digestion together with iTRAQ-based high-throughput quantitative proteomics to quantify chromatin-associated proteins during interphase progression. We identified a total of 481 proteins with high confidence that were involved in chromatin-dependent events including transcriptional regulation, chromatin re-organization, and DNA replication and repair, whereas the quantitative data revealed the temporal interactions of these proteins with chromatin during interphase progression. When combined with biochemical and functional assays, these data revealed a strikingly dynamic association of protein HP1BP3 with the chromatin complex during different stages of interphase, and uncovered a novel regulatory role for this molecule in transcriptional regulation. We report that HP1BP3 protein maintains heterochromatin integrity during G1-S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yan Ren
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Piliang Hao
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Kae Hwan Sim
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Esther Cheow
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Sunil Adav
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - James P Tam
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siu Kwan Sze
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
23
|
Elgström E, Ljungberg O, Eriksson SE, Orbom A, Strand SE, Ohlsson TG, Nilsson R, Tennvall J. Change in cell death markers during (177)Lu-mAb radioimmunotherapy-induced rejection of syngeneic rat colon carcinoma. Cancer Biother Radiopharm 2014; 29:143-52. [PMID: 24693940 DOI: 10.1089/cbr.2013.1576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To monitor cell death in tumors during the rejection process after treatment with an antibody radiolabeled with a β-emitter. METHODS Tumors during rejection after treatment with (177)Lu-labeled antibody BR96 and after administration of unlabeled BR96 were compared with untreated tumors from the same immunocompetent syngeneic rat tumor model. Cell death was monitored with the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and immunohistochemical staining of activated caspase-3 and γH2AX. These data were evaluated together with histopathological morphology, BR96-binding antigen expression, and (177)Lu radioactivity distribution imaged by digital autoradiography. RESULTS The untreated tumors showed staining for all the markers, mainly in and around the necrotic areas. One to 2 days p.i. large areas were stained with anti-γH2AX, followed by a slight decrease. Staining of activated caspase-3 was intense and extensive 1-2 days p.i., while found in and around necrotic areas 3-8 days p.i. TUNEL staining was similar to activated caspase-3 staining 1-2 days p.i. but more extensive than activated caspase-3 staining 3-4 days p.i. Digital autoradiography revealed activity concentration in granulation tissue from 1 day p.i. CONCLUSION Following radioimmunotherapy in an immunocompetent syngeneic colon carcinoma model, tumor cells did not only die through caspase-3-dependent apoptosis, but also by other mechanisms.
Collapse
Affiliation(s)
- Erika Elgström
- 1 Division of Oncology, Department of Clinical Sciences, Lund University , Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
α-particle-emitting radionuclides are highly cytotoxic and are thus promising candidates for use in targeted radioimmunotherapy of cancer. Due to their high linear energy transfer (LET) combined with a short path length in tissue, α-particles cause severe DNA double-strand breaks that are repaired inaccurately and finally trigger cell death. For radioimmunotherapy, α-emitters such as 225Ac, 211At, 212Bi/212Pb, 213Bi and 227Th are coupled to antibodies via appropriate chelating agents. The α-emitter immunoconjugates preferably target proteins that are overexpressed or exclusively expressed on cancer cells. Application of α-emitter immunoconjugates seems particularly promising in treatment of disseminated cancer cells and small tumor cell clusters that are released during the resection of a primary tumor. α-emitter immunoconjugates have been successfully administered in numerous experimental studies for therapy of ovarian, colon, gastric, blood, breast and bladder cancer. Initial clinical trials evaluating α-emitter immunoconjugates in terms of toxicity and therapeutic efficacy have also shown positive results in patients with melanoma, ovarian cancer, acute myeloid lymphoma and glioma. The present problems in terms of availability of therapeutically effiective α-emitters will presumably be solved by use of alternative production routes and installation of additional production facilities in the near future. Therefore, clinical establishment of targeted α-emitter radioimmunotherapy as one part of a multimodal concept for therapy of cancer is a promising, middle-term concept.
Collapse
Affiliation(s)
- Christof Seidl
- Technische Universität München, Department of Nuclear Medicine, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
25
|
Yan M, Parker BA, Schwab R, Kurzrock R. HER2 aberrations in cancer: implications for therapy. Cancer Treat Rev 2014; 40:770-80. [PMID: 24656976 DOI: 10.1016/j.ctrv.2014.02.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 02/08/2023]
Abstract
Although anti-HER2 (human epidermal growth factor receptor 2) therapy is currently approved for breast, gastric, and gastroesophageal cancers overexpressing the HER2 protein or amplified for the HER2 gene, HER2 aberrations (gene amplification, gene mutations, and protein overexpression) are reported in other diverse malignancies. Indeed, about 1-37% of tumors of the following types harbor HER2 aberrations: bladder, cervix, colon, endometrium, germ cell, glioblastoma, head and neck, liver, lung, ovarian, pancreas, and salivary duct. Four HER2-targeted therapies have been approved for HER2-positive breast cancer: two antibodies (trastuzumab and pertuzumab), an antibody-drug conjugate (ado-trastuzumab emtansine), and a small molecule kinase inhibitor (lapatinib). In addition, afatinib, a small molecule kinase inhibitor that causes irreversible inhibition of EGFR (epidermal growth factor receptor) and HER2, was recently approved for EGFR-mutated non-small cell lung cancer. A large number of novel HER2-targeted agents are also in clinical trials. Herein we discuss the state of the art in understanding and targeting HER2 across anatomic tumor types.
Collapse
Affiliation(s)
- Min Yan
- Division of Hematology and Oncology, University of California, Moores Cancer Center, United States.
| | - Barbara A Parker
- Division of Hematology and Oncology, University of California, Moores Cancer Center, United States
| | - Richard Schwab
- Division of Hematology and Oncology, University of California, Moores Cancer Center, United States
| | - Razelle Kurzrock
- Division of Hematology and Oncology, University of California, Moores Cancer Center, United States
| |
Collapse
|
26
|
Luis M, Tavares A, Carvalho LS, Lara-Santos L, Araújo A, Mello RAD. Personalizing therapies for gastric cancer: molecular mechanisms and novel targeted therapies. World J Gastroenterol 2013; 19:6383-97. [PMID: 24151357 PMCID: PMC3801309 DOI: 10.3748/wjg.v19.i38.6383] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 02/06/2023] Open
Abstract
Globally, gastric cancer is the 4(th) most frequently diagnosed cancer and the 2(nd) leading cause of death from cancer, with an estimated 990000 new cases and 738000 deaths registered in 2008. In the advanced setting, standard chemotherapies protocols acquired an important role since last decades in prolong survival. Moreover, recent advances in molecular therapies provided a new interesting weapon to treat advanced gastric cancer through anti-human epidermal growth factor receptor 2 (HER2) therapies. Trastuzumab, an anti-HER2 monoclonal antibody, was the first target drug in the metastatic setting that showed benefit in overall survival when in association with platinum-5-fluorouracil based chemotherapy. Further, HER2 overexpression analysis acquired a main role in predict response for trastuzumab in this field. Thus, we conducted a review that will discuss the main points concerning trastuzumab and HER2 in gastric cancer, providing a comprehensive overview of molecular mechanisms and novel trials involved.
Collapse
|
27
|
Yong KJ, Milenic DE, Baidoo KE, Kim YS, Brechbiel MW. Gene expression profiling upon (212) Pb-TCMC-trastuzumab treatment in the LS-174T i.p. xenograft model. Cancer Med 2013; 2:646-53. [PMID: 24403230 PMCID: PMC3892796 DOI: 10.1002/cam4.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 02/03/2023] Open
Abstract
Recent studies have demonstrated that therapy with (212) Pb-TCMC-trastuzumab resulted in (1) induction of apoptosis, (2) G2/M arrest, and (3) blockage of double-strand DNA damage repair in LS-174T i.p. (intraperitoneal) xenografts. To further understand the molecular basis of the cell killing efficacy of (212) Pb-TCMC-trastuzumab, gene expression profiling was performed with LS-174T xenografts 24 h after exposure to (212) Pb-TCMC-trastuzumab. DNA damage response genes (84) were screened using a quantitative real-time polymerase chain reaction array (qRT-PCR array). Differentially regulated genes were identified following exposure to (212) Pb-TCMC-trastuzumab. These included genes involved in apoptosis (ABL, GADD45α, GADD45γ, PCBP4, and p73), cell cycle (ATM, DDIT3, GADD45α, GTSE1, MKK6, PCBP4, and SESN1), and damaged DNA binding (DDB) and repair (ATM and BTG2). The stressful growth arrest conditions provoked by (212) Pb-TCMC-trastuzumab were found to induce genes involved in apoptosis and cell cycle arrest in the G2/M phase. The expression of genes involved in DDB and single-strand DNA breaks was also enhanced by (212) Pb-TCMC-trastuzumab while no modulation of genes involved in double-strand break repair was apparent. Furthermore, the p73/GADD45 signaling pathway mediated by p38 kinase signaling may be involved in the cellular response, as evidenced by the enhanced expression of genes and proteins of this pathway. These results further support the previously described cell killing mechanism by (212) Pb-TCMC-trastuzumab in the same LS-174T i.p. xenograft. Insight into these mechanisms could lead to improved strategies for rational application of radioimmunotherapy using α-particle emitters.
Collapse
Affiliation(s)
- Kwon J Yong
- Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, Maryland
| | - Diane E Milenic
- Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, Maryland
| | - Kwamena E Baidoo
- Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, Maryland
| | - Young-Seung Kim
- Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, Maryland
| | - Martin W Brechbiel
- Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, Maryland
| |
Collapse
|
28
|
Abstract
Peritoneal carcinomatosis is the most common secondary cancerous disease to affect the peritoneal cavity, implying poor prognosis. Standard therapy consists of cytoreductive surgery in combination with adjuvant chemotherapy. To improve the therapeutic outcome, targeted therapy using radionuclides such as α-, β- and Auger emitters coupled to antibodies seems a promising option. Although β-emitters have shown promising results in preclinical and clinical Phase I/II studies, these results could not be confirmed in Phase III studies. Because α-particles very efficiently eradicate small tumor cell nodules, they represent a promising option for treatment of micrometastatic disease characteristic of peritoneal carcinomatosis. α-emitter radioimmunoconjugates have been successfully used in various experimental studies and in a first clinical Phase I study in human ovarian cancer. Although confirmation of these results in clinical trials is missing and problems still exist concerning worldwide availability, α-emitters could contribute to optimizing strategies for therapy of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Christof Seidl
- Technische Universität München, Department of Nuclear Medicine, Ismaninger Strasse 22, 81675 Munich, Germany.
| | | |
Collapse
|
29
|
Milenic DE, Baidoo KE, Shih JH, Wong KJ, Brechbiel MW. Evaluation of platinum chemotherapy in combination with HER2-targeted α-particle radiation. Cancer Biother Radiopharm 2013; 28:441-9. [PMID: 23758610 DOI: 10.1089/cbr.2012.1423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The studies described herein assess the potential of combining platinum-based chemotherapy with high-linear energy transfer (LET) α-particle-targeted radiation therapy using trastuzumab as the delivery vehicle. An initial study explored the combination of cisplatin with (213)Bi-trastuzumab in the LS-174T i.p. xenograft model. This initial study determined the administration sequence of cisplatin and (213)Bi-trastuzumab. Cisplatin coinjected with (213)Bi-trastuzumab increased the median survival (MS) to 90 days versus 65 days for (213)Bi-trastuzumab alone. Toxicity was observed with a weight loss of 17.6% in some of the combined treatment groups. Carboplatin proved to be better tolerated. Maximal therapeutic benefit, that is, a 5.1-fold increase in MS, was obtained in the group injected with (213)Bi-trastuzumab, followed by carboplatin 24 hours later. This was further improved by administration of multiple weekly doses of carboplatin. The MS achieved with administration of 3 doses of carboplatin was 180 days versus 60 days with (213)Bi-trastuzumab alone. The combination of carboplatin with (212)Pb radioimmunotherapy was also evaluated. The therapeutic efficacy of (212)Pb-trastuzumab (58-day MS) increased when the mice were pretreated with carboplatin 24 hours prior (157-day MS). These results again demonstrate the necessity of empirically determining the administration sequence when combining therapeutic modalities.
Collapse
Affiliation(s)
- Diane E Milenic
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
30
|
212Pb-radioimmunotherapy potentiates paclitaxel-induced cell killing efficacy by perturbing the mitotic spindle checkpoint. Br J Cancer 2013; 108:2013-20. [PMID: 23632482 PMCID: PMC3670476 DOI: 10.1038/bjc.2013.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Paclitaxel has recently been reported by this laboratory to potentiate the high-LET radiation therapeutic (212)Pb-TCMC-trastuzumab, which targets HER2. To elucidate mechanisms associated with this therapy, targeted α-particle radiation therapeutic (212)Pb-TCMC-trastuzumab together with paclitaxel was investigated for the treatment of disseminated peritoneal cancers. METHODS Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pre-treated with paclitaxel, followed by treatment with (212)Pb-TCMC-trastuzumab and compared with groups treated with paclitaxel alone, (212)Pb-TCMC-HuIgG, (212)Pb-TCMC-trastuzumab and (212)Pb-TCMC-HuIgG after paclitaxel pre-treatment. RESULTS (212)Pb-TCMC-trastuzumab with paclitaxel given 24 h earlier induced increased mitotic catastrophe and apoptosis. The combined modality of paclitaxel and (212)Pb-TCMC-trastuzumab markedly reduced DNA content in the S-phase of the cell cycle with a concomitant increase observed in the G2/M-phase. This treatment regimen also diminished phosphorylation of histone H3, accompanied by an increase in multi-micronuclei, or mitotic catastrophe in nuclear profiles and positively stained γH2AX foci. The data suggests, possible effects on the mitotic spindle checkpoint by the paclitaxel and (212)Pb-TCMC-trastuzumab treatment. Consistent with this hypothesis, (212)Pb-TCMC-trastuzumab treatment in response to paclitaxel reduced expression and phosphorylation of BubR1, which is likely attributable to disruption of a functional Aurora B, leading to impairment of the mitotic spindle checkpoint. In addition, the reduction of BubR1 expression may be mediated by the association of a repressive transcription factor, E2F4, on the promoter region of BubR1 gene. CONCLUSION These findings suggest that the sensitisation to therapy of (212)Pb-TCMC-trastuzumab by paclitaxel may be associated with perturbation of the mitotic spindle checkpoint, leading to increased mitotic catastrophe and cell death.
Collapse
|
31
|
Baidoo KE, Milenic DE, Brechbiel MW. Methodology for labeling proteins and peptides with lead-212 (212Pb). Nucl Med Biol 2013; 40:592-9. [PMID: 23602604 DOI: 10.1016/j.nucmedbio.2013.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/22/2013] [Accepted: 01/29/2013] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Alpha particles possess an exquisite degree of cytotoxicity when employed for targeted α-particle therapy (TAT) or radioimmunotherapy (RIT). (212)Pb, which acts as an in vivo generator of the α-emitting nuclide (212)Bi has shown great promise in pre-clinical studies when used to label the HER2 binding antibody, trastuzumab. Currently, the first RIT clinical trial employing (212)Pb radiolabeled trastuzumab is in progress. This report provides detailed current protocol operations and steps that were generated for use in the clinical trial as well as the relevant pre-clinical experimentation, and describes in detail the labeling of proteins or peptides with (212)Pb as provided via a (224)Ra based generator system. METHODS (212)Pb was eluted from the (224)Ra/(212)Pb generator using hydrochloric acid (2M). The generator eluate was evaporated and digested with nitric acid (8M) followed by extraction of the (212)Pb with dilute nitric acid (0.1M). The dilute nitric acid solution of (212)Pb was used to label the immunoconjugate Trastuzumab-TCMC (2-(4-isothiocyanatobenzyl-1,4,7,10-tetraaza-1,4,7,10,tetra-(2-carbamonylmethyl)-cyclododecane) at pH5.5. RESULTS Elution of (212)Pb from the generator was efficient yielding>90% of available (212)Pb. Trastuzumab-TCMC was efficiently labeled with a radiochemical yield of 94% ± 4% (n=7) by ITLC and an isolated yield of 73% ± 3% (n=7). CONCLUSIONS The results show the feasibility of generating radioimmunoconjugates and peptide conjugates for use as in vivo α generator systems in the clinic. The technology holds promise in applications involving the treatment of minimal disease such as micrometastases and residual tumor after surgical debulking, hematological cancers, infections, and compartmental cancers, such as ovarian cancer.
Collapse
Affiliation(s)
- Kwamena E Baidoo
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, NCI, NIH, Bethesda, MD 20892-1002, USA.
| | | | | |
Collapse
|
32
|
Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW. Sensitization of tumor to ²¹²Pb radioimmunotherapy by gemcitabine involves initial abrogation of G2 arrest and blocked DNA damage repair by interference with Rad51. Int J Radiat Oncol Biol Phys 2013; 85:1119-26. [PMID: 23200172 PMCID: PMC3594422 DOI: 10.1016/j.ijrobp.2012.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/05/2012] [Accepted: 09/14/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE To elucidate the mechanism of the therapeutic efficacy of targeted α-particle radiation therapy using (212)Pb-TCMC-trastuzumab together with gemcitabine for treatment of disseminated peritoneal cancers. METHODS AND MATERIALS Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pretreated with gemcitabine, followed by (212)Pb-TCMC-trastuzumab and compared with controls. RESULTS Treatment with (212)Pb-TCMC-trastuzumab increased the apoptotic rate in the S-phase-arrested tumors induced by gemcitabine at earlier time points (6 to 24 hours). (212)Pb-TCMC-trastuzumab after gemcitabine pretreatment abrogated G2/M arrest at the same time points, which may be associated with the inhibition of Chk1 phosphorylation and, in turn, cell cycle perturbation, resulting in apoptosis. (212)Pb-TCMC-trastuzumab treatment after gemcitabine pretreatment caused depression of DNA synthesis, DNA double-strand breaks, accumulation of unrepaired DNA, and down-regulation of Rad51 protein, indicating that DNA damage repair was blocked. In addition, modification in the chromatin structure of p21 may be associated with transcriptionally repressed chromatin states, indicating that the open structure was delayed at earlier time points. CONCLUSION These findings suggest that the cell-killing efficacy of (212)Pb-TCMC-trastuzumab after gemcitabine pretreatment may be associated with abrogation of the G2/M checkpoint, inhibition of DNA damage repair, and chromatin remodeling.
Collapse
Affiliation(s)
- Kwon Joong Yong
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda MD
| | - Diane E. Milenic
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda MD
| | - Kwamena E. Baidoo
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda MD
| | - Martin W. Brechbiel
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda MD
| |
Collapse
|
33
|
Abstract
An α-particle, a (4)He nucleus, is exquisitely cytotoxic and indifferent to many limitations associated with conventional chemo- and radiotherapy. The exquisite cytotoxicity of α-radiation, the result of its high mean energy deposition [high linear energy transfer (LET)] and limited range in tissue, provides for a highly controlled therapeutic modality that can be targeted to selected malignant cells [targeted α-therapy (TAT)] with minimal normal tissue effects. A burgeoning interest in the development of TAT is buoyed by the increasing number of ongoing clinical trials worldwide. The short path length renders α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking, hematologic cancers, infections, and compartmental cancers such as ovarian cancer or neoplastic meningitis. Yet, despite decades of study of high LET radiation, the mechanistic pathways of the effects of this modality remain not well defined. The modality is effectively presumed to follow a simple therapeutic mechanism centered on catastrophic double-strand DNA breaks without full examination of the actual molecular pathways and targets that are activated that directly affect cell survival or death. This Molecular Pathways article provides an overview of the mechanisms and pathways that are involved in the response to and repair of TAT-induced DNA damage as currently understood. Finally, this article highlights the current state of clinical translation of TAT as well as other high-LET radionuclide radiation therapy using α-emitters such as (225)Ac, (211)At, (213)Bi, (212)Pb, and (223)Ra.
Collapse
Affiliation(s)
- Kwamena E Baidoo
- Radioimmune & Inorganic Chemistry Section, ROB, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
34
|
Enhanced efficacy of combined 213Bi-DTPA-F3 and paclitaxel therapy of peritoneal carcinomatosis is mediated by enhanced induction of apoptosis and G2/M phase arrest. Eur J Nucl Med Mol Imaging 2012; 39:1886-97. [PMID: 22872310 DOI: 10.1007/s00259-012-2203-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Targeted therapy with α-particle emitting radionuclides is a promising new option in cancer therapy. Stable conjugates of the vascular tumour-homing peptide F3 with the α-emitter (213)Bi specifically target tumour cells. The aim of our study was to determine efficacy of combined (213)Bi-diethylenetriaminepentaacetic acid (DTPA)-F3 and paclitaxel treatment compared to treatment with either (213)Bi-DTPA-F3 or paclitaxel both in vitro and in vivo. METHODS Cytotoxicity of treatment with (213)Bi-DTPA-F3 and paclitaxel, alone or in combination, was assayed towards OVCAR-3 cells using the alamarBlue assay, the clonogenic assay and flow cytometric analyses of the mode of cell death and cell cycle arrest. Therapeutic efficacy of the different treatment options was assayed after repeated treatment of mice bearing intraperitoneal OVCAR-3 xenograft tumours. Therapy monitoring was performed by bioluminescence imaging and histopathologic analysis. RESULTS Treatment of OVCAR-3 cells in vitro with combined (213)Bi-DTPA-F3 and paclitaxel resulted in enhanced cytotoxicity, induction of apoptosis and G2/M phase arrest compared to treatment with either (213)Bi-DTPA-F3 or paclitaxel. Accordingly, i.p. xenograft OVCAR-3 tumours showed the best response following repeated (six times) combined therapy with (213)Bi-DTPA-F3 (1.85 MBq) and paclitaxel (120 μg) as demonstrated by bioluminescence imaging and histopathologic investigation of tumour spread on the mesentery of the small and large intestine. Moreover, mean survival of xenograft mice that received combined therapy with (213)Bi-DTPA-F3 and paclitaxel was significantly superior to mice treated with either (213)Bi-DTPA-F3 or paclitaxel alone. CONCLUSION Combined treatment with (213)Bi-DTPA-F3 and paclitaxel significantly increased mean survival of mice with peritoneal carcinomatosis of ovarian origin, thus favouring future therapeutic application.
Collapse
|
35
|
Patent Highlights. Pharm Pat Anal 2012. [DOI: 10.4155/ppa.12.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of recent key developments in the patent literature of relevance to the advancement of pharmaceutical and medical R&D
Collapse
|
36
|
Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology? Antibodies (Basel) 2012. [DOI: 10.3390/antib1020124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
37
|
Cederkrantz E, Angenete E, Bäck T, Falk P, Haraldsson B, Ivarsson ML, Jensen H, Lindegren S, Hultborn R, Jacobsson L. Evaluation of effects on the peritoneum after intraperitoneal α-radioimmunotherapy with (211)At. Cancer Biother Radiopharm 2012; 27:353-64. [PMID: 22690847 DOI: 10.1089/cbr.2012.1184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The introduction of the short-lived α-emitter (211)At to intraperitoneal radioimmunotherapy has raised the issue of the tolerance dose of the peritoneum. The short range of the α-particles (70 μm) and the short half-life (7.21 h) of the nuclide yield a dose distribution in which the peritoneum is highly irradiated compared with other normal tissues. To address this issue, mice were injected with (211)At-trastuzumab to irradiate the peritoneum to absorbed doses ranging between 0 and 50 Gy and followed for up to 34 weeks. The peritoneum-to-plasma clearance of a small tracer, (51)Cr-ethylenediamine tetraacetic acid, was measured for evaluation of the small solute transport capacity of the peritoneal membrane. The macroscopic status of the peritoneum and the mesenteric windows was documented when the mice were sacrificed. Biopsies of the peritoneum were taken for morphology and immunohistochemical staining against plasminogen activator inhibitor-1 and calprotectin. Peritoneum-to-plasma clearance measurements indicated a dose-dependent decrease in peritoneal transport capacity in irradiated mice. However, macroscopic and microscopic evaluations of the peritoneal membrane showed no difference between irradiated mice versus controls. The results imply that the peritoneal membrane tolerates absorbed doses as high as 30-50 Gy from α-particle irradiation with limited response.
Collapse
Affiliation(s)
- Elin Cederkrantz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|