1
|
Kim DE, Oh HJ, Kim HJ, Kim YB, Kim ST, Yim H. Synergistic two-step inhibition approach using a combination of trametinib and onvansertib in KRAS and TP53-mutated colorectal adenocarcinoma. Biomed Pharmacother 2025; 182:117796. [PMID: 39731938 DOI: 10.1016/j.biopha.2024.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
Colorectal malignancies associated with KRAS and TP53 mutations led us to investigate the effects of combination therapy targeting KRAS, MEK1, or PLK1 in colorectal cancer. MEK1 is downstream of RAS in the MAPK pathway, whereas PLK1 is a mitotic kinase of the cell cycle activated by MAPK and regulated by p53. Bioinformatics analysis revealed that patients with colorectal cancer had a high expression of MAP2K1 and PLK1. Furthermore, PLK1 and MEK1 activity in human colorectal adenocarcinoma (COAD) tissues was found to be highly upregulated compared to healthy tissues. To determine the sensitivity of KRAS or/and TP53-mutated cancer to KRAS, MEK1, or PLK1-targeted therapy, the inhibitors salirasib, trametinib, volasertib, and onvansertib were used in COAD cells with different KRAS and TP53 status. The results showed that combinations with trametinib and PLK1 inhibitors were more potent than combinations with salirasib. A combination of MEK1 and PLK1 inhibitors exhibited significant therapeutic effects on KRAS or/and TP53-mutated COAD cells. Notably, the combination of trametinib and onvansertib effectively suppressed tumor growth in a xenograft mouse model of KRAS and TP53-mutated COAD. This treatment induced G1 and G2/M arrest, respectively, and showed the strongest synergistic effect in KRAS and TP53-mutated SW48 cells expressing mutant KRASG13D and transduced with TP53 shRNA, ultimately leading to apoptotic cell death. These effects are attributed to two-step inhibition mechanism that blocks the MAPK signaling pathway and disrupts mitosis in KRAS and TP53-mutated COAD cells.
Collapse
Affiliation(s)
- Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seung-Tae Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
2
|
Pandey D, Chauhan SC, Kashyap VK, Roy KK. Structural insights into small-molecule KRAS inhibitors for targeting KRAS mutant cancers. Eur J Med Chem 2024; 277:116771. [PMID: 39167893 DOI: 10.1016/j.ejmech.2024.116771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
The Kirsten rat sarcoma viral (KRAS) oncogene is the most frequently mutated isoform of RAS, associated with 85 % of RAS-driven cancers. KRAS functions as a signaling hub, participating in various cellular signaling pathways and regulating a wide range of important activities, including cell proliferation, differentiation, growth, metabolism, and migration. Despite being the most frequently altered oncogenic protein in solid tumors, over the past four decades, KRAS has historically been considered "undruggable" owing to a lack of pharmacologically targetable pockets within the mutant isoforms. However, improvements in drug design and development have culminated in the development of selective inhibitors for KRAS mutants. Recent developments have led to the successful targeting of the KRASG12C mutant through covalent inhibitors that exploit the unique cysteine residue introduced by the mutation at 12th position. These inhibitors bind covalently to C12, locking KRAS in its inactive GDP-bound state and preventing downstream signaling. Some of these inhibitors have shown encouraging results in KRASG12C mutant cancer patients but suffer from drug resistance, toxicity, and low therapeutic efficacy. Recently, there have been great advancements in the discovery of drugs that directly target the switch I (S-I), switch-II (S-II) and S-I/II interface sites of KRAS mutant proteins. These include KRASG12C inhibitors like AMG510 (Sotorasib) and MRTX849 (Adagrasib), which have got FDA approval for non-small cell lung cancer harboring the KRASG12C mutation. There is no approved drug for cancers harboring other KRAS mutations, although efforts have expanded to target other KRAS mutations and the Switch I/II interface, aiming to disrupt KRAS-driven oncogenic signaling. Structure-activity relationship (SAR) studies have been instrumental in optimizing the binding affinity, selectivity, and pharmacokinetic properties of these inhibitors, leading to the development of promising therapeutic agents like Sotorasib and Adagrasib. This review provides an overview of the KRAS pathway, KRAS binding sites, strategies for direct and indirect inhibition using small molecules, and SAR based on the co-crystal structures of inhibitors with KRAS mutants which is expected to offer new hope for patients with KRAS-driven cancers through the development of new KRAS-targeted drugs.
Collapse
Affiliation(s)
- Divya Pandey
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
| | - Subhash C Chauhan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Vivek K Kashyap
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Kuldeep K Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India.
| |
Collapse
|
3
|
Ahn DH, Ridinger M, Cannon TL, Mendelsohn L, Starr JS, Hubbard JM, Kasi A, Barzi A, Samuëlsz E, Karki A, Subramanian RA, Yemane D, Kim R, Wu CC, Croucher PJP, Smeal T, Kabbinavar FF, Lenz HJ. Onvansertib in Combination With Chemotherapy and Bevacizumab in Second-Line Treatment of KRAS-Mutant Metastatic Colorectal Cancer: A Single-Arm, Phase II Trial. J Clin Oncol 2024:JCO2401266. [PMID: 39475591 DOI: 10.1200/jco-24-01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 11/21/2024] Open
Abstract
PURPOSE This phase II study evaluated the efficacy and tolerability of onvansertib, a polo-like kinase 1 (PLK1) inhibitor, in combination with fluorouracil, leucovorin, and irinotecan (FOLFIRI) + bevacizumab for the second-line treatment of KRAS-mutant metastatic colorectal cancer (mCRC). PATIENTS AND METHODS This multicenter, open-label, single-arm study enrolled patients with KRAS-mutated mCRC previously treated with oxaliplatin and fluorouracil with or without bevacizumab. Patients received onvansertib (15 mg/m2 once daily on days 1-5 and 15-19 of a 28-day cycle) and FOLFIRI + bevacizumab (days 1 and 15). The primary end point was the objective response rate (ORR), and secondary endpoints included progression-free survival (PFS), duration of response (DOR), and tolerability. Translational and preclinical studies were conducted in KRAS-mutant CRC. RESULTS Among the 53 patients treated, the confirmed ORR was 26.4% (95% CI, 15.3 to 40.3). The median DOR was 11.7 months (95% CI, 9.4 to not reached). Grade 3/4 adverse events were reported in 62% of patients. A post hoc analysis revealed that patients with no prior bevacizumab treatment had a significantly higher ORR and longer PFS compared with patients with prior bevacizumab treatment: ORR of 76.9% versus 10.0% (odds ratio of 30.0, P < .001) and median PFS of 14.9 months versus 6.6 months (hazard ratio of 0.16, P < .001). Our translational findings support that prior bevacizumab exposure contributes to onvansertib resistance. Preclinically, we showed that onvansertib inhibited the hypoxia pathway and exhibited robust antitumor activity in combination with bevacizumab through the inhibition of angiogenesis. CONCLUSION Onvansertib in combination with FOLFIRI + bevacizumab showed significant activity in the second-line treatment of patients with KRAS-mutant mCRC, particularly in patients with no prior bevacizumab treatment. These findings led to the evaluation of the combination in the first-line setting (ClinicalTrails.gov identifier: NCT06106308).
Collapse
Affiliation(s)
- Daniel H Ahn
- Division of Medical Oncology, Mayo Clinic, Phoenix, AZ
| | | | | | | | - Jason S Starr
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL
| | - Joleen M Hubbard
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Anup Kasi
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS
| | - Afsaneh Barzi
- Division of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | | | | | | | | | - Roy Kim
- Cardiff Oncology Inc, San Diego, CA
| | | | | | | | | | - Heinz-Josef Lenz
- Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| |
Collapse
|
4
|
Sreekumar S, Montaudon E, Klein D, Gonzalez ME, Painsec P, Derrien H, Sourd L, Smeal T, Marangoni E, Ridinger M. PLK1 Inhibitor Onvansertib Enhances the Efficacy of Alpelisib in PIK3CA-Mutated HR-Positive Breast Cancer Resistant to Palbociclib and Endocrine Therapy: Preclinical Insights. Cancers (Basel) 2024; 16:3259. [PMID: 39409880 PMCID: PMC11476299 DOI: 10.3390/cancers16193259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Endocrine therapy (ET) combined with cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) is the preferred first-line treatment for hormone receptor-positive (HR+)/HER2- metastatic breast cancer. Although this is beneficial, acquired resistance leads to disease progression, and patients harboring PIK3CA mutations are treated with targeted therapies such as the PI3Kα inhibitor, alpelisib, alongside ET. Drug-associated resistance mechanisms limit the efficacy of alpelisib, highlighting the need for better combination therapies. This study aimed to evaluate the efficacy of combining alpelisib with a highly specific PLK1 inhibitor, onvansertib, in PIK3CA-mutant HR+ breast cancer preclinical models. METHODS We assessed the effect of the alpelisib and onvansertib combination on cell viability, PI3K signaling pathway, cell cycle phase distribution and apoptosis in PI3K-activated HR+ breast cancer cell lines. The antitumor activity of the combination was evaluated in three PIK3CA-mutant HR+ breast cancer patient-derived xenograft (PDX) models, resistant to ET and CDK4/6 inhibitor palbociclib. Pharmacodynamics studies were performed using immunohistochemistry and Simple Western analyses in tumor tissues. RESULTS The combination synergistically inhibited cell viability, suppressed PI3K signaling, induced G2/M arrest and apoptosis in PI3K-activated cell lines. In the three PDX models, the combination demonstrated superior anti-tumor activity compared to the single agents. Pharmacodynamic studies confirmed the inhibition of both PLK1 and PI3K activity and pronounced apoptosis in the combination-treated tumors. CONCLUSIONS Our findings support that targeting PLK1 and PI3Kα with onvansertib and alpelisib, respectively, may be a promising strategy for patients with PIK3CA-mutant HR+ breast cancer failing ET + CDK4/6i therapies and warrant clinical evaluation.
Collapse
Affiliation(s)
- Sreeja Sreekumar
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Davis Klein
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Migdalia E. Gonzalez
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Pierre Painsec
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Héloise Derrien
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Laura Sourd
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Tod Smeal
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Maya Ridinger
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| |
Collapse
|
5
|
Bian S, Zhang R, Nie J, Zhu M, Xie Z, Liao C, Wang Q. Progress with polo-like kinase (PLK) inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:789-806. [PMID: 38994687 DOI: 10.1080/13543776.2024.2379924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Polo-like kinases (PLKs) have five isoforms, all of which play crucial roles in cell cycle and cell proliferation, offering opportunities for drug design and treatment of cancers and other related diseases. Notably, PLK1 and PLK4 have been extensively investigated as cancer drug targets. One distinctive feature of PLKs is the presence of a unique polo-box domain (PBD), which regulates kinase activity and subcellular localization. This provides possibilities for specifically targeting PLKs. AREA COVERED This article provides an overview of the roles of PLKs in various cancers and related diseases, as well as the drug development involving PLKs, with a particular focus on PLK1 and PLK4. It summarizes the PLK1 and PLK4 inhibitors that have been disclosed in patents or literature (from 2018 - present), which were sourced from SciFinder and WIPO database. EXPERT OPINION After two decades of drug development on PLKs, several drugs progressed into clinical trials for the treatment of many cancers; however, none of them has been approved yet. Further elucidating the mechanisms of PLKs and identifying and developing highly selective ATP-competitive inhibitors, highly potent drug-like PBD inhibitors, degraders, etc. may provide new opportunities for cancer therapy and the treatment for several nononcologic diseases. PLKs inhibition-based combination therapies can be another helpful strategy.
Collapse
Affiliation(s)
- Shirong Bian
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Ru Zhang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jianyu Nie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Mingxing Zhu
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Zanini E, Forster-Gross N, Bachmann F, Brüngger A, McSheehy P, Litherland K, Burger K, Groner AC, Roceri M, Bury L, Stieger M, Willemsen-Seegers N, de Man J, Vu-Pham D, van Riel HWE, Zaman GJR, Buijsman RC, Kellenberger L, Lane HA. Dual TTK/PLK1 inhibition has potent anticancer activity in TNBC as monotherapy and in combination. Front Oncol 2024; 14:1447807. [PMID: 39184047 PMCID: PMC11341980 DOI: 10.3389/fonc.2024.1447807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Background Threonine tyrosine kinase (TTK) and polo-like kinase 1 (PLK1) are common essential kinases that collaborate in activating the spindle assembly checkpoint (SAC) at the kinetochore, ensuring appropriate chromosome alignment and segregation prior to mitotic exit. Targeting of either TTK or PLK1 has been clinically evaluated in cancer patients; however, dual inhibitors have not yet been pursued. Here we present the in vitro and in vivo characterization of a first in class, dual TTK/PLK1 inhibitor (BAL0891). Methods Mechanism of action studies utilized biochemical kinase and proteomics-based target-engagement assays. Cellular end-point assays included immunoblot- and flow cytometry-based cell cycle analyses and SAC integrity evaluation using immunoprecipitation and immunofluorescence approaches. Anticancer activity was assessed in vitro using cell growth assays and efficacy was evaluated, alone and in combination with paclitaxel and carboplatin, using mouse models of triple negative breast cancer (TNBC). Results BAL0891 elicits a prolonged effect on TTK, with a transient activity on PLK1. This unique profile potentiates SAC disruption, forcing tumor cells to aberrantly exit mitosis with faster kinetics than observed with a TTK-specific inhibitor. Broad anti-proliferative activity was demonstrated across solid tumor cell lines in vitro. Moreover, intermittent intravenous single-agent BAL0891 treatment of the MDA-MB-231 mouse model of TNBC induced profound tumor regressions associated with prolonged TTK and transient PLK1 in-tumor target occupancy. Furthermore, differential tumor responses across a panel of thirteen TNBC patient-derived xenograft models indicated profound anticancer activity in a subset (~40%). Using a flexible dosing approach, pathologically confirmed cures were observed in combination with paclitaxel, whereas synergy with carboplatin was schedule dependent. Conclusions Dual TTK/PLK1 inhibition represents a novel approach for the treatment of human cancer, including TNBC patients, with a potential for potent anticancer activity and a favorable therapeutic index. Moreover, combination approaches may provide an avenue to expand responsive patient populations.
Collapse
Affiliation(s)
- Elisa Zanini
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Felix Bachmann
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Adrian Brüngger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Paul McSheehy
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Karin Burger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Anna C. Groner
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Mila Roceri
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Luc Bury
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Martin Stieger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Jos de Man
- Crossfire Oncology B.V., Oss, Netherlands
| | | | | | | | | | | | - Heidi A. Lane
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| |
Collapse
|
7
|
Chiappa M, Decio A, Guarrera L, Mengoli I, Karki A, Yemane D, Ghilardi C, Scanziani E, Canesi S, Barbera MC, Craparotta I, Bolis M, Fruscio R, Grasselli C, Ceruti T, Zucchetti M, Patterson JC, Lu RA, Yaffe MB, Ridinger M, Damia G, Guffanti F. Onvansertib treatment overcomes olaparib resistance in high-grade ovarian carcinomas. Cell Death Dis 2024; 15:521. [PMID: 39039067 PMCID: PMC11263393 DOI: 10.1038/s41419-024-06894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Occurrence of resistance to olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) approved in ovarian carcinoma, has already been shown in clinical settings. Identifying combination treatments to sensitize tumor cells and/or overcome resistance to olaparib is critical. Polo-like kinase 1 (PLK1), a master regulator of mitosis, is also involved in the DNA damage response promoting homologous recombination (HR)-mediated DNA repair and in the recovery from the G2/M checkpoint. We hypothesized that PLK1 inhibition could sensitize tumor cells to PARP inhibition. Onvansertib, a highly selective PLK1 inhibitor, and olaparib were tested in vitro and in vivo in BRCA1 mutated and wild-type (wt) ovarian cancer models, including patient-derived xenografts (PDXs) resistant to olaparib. The combination of onvansertib and olaparib was additive or synergic in different ovarian cancer cell lines, causing a G2/M block of the cell cycle, DNA damage, and apoptosis, much more pronounced in cells treated with the two drugs as compared to controls and single agents treated cells. The combined treatment was well tolerated in vivo and resulted in tumor growth inhibition and a statistically increased survival in olaparib-resistant-BRCA1 mutated models. The combination was also active, although to a lesser extent, in BRCA1 wt PDXs. Pharmacodynamic analyses showed an increase in mitotic, apoptotic, and DNA damage markers in tumor samples derived from mice treated with the combination versus vehicle. We could demonstrate that in vitro onvansertib inhibited both HR and non-homologous end-joining repair pathways and in vivo induced a decrease in the number of RAD51 foci-positive tumor cells, supporting its ability to induce HR deficiency and favoring the activity of olaparib. Considering that the combination was well tolerated, these data support and foster the clinical evaluation of onvansertib with PARPis in ovarian cancer, particularly in the PARPis-resistant setting.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandra Decio
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Guarrera
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Mengoli
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Anju Karki
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Divora Yemane
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Carmen Ghilardi
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi Campus, Italy
- Mouse and Animal Pathology Lab (MAPLab), UniMi Foundation, Milan, Italy
| | - Simone Canesi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi Campus, Italy
- Mouse and Animal Pathology Lab (MAPLab), UniMi Foundation, Milan, Italy
| | - Maria C Barbera
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Craparotta
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Bolis
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, San Gerardo Hospital, University of Milan Bicocca, Monza, Italy
| | - Chiara Grasselli
- Immuno-Pharmacology Unit, Department of Oncology, Mario Negri Institute for Pharmacological Research (IRCCS), Milan, Italy
| | - Tommaso Ceruti
- Laboratory of Laboratory of Cancer Pharmacology, Experimental Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Massimo Zucchetti
- Laboratory of Laboratory of Cancer Pharmacology, Experimental Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Jesse C Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robin A Lu
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Micheal B Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maya Ridinger
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Giovanna Damia
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Federica Guffanti
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
8
|
Ahn DH, Barzi A, Ridinger M, Samuëlsz E, Subramanian RA, Croucher PJ, Smeal T, Kabbinavar FF, Lenz HJ. Onvansertib in Combination with FOLFIRI and Bevacizumab in Second-Line Treatment of KRAS-Mutant Metastatic Colorectal Cancer: A Phase Ib Clinical Study. Clin Cancer Res 2024; 30:2039-2047. [PMID: 38231047 PMCID: PMC11094418 DOI: 10.1158/1078-0432.ccr-23-3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
PURPOSE Onvansertib is a highly specific inhibitor of polo-like kinase 1 (PLK1), with demonstrated safety in solid tumors. We evaluated, preclinically and clinically, the potential of onvansertib in combination with chemotherapy as a therapeutic option for KRAS-mutant colorectal cancer. PATIENTS AND METHODS Preclinical activity of onvansertib was assessed (i) in vitro in KRAS wild-type and -mutant isogenic colorectal cancer cells and (ii) in vivo, in combination with irinotecan, in a KRAS-mutant xenograft model. Clinically, a phase Ib trial was conducted to investigate onvansertib at doses 12, 15, and 18 mg/m2 (days 1-5 and 14-19 of a 28-day cycle) in combination with FOLFIRI/bevacizumab (days 1 and 15) in patients with KRAS-mutant metastatic colorectal cancer who had prior oxaliplatin exposure. Safety, efficacy, and changes in circulating tumor DNA (ctDNA) were assessed. RESULTS In preclinical models, onvansertib displayed superior activity in KRAS-mutant than wild-type isogenic colorectal cancer cells and demonstrated potent antitumor activity in combination with irinotecan in vivo. Eighteen patients enrolled in the phase Ib study. Onvansertib recommended phase II dose was established at 15 mg/m2. Grade 3 and 4 adverse events (AE) represented 15% of all treatment-related AEs, with neutropenia being the most common. Partial responses were observed in 44% of patients, with a median duration of response of 9.5 months. Early ctDNA dynamics were predictive of treatment efficacy. CONCLUSIONS Onvansertib combined with FOLIFRI/bevacizumab exhibited manageable safety and promising efficacy in second-line treatment of patients with KRAS-mutant metastatic colorectal cancer. Further exploration of this combination therapy is ongoing. See related commentary by Stebbing and Bullock, p. 2005.
Collapse
Affiliation(s)
- Daniel H. Ahn
- Division of Medical Oncology, Mayo Clinic, Phoenix, Arizona
| | - Afsaneh Barzi
- Division of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | | | | | | | | | - Tod Smeal
- Cardiff Oncology Inc., San Diego, California
| | | | - Heinz-Josef Lenz
- Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
9
|
Tang Q, Hu G, Sang Y, Chen Y, Wei G, Zhu M, Chen M, Li S, Liu R, Peng Z. Therapeutic targeting of PLK1 in TERT promoter-mutant hepatocellular carcinoma. Clin Transl Med 2024; 14:e1703. [PMID: 38769666 PMCID: PMC11106514 DOI: 10.1002/ctm2.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Hotspot mutations in the promoter of telomerase reverse transcriptase (TERT) gene are the most common genetic variants in hepatocellular carcinoma (HCC) and associated with poor prognosis of the disease. However, no drug was currently approved for treating TERT promoter mutation positive HCC patients. Here, we aim to explore the potential therapeutic strategy for targeting TERT promoter mutation in HCC. METHODS The Liver Cancer Model Repository database was used for screening potential drugs to selectively suppress the growth of TERT promoter mutant HCC cells. RNA-seq, CRISPR-Cas9 technology and siRNA transfection were performed for mechanistic studies. Cell counting kit-8 (CCK8) assay and the xenograft tumour models were used for cell growth detection in vitro and in vivo, respectively. Cell apoptosis and cell cycle arrest were analysed by Annexin V-FITC staining and/or propidium iodide staining. RESULTS PLK1 inhibitors were remarkably more sensitive to HCC cells harbouring TERT promoter mutation than wild-type cells in vitro and in vivo, which were diminished after TERT promoter mutation was edited to the wild-type nucleotide. Comparing the HCC cells with wild-type promoter of TERT, PLK1 inhibitors specifically downregulated Smad3 to regulate TERT for inducing apoptosis and G2/M arrest in TERT mutant HCC cells. Moreover, knockout of Smad3 counteracted the effects of PLK1 inhibitors in TERT mutant HCC cells. Finally, a cooperative effect of PLK1 and Smad3 inhibition was observed in TERT mutant cells. CONCLUSIONS PLK1 inhibition selectively suppressed the growth of TERT mutant HCC cells through Smad3, thus contributed to discover a novel therapeutic strategy to treat HCC patients harbouring TERT promoter mutations. KEY POINTS TERT promoter mutation confers sensitivity to PLK1 inhibitors in HCC. The selective growth inhibition of TERT mutant HCC cells induced by PLK1 inhibitor was mediated by Smad3. Combined inhibition of PLK1 and Smad3 showed a cooperative anti-tumor effect in TERT mutant HCC cells.
Collapse
Affiliation(s)
- Qin Tang
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guanghui Hu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ye Sang
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yulu Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guangyan Wei
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Meiyan Zhu
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mengke Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shiyong Li
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Rengyun Liu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhenwei Peng
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Cancer CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
11
|
Gao J, Huang W, Zhao S, Wang R, Wang Z, Ye J, Lin L, Cai W, Mi Y. Polo-like kinase 1 inhibitor NMS-P937 represses nasopharyngeal carcinoma progression via induction of mitotic abnormalities. J Biochem Mol Toxicol 2024; 38:e23590. [PMID: 38037286 DOI: 10.1002/jbt.23590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/05/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Polo-like kinase 1 (PLK1) inhibitor NMS-P937 is a targeted therapeutic agent with good preclinical efficacy in various human cancers, and its therapeutic effect on nasopharyngeal carcinoma (NPC) remains to be determined. Here, to explore biological activity of NMS-P937 in NPC, multiple types of NPC cells were utilized. We tested IC50 values, carried out flow cytometry, western blot analysis analysis, immunofluorescence, and constructed subcutaneous xenograft mouse models. We found that treatment with NMS-P937 increased the proportion of G2/M phase NPC cells, where CyclinB1 expression was upregulated and CyclinE1 expression was downregulated. Besides, NMS-P937 treatment-induced NPC cell apoptosis with increased cleavage of PARP and caspase-3. Mechanistically, NMS-P937 treatment led to aberrant mitosis, causing increased reactive oxygen species (ROS) levels. ROS scavenger N-acetylcysteine partially reversed ROS levels induced by NMS-P937. Furthermore, NMS-P937 administration restrained NPC xenografts growth in nude mice. Overall, NMS-P937 suppressed NPC cell proliferation and increased ROS levels, causing cell cycle abnormalities and apoptosis. NMS-P937 holds great promise as a therapeutic agent for treating nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jing Gao
- Department of Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Fujian, China
| | - Weirong Huang
- Department of Medical Oncology, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, School of Clinical Medicine, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Fujian, China
| | - Senxia Zhao
- Department of Medical Oncology, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, School of Clinical Medicine, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Fujian, China
| | - Rong Wang
- School of Medicine, Guangxi University, Nanning, China
| | - Zhilin Wang
- Department of Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Fujian, China
| | - Juanping Ye
- Department of Medical Oncology, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, School of Clinical Medicine, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Fujian, China
| | - Lie Lin
- Department of Radiotherapy, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Weifeng Cai
- Department of Medical Oncology, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, School of Clinical Medicine, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Fujian, China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, School of Clinical Medicine, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Fujian, China
| |
Collapse
|
12
|
Croucher PJP, Ridinger M, Becker PS, Lin TL, Silberman SL, Wang ES, Zeidan AM. Spliceosome mutations are associated with clinical response in a phase 1b/2 study of the PLK1 inhibitor onvansertib in combination with decitabine in relapsed or refractory acute myeloid leukemia. Ann Hematol 2023; 102:3049-3059. [PMID: 37702821 PMCID: PMC10567832 DOI: 10.1007/s00277-023-05442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
PLK1 is overexpressed in acute myeloid leukemia (AML). A phase 1b trial of the PLK1 inhibitor onvansertib (ONV) combined with decitabine (DAC) demonstrated initial safety and efficacy in patients with relapsed/refractory (R/R) AML. The current study aimed to identify molecular predictors of response to ONV + DAC in R/R AML patients. A total of 44 R/R AML patients were treated with ONV + DAC and considered evaluable for efficacy. Bone marrow (BM) samples were collected at baseline for genomic and transcriptomic analysis (n = 32). A 10-gene expression signature, predictive of response to ONV + DAC, was derived from the leading-edge genes of gene set enrichment analyses (GSEA). The gene signature was evaluated in independent datasets and used to identify associated mutated genes. Twenty percent of the patients achieved complete remission, with or without hematologic count recovery (CR/CRi), and 32% exhibited a ≥50% reduction in bone marrow blasts. Patients who responded to treatment had elevated mitochondrial function and OXPHOS. The gene signature was not associated with response to DAC alone in an independent dataset. By applying the signature to the BeatAML cohort (n = 399), we identified a positive association between predicted ONV + DAC response and mutations in splicing factors (SF). In the phase 1b/2 trial, patients with SF mutations (SRSF2, SF3B1) had a higher CR/CRi rate (50%) compared to those without SF mutations (9%). PLK1 inhibition with ONV in combination with DAC could be a potential therapy in R/R AML patients, particularly those with high OXPHOS gene expression and SF mutations.
Collapse
Affiliation(s)
- Peter J P Croucher
- Cardiff Oncology Inc., 11055 Flintkote Avenue, San Diego, CA, 92121, USA
| | - Maya Ridinger
- Cardiff Oncology Inc., 11055 Flintkote Avenue, San Diego, CA, 92121, USA
| | - Pamela S Becker
- Leukemia Division, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Tara L Lin
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas, Kansas City, KS, 66205, USA
| | | | - Eunice S Wang
- Leukemia Service, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Amer M Zeidan
- Yale University and Yale Cancer Center, New Haven, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA.
| |
Collapse
|
13
|
Zhao S, Li Y, Li G, Ye J, Wang R, Zhang X, Li F, Gao C, Li J, Jiang J, Mi Y. PI3K/mTOR inhibitor VS-5584 combined with PLK1 inhibitor exhibits synergistic anti-cancer effects on non-small cell lung cancer. Eur J Pharmacol 2023; 957:176004. [PMID: 37625683 DOI: 10.1016/j.ejphar.2023.176004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/30/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Small molecule drugs are of significant importance in the treatment of non-small cell lung cancer (NSCLC). Here, we explored biological effects of the PI3K/mTOR inhibitor VS-5584 on NSCLC. Our findings indicated that VS-5584 administration resulted in a dose-dependent inhibition of NSCLC cell proliferation, as well as the induction of apoptosis and cycle arrest. Additionally, we observed a significant increase in intracellular reactive oxygen species (ROS) levels following VS-5584 treatment. The use of the ROS inhibitor N-acetylcysteine (NAC) effectively reduced ROS levels and decreased the proportion of apoptotic cells. Treatment with VS-5584 led to an upregulation of genes associated with apoptosis and cell cycle, such as c-caspase 3 and P21. Conversely, a downregulation of cyclin-dependent kinase 1 (CDK1) expression was observed. Next, transcriptome analyses revealed that VS-5584 treatment altered the abundance of 1520 genes/transcripts in PC-9 cells, one of which was polo-like kinase 1 (PLK1). These differentially expressed genes were primarily enriched in biological processes such as cell cycle regulation and cell apoptosis, which are closely linked to the P53 and apoptosis pathways. Co-treatment with VS-5584 and PLK1 inhibitor NMS-P937 resulted in enhanced cancer cell death, exhibiting synergistic inhibitory activity. Notably, VS-5584 inhibited the growth of NSCLC in a patient-derived xenograft (PDX) mouse model without observable abnormalities in major organs. Overall, VS-5584 effectively suppressed the growth of NSCLC cells both in vitro and in vivo. VS-5584 combined with NMS-P937 exhibited a synergistic effect in inhibiting NSCLC cell growth. These findings suggest that VS-5584 has potential as a therapeutic strategy for treating NSCLC.
Collapse
Affiliation(s)
- Senxia Zhao
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Yibin Li
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Gang Li
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Juanping Ye
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Rong Wang
- Department of Thoracic Surgery, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Xiaoting Zhang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Fei Li
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Chang Gao
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Junbiao Li
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China
| | - Jie Jiang
- Department of Thoracic Surgery, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China.
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Xiamen University, Xiamen, 361003, Fujian Province, PR China.
| |
Collapse
|
14
|
Lu J, Lei H, Bai X, Wang W, Liu C, Yang Y, Zou F, Wang L, Wang Y, Du G, Wang X, Sun C, Yu L, Ma M, Ye L, Wang H, Tian J, Zhang J. Design, synthesis, and biological evaluation of novel molecules as potent inhibitors of PLK1. Bioorg Chem 2023; 139:106711. [PMID: 37473479 DOI: 10.1016/j.bioorg.2023.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/11/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Polo-like kinase 1 (PLK1) is an attractive therapeutic target for the treatment of tumors, as it is an essential cell-cycle regulator frequently overexpressed in tumor tissues. PLK1 can promote tumor invasion and metastasis, and is often associated with poor prognosis in cancer patients. However, no PLK1 inhibitor has been granted marketing approval until now. Therefore, more potentially promising PLK1 inhibitors need to be investigated. In this study, a series of novel inhibitors targeting PLK1 was designed and optimized derived from a new scaffold. After synthesis and characterization, we obtained the structure-activity relationship and led to the discovery of the most promising compound 30e for PLK1. The antiproliferative activity against HCT116 cells (IC50 = 5 nM versus 45 nM for onvansertib) and the cellular permeability and efflux ratio were significantly improved (PappA→B = 2.03 versus 0.345 and efflux ratio = 1.65 versus 94.7 for 30e and onvansertib, respectively). Further in vivo studies indicated that 30e had favorable antitumor activity with 116.2% tumor growth inhibition (TGI) in comparison with TGI of 43.0% for onvansertib. Furthermore, 30e improved volume of tumor tissue distribution in mice as compared to onvansertib. This initial study on 30e holds promise for further development of an antitumor agent.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Hui Lei
- R & D Center, Luye Pharma Group Ltd., Yantai 264003, PR China
| | - Xinfa Bai
- R & D Center, Luye Pharma Group Ltd., Yantai 264003, PR China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Chunjiao Liu
- R & D Center, Luye Pharma Group Ltd., Yantai 264003, PR China
| | - Yifei Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Fangxia Zou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Guangying Du
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Cuicui Sun
- R & D Center, Luye Pharma Group Ltd., Yantai 264003, PR China
| | - Lisha Yu
- R & D Center, Luye Pharma Group Ltd., Yantai 264003, PR China
| | - Mingxu Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Liang Ye
- School of Public Health and Management, Binzhou Medical University, Yantai, PR China.
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Jianzhao Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
15
|
Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023; 8:338. [PMID: 37679326 PMCID: PMC10485079 DOI: 10.1038/s41392-023-01548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.
Collapse
Affiliation(s)
- Qi Li
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Wenyuan Qian
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yang Zhang
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Lihong Hu
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yuanfeng Xia
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China.
| |
Collapse
|
16
|
Wang L, Lei H, Lu J, Wang W, Liu C, Wang Y, Yang Y, Tian J, Zhang J. Study on Pharmacokinetics and Metabolic Profiles of Novel Potential PLK-1 Inhibitors by UHPLC-MS/MS Combined with UHPLC-Q-Orbitrap/HRMS. Molecules 2023; 28:molecules28062550. [PMID: 36985522 PMCID: PMC10053003 DOI: 10.3390/molecules28062550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
PLK-1 (Polo-like kinase-1) plays an essential role in cytokinesis, and its aberrant expression is considered to be keenly associated with a wide range of cancers. It has been selected as an appealing target and small-molecule inhibitors have been developed and studied in clinical trials. Unfortunately, most have been declared as failures due to the poor therapeutic response and off-target toxicity. In the present study, a novel potent PLK-1 inhibitor, compound 7a, was designed and synthetized. 1H NMR, 13C NMR, 19F NMR and mass spectrum were comprehensively used for the compound characterization. The compound exhibited higher potency against PLK-1 kinase, HCT-116 and NCI-H2030 cell lines than the positive control. Molecular docking indicated that the binding mode that the ATP binding site of PLK-1 was occupied by the compound. Then, a UHPLC-MS/MS method was established and validated to explore the pharmacokinetic behavior of the drug candidate. The method had good selectivity, high sensitivity and wide linearity. The exposure increased linearly with the dose, but the oral bioavailability was not satisfactory enough. Then, the metabolism was studied using liver microsomes by UHPLC-Q-Orbitrap/HRMS. Our research first studied the pharmacokinetic metabolic characteristics of 7a and may serve as a novel lead compound for the development of PLK-1 inhibitors.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hui Lei
- R & D Center, Luye Pharma Group Ltd., Yantai 264003, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chunjiao Liu
- R & D Center, Luye Pharma Group Ltd., Yantai 264003, China
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yifei Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
- Correspondence: (J.T.); (J.Z.)
| | - Jianzhao Zhang
- College of Life Sciences, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai 264005, China
- Correspondence: (J.T.); (J.Z.)
| |
Collapse
|
17
|
Design, synthesis, and biological evaluation of novel dihydropteridone derivatives possessing oxadiazoles moiety as potent inhibitors of PLK1. Eur J Med Chem 2023; 251:115242. [PMID: 36889251 DOI: 10.1016/j.ejmech.2023.115242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Polo like kinase 1 (PLK1) is a serine/threonine kinase that is widely distributed in eukaryotic cells and plays an important role in multiple phases of the cell cycle. Its importance in tumorigenesis has been increasingly recognized in recent years. Herein, we describe the optimization of a series of novel dihydropteridone derivatives (13a-13v and 21g-21l) possessing oxadiazoles moiety as potent inhibitors of PLK1. Compound 21g exhibited improved PLK1 inhibitory capability with an IC50 value of 0.45 nM and significant anti-proliferative activities against four tumor-derived cell lines (MCF-7 IC50 = 8.64 nM, HCT-116 IC50 = 26.0 nM, MDA-MB-231 IC50 = 14.8 nM and MV4-11 IC50 = 47.4 nM) with better pharmacokinetic characteristics than BI2536 in mice (AUC0-t = 11 227 ng h mL-1vs 556 ng h mL-1). Moreover, 21g exhibited moderate liver microsomal stability and excellent pharmacokinetic profile (AUC0-t = 11227 ng h mL-1, oral bioavailability of 77.4%) in Balb/c mice, acceptable PPB, improved PLK1 inhibitory selectivity, and no apparent toxicity was observed in the acute toxicity assay (20 mg/kg). Further investigation showed that 21 g could arrest HCT-116 cells in G2 phase and induce apoptosis in a dose-dependent manner. These results indicate that 21g is a promising PLK1 inhibitor.
Collapse
|
18
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
19
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
20
|
Chiappa M, Petrella S, Damia G, Broggini M, Guffanti F, Ricci F. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Front Oncol 2022; 12:903016. [PMID: 35719948 PMCID: PMC9201472 DOI: 10.3389/fonc.2022.903016] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is the principle member of the well conserved serine/threonine kinase family. PLK1 has a key role in the progression of mitosis and recent evidence suggest its important involvement in regulating the G2/M checkpoint, in DNA damage and replication stress response, and in cell death pathways. PLK1 expression is tightly spatially and temporally regulated to ensure its nuclear activation at the late S-phase, until the peak of expression at the G2/M-phase. Recently, new roles of PLK1 have been reported in literature on its implication in the regulation of inflammation and immunological responses. All these biological processes are altered in tumors and, considering that PLK1 is often found overexpressed in several tumor types, its targeting has emerged as a promising anti-cancer therapeutic strategy. In this review, we will summarize the evidence suggesting the role of PLK1 in response to DNA damage, including DNA repair, cell cycle progression, epithelial to mesenchymal transition, cell death pathways and cancer-related immunity. An update of PLK1 inhibitors currently investigated in preclinical and clinical studies, in monotherapy and in combination with existing chemotherapeutic drugs and targeted therapies will be discussed.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Serena Petrella
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Francesca Ricci
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
21
|
Wang D, Veo B, Pierce A, Fosmire S, Madhavan K, Balakrishnan I, Donson A, Alimova I, Sullivan KD, Joshi M, Erlander M, Ridinger M, Foreman NK, Venkataraman S, Vibhakar R. A novel PLK1 inhibitor onvansertib effectively sensitizes MYC-driven medulloblastoma to radiotherapy. Neuro Oncol 2022; 24:414-426. [PMID: 34477871 PMCID: PMC8917408 DOI: 10.1093/neuonc/noab207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Group 3 medulloblastoma (MB) is often accompanied by MYC amplification. PLK1 is an oncogenic kinase that controls cell cycle and proliferation and has been preclinically validated as a cancer therapeutic target. Onvansertib (PCM-075) is a novel, orally available PLK1 inhibitor, which shows tumor growth inhibition in various types of cancer. We aim to explore the effect of onvansertib on MYC-driven medulloblastoma as a monotherapy or in combination with radiation. METHODS Crisper-Cas9 screen was used to discover essential genes for MB tumor growth. Microarray and immunohistochemistry on pediatric patient samples were performed to examine the expression of PLK1. The effect of onvansertib in vitro was measure by cell viability, colony-forming assays, extreme limiting dilution assay, and RNA-Seq. ALDH activity, cell-cycle distribution, and apoptosis were analyzed by flow cytometry. DNA damage was assessed by immunofluorescence staining. Medulloblastoma xenografts were generated to explore the monotherapy or radio-sensitizing effect. RESULTS PLK1 is overexpressed in Group 3 MB. The IC50 concentrations of onvansertib in Group 3 MB cell lines were in a low nanomolar range. Onvansertib reduced colony formation, cell proliferation, stem cell renewal and induced G2/M arrest in vitro. Moreover, onvansertib in combination with radiation increased DNA damage and apoptosis compared with radiation treatment alone. The combination radiotherapy resulted in marked tumor regression in xenografts. CONCLUSIONS These findings demonstrate the efficacy of a novel PLK1 inhibitor onvansertib in vitro and in xenografts of Group 3 MB, which suggests onvansertib is an effective strategy as monotherapy or in combination with radiotherapy in MB.
Collapse
Affiliation(s)
- Dong Wang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bethany Veo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angela Pierce
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Fosmire
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Krishna Madhavan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ilango Balakrishnan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew Donson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Irina Alimova
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, Department of Pediatrics, Section of Developmental Biology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Molishree Joshi
- Functional Genomics Facility, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado, USA
- Corresponding Author: Rajeev Vibhakar, MD, PhD, Department of Pediatrics, University of Colorado Denver, Aurora, CO, 80045, USA ()
| |
Collapse
|
22
|
Kudo M, Zalles N, Distefano R, Nigita G, Veneziano D, Gasparini P, Croce CM. Synergistic apoptotic effect of miR-183-5p and Polo-Like kinase 1 inhibitor NMS-P937 in breast cancer cells. Cell Death Differ 2022; 29:407-419. [PMID: 34561554 PMCID: PMC8816952 DOI: 10.1038/s41418-021-00864-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as endogenous regulatory molecules targeting specific mRNAs for translational repression. Studies of breast cancer genomics indicate that breast cancer subtypes are distinguished and regulated by specific sets of miRNAs which affect activities such as tumor initiation, progression, and even drug response. Polo-like Kinase 1 (PLK1) is widely considered to be a proto-oncogene due to its increased expression in multiple tumor types, as well as its crucial role in regulating mitosis. Pharmacological inhibition of PLK1 can reduce tumor volume and induce tumor cell death in solid and hematologic malignancies. This prompted us to investigate how PLK1 inhibition with the target-specific inhibitor NMS-P937 would impact breast cancer cells, and how miRNAs may influence the overall response of these cells to this inhibition. We found that miR-183-5p targets PLK1 gene, effectively reducing its protein expression. Such miRNA-driven regulation of PLK1 expression sensitizes breast cancer cells to NMS-P937, resulting in synergistically increased apoptosis. We also show that the miRNA-regulated reduction of PLK1 influences the expression of apoptosis-related key proteins and possibly inducing further indirect PLK1 downmodulation through a DNMT1-p53 axis. These results suggest a potential biologically significant link between the expression of miR-183-5p and the efficacy of PLK1-specific inhibitors in breast cancer cells. Our work further elucidates how miR-183-5p regulates PLK1 gene while also enhancing NMS-P937 effect in breast cancer. Future studies assessing the role of miR-183-5p as a novel biomarker for anti-PLK1 chemotherapy agents are warranted.
Collapse
Affiliation(s)
- Masahisa Kudo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicole Zalles
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Dario Veneziano
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA.
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
23
|
Su S, Chhabra G, Singh CK, Ndiaye MA, Ahmad N. PLK1 inhibition-based combination therapies for cancer management. Transl Oncol 2022; 16:101332. [PMID: 34973570 PMCID: PMC8728518 DOI: 10.1016/j.tranon.2021.101332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polo-like kinase I (PLK1), a cell cycle regulating kinase, has been shown to have oncogenic function in several cancers. Although PLK1 inhibitors, such as BI2536, BI6727 (volasertib) and NMS-1286937 (onvansertib) are generally well-tolerated with a favorable pharmacokinetic profile, clinical successes are limited due to partial responses in cancer patients, especially those in advanced stages. Recently, combination therapies targeting multiple pathways are being tested for cancer management. In this review, we first discuss structure and function of PLK1, role of PLK1 in cancers, PLK1 specific inhibitors, and advantages of using combination therapy versus monotherapy followed by a critical account on PLK1-based combination therapies in cancer treatments, especially highlighting recent advancements and challenges. PLK1 inhibitors in combination with chemotherapy drugs and targeted small molecules have shown superior effects against cancer both in vitro and in vivo. PLK1-based combination therapies have shown increased apoptosis, disrupted cell cycle, and potential to overcome resistance in cancer cells/tissues over monotherapies. Further, with successes in preclinical experiments, researchers are validating such approaches in clinical trials. Although PLK1-based combination therapies have achieved initial success in clinical studies, there are examples where they have failed to improve patient survival. Therefore, further research is needed to identify and validate novel biologically informed co-targets for PLK1-based combinatorial therapies. Employing a network-based analysis, we identified potential PLK1 co-targets that could be examined further. In addition, understanding the mechanisms of synergism between PLK1 inhibitors and other agents may lead to a better approach on which agents to pair with PLK1 inhibition for optimum cancer treatment.
Collapse
Affiliation(s)
- Shengqin Su
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA; William S. Middleton VA Medical Center, Madison, WI 53705, USA.
| |
Collapse
|
24
|
Choi W, Lee ES. Therapeutic Targeting of DNA Damage Response in Cancer. Int J Mol Sci 2022; 23:ijms23031701. [PMID: 35163621 PMCID: PMC8836062 DOI: 10.3390/ijms23031701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) is critical to ensure genome stability, and defects in this signaling pathway are highly associated with carcinogenesis and tumor progression. Nevertheless, this also provides therapeutic opportunities, as cells with defective DDR signaling are directed to rely on compensatory survival pathways, and these vulnerabilities have been exploited for anticancer treatments. Following the impressive success of PARP inhibitors in the treatment of BRCA-mutated breast and ovarian cancers, extensive research has been conducted toward the development of pharmacologic inhibitors of the key components of the DDR signaling pathway. In this review, we discuss the key elements of the DDR pathway and how these molecular components may serve as anticancer treatment targets. We also summarize the recent promising developments in the field of DDR pathway inhibitors, focusing on novel agents beyond PARP inhibitors. Furthermore, we discuss biomarker studies to identify target patients expected to derive maximal clinical benefits as well as combination strategies with other classes of anticancer agents to synergize and optimize the clinical benefits.
Collapse
Affiliation(s)
- Wonyoung Choi
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Clinical Trials, National Cancer Center, Goyang 10408, Korea
| | - Eun Sook Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Breast Cancer, National Cancer Center, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-1633
| |
Collapse
|
25
|
Li Y, Wang H, Zhang Z, Tang C, Zhou X, Mohan C, Wu T. Identification of polo-like kinase 1 as a therapeutic target in murine lupus. Clin Transl Immunology 2022; 11:e1362. [PMID: 35024139 PMCID: PMC8733964 DOI: 10.1002/cti2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/21/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The signalling cascades that contribute to lupus pathogenesis are incompletely understood. We address this by using an unbiased activity‐based kinome screen of murine lupus. Methods An unbiased activity‐based kinome screen (ABKS) of 196 kinases was applied to two genetically different murine lupus strains. Systemic and renal lupus were evaluated following in vivo PLK1blockade. The upstream regulators and downstream targets of PLK1 were also interrogated. Results Multiple signalling cascades were noted to be more active in murine lupus spleens, including PLK1. In vivo administration of a PLK1‐specific inhibitor ameliorated splenomegaly, anti‐dsDNA antibody production, proteinuria, BUN and renal pathology in MRL.lpr mice (P < 0.05). Serum IL‐6, IL‐17 and kidney injury molecule 1 (KIM‐1) were significantly decreased after PLK1 inhibition. PLK1 inhibition reduced germinal centre and marginal zone B cells in the spleen, but changes in T cells were not significant. In vitro, splenocytes were treated with anti‐mouse CD40 Ab or F(ab’)2 fragment anti‐mouse IgM. After 24‐h stimulation, IL‐6 secretion was significantly reduced upon PLK1 blockade, whereas IL‐10 production was significantly increased. The phosphorylation of mTOR was assessed in splenocyte subsets, which revealed a significant change in myeloid cells. PLK1 blockade reduced phosphorylation associated with mTOR signalling, while Aurora‐A emerged as a potential upstream regulator of PLK1. Conclusion The Aurora‐A → PLK1 → mTOR signalling axis may be central in lupus pathogenesis, and emerges as a potential therapeutic target.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Hongting Wang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Zijing Zhang
- Department of Biomedical Engineering University of Houston Houston TX USA.,Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan China
| | - Chenling Tang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Xinjin Zhou
- Department of Pathology Baylor University Medical Center at Dallas Dallas TX USA
| | - Chandra Mohan
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Tianfu Wu
- Department of Biomedical Engineering University of Houston Houston TX USA
| |
Collapse
|
26
|
Rahman S, Garrel S, Gerber M, Maitra R, Goel S. Therapeutic Targets of KRAS in Colorectal Cancer. Cancers (Basel) 2021; 13:6233. [PMID: 34944853 PMCID: PMC8699097 DOI: 10.3390/cancers13246233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
Patients with metastatic colorectal cancer have a 5-year overall survival of less than 10%. Approximately 45% of patients with metastatic colorectal cancer harbor KRAS mutations. These mutations not only carry a predictive role for the absence of response to anti-EGFR therapy, but also have a negative prognostic impact on the overall survival. There is a growing unmet need for a personalized therapy approach for patients with KRAS-mutant colorectal cancer. In this article, we focus on the therapeutic strategies targeting KRAS- mutant CRC, while reviewing and elaborating on the discovery and physiology of KRAS.
Collapse
Affiliation(s)
- Shafia Rahman
- Department of Medical Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, 1695 Eastchester Road Bronx, New York, NY 10461, USA; (S.R.); (R.M.)
| | - Shimon Garrel
- Department of Biology, Lander College For Men, 75-31 150th Street, Flushing, New York, NY 11367, USA;
| | - Michael Gerber
- Department of Biology, Yeshiva University, 500 West 185th Street, New York, NY 10033, USA;
| | - Radhashree Maitra
- Department of Medical Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, 1695 Eastchester Road Bronx, New York, NY 10461, USA; (S.R.); (R.M.)
- Department of Biology, Yeshiva University, 500 West 185th Street, New York, NY 10033, USA;
| | - Sanjay Goel
- Department of Medical Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, 1695 Eastchester Road Bronx, New York, NY 10461, USA; (S.R.); (R.M.)
| |
Collapse
|
27
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
28
|
Hagege A, Ambrosetti D, Boyer J, Bozec A, Doyen J, Chamorey E, He X, Bourget I, Rousset J, Saada E, Rastoin O, Parola J, Luciano F, Cao Y, Pagès G, Dufies M. The Polo-like kinase 1 inhibitor onvansertib represents a relevant treatment for head and neck squamous cell carcinoma resistant to cisplatin and radiotherapy. Theranostics 2021; 11:9571-9586. [PMID: 34646387 PMCID: PMC8490521 DOI: 10.7150/thno.61711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/04/2021] [Indexed: 01/19/2023] Open
Abstract
Rationale: Head and neck squamous cell carcinoma (HNSCC) represent the 4th most aggressive cancer. 50% of patients relapse to the current treatments combining surgery, radiotherapy and cisplatin and die two years after the diagnosis. Elevated expression of the polo-like kinase 1 (Plk1) correlated to a poor prognosis in epidermoid carcinomas. Methods: The molecular links between Plk1 and resistance to cisplatin/radiotherapy were investigated in patients and cell lines resistant to cisplatin and/or to radiotherapy. The therapeutic relevance of the Plk1 inhibitor onvansertib, alone or combined with cisplatin/radiotherapy, was evaluated on the proliferation/migration on HNSCC cell lines, in experimental HNSCC in mice, in a zebrafish metastasis model and on patient-derived 3D tumor sections. Results: Plk1 expression correlated to a bad prognosis in HNSCC and increased after relapse on cisplatin/radiotherapy. Onvansertib induced mitotic arrest, chromosomic abnormalities and polyploidy leading to apoptosis of sensitive and resistant HNSCC cells at nanomolar concentrations without any effects on normal cells. Onvansertib inhibited the growth of experimental HNSCC in mice and metastatic dissemination in zebrafishes. Moreover, onvansertib combined to cisplatin and/or radiotherapy resulted in a synergic induction of tumor cell death. The efficacy of onvansertib alone and in combination with reference treatments was confirmed on 3D viable sections of HNSCC surgical specimens. Conclusions: Targeting Plk1 by onvansertib represents a new strategy for HNSCC patients at the diagnosis in combination with reference treatments, or alone as a second line treatment for HNCSCC patients experiencing relapses.
Collapse
Affiliation(s)
- Anais Hagege
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Damien Ambrosetti
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- University Côte d'Azur, Centre Hospitalier Universitaire (CHU) de Nice, Hôpital Pasteur, Central laboratory of Pathology, 06000 Nice, France
| | | | | | | | | | - Xingkang He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Isabelle Bourget
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
| | | | - Esma Saada
- Centre Antoine Lacassagne, 06189 Nice, France
| | - Olivia Rastoin
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Julien Parola
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
- Centre Antoine Lacassagne, 06189 Nice, France
| | - Frederic Luciano
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gilles Pagès
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
- Centre Scientifique de Monaco, Biomedical Department, 8 quai Antoine Premier, 98 000 Monaco, Principality of Monaco
| | - Maeva Dufies
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
- Centre Scientifique de Monaco, Biomedical Department, 8 quai Antoine Premier, 98 000 Monaco, Principality of Monaco
| |
Collapse
|
29
|
Chapagai D, Ramamoorthy G, Varghese J, Nurmemmedov E, McInnes C, Wyatt MD. Nonpeptidic, Polo-Box Domain-Targeted Inhibitors of PLK1 Block Kinase Activity, Induce Its Degradation and Target-Resistant Cells. J Med Chem 2021; 64:9916-9925. [PMID: 34210138 PMCID: PMC10451095 DOI: 10.1021/acs.jmedchem.1c00133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PLK1, polo-like kinase 1, is a central player regulating mitosis. Inhibition of the subcellular localization and kinase activity of PLK1 through the PBD, polo-box domain, is a viable alternative to ATP-competitive inhibitors, for which the development of resistance and inhibition of related PLK family members are concerns. We describe novel nonpeptidic PBD-binding inhibitors, termed abbapolins, identified through successful application of the REPLACE strategy and demonstrate their potent antiproliferative activity in prostate tumors and other cell lines. Furthermore, abbapolins show PLK1-specific binding and inhibitory activity, as measured by a cellular thermal shift assay and an ability to block phosphorylation of TCTP, a validated target of PLK1-mediated kinase activity. Additional evidence for engagement of PLK1 was obtained through the unique observation that abbapolins induce PLK1 degradation in a manner that closely matches antiproliferative activity. Moreover, abbapolins demonstrate antiproliferative activity in cells that are dramatically resistant to ATP-competitive PLK1 inhibitors.
Collapse
Affiliation(s)
- Danda Chapagai
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gurusankar Ramamoorthy
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jessy Varghese
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, California 90404-2312, United States
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
30
|
Novais P, Silva PMA, Amorim I, Bousbaa H. Second-Generation Antimitotics in Cancer Clinical Trials. Pharmaceutics 2021; 13:1011. [PMID: 34371703 PMCID: PMC8309102 DOI: 10.3390/pharmaceutics13071011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Mitosis represents a promising target to block cancer cell proliferation. Classical antimitotics, mainly microtubule-targeting agents (MTAs), such as taxanes and vinca alkaloids, are amongst the most successful anticancer drugs. By disrupting microtubules, they activate the spindle assembly checkpoint (SAC), which induces a prolonged delay in mitosis, expected to induce cell death. However, resistance, toxicity, and slippage limit the MTA's effectiveness. With the desire to overcome some of the MTA's limitations, mitotic and SAC components have attracted great interest as promising microtubule-independent targets, leading to the so-called second-generation antimitotics (SGAs). The identification of inhibitors against most of these targets, and the promising outcomes achieved in preclinical assays, has sparked the interest of academia and industry. Many of these inhibitors have entered clinical trials; however, they exhibited limited efficacy as monotherapy, and failed to go beyond phase II trials. Combination therapies are emerging as promising strategies to give a second chance to these SGAs. Here, an updated view of the SGAs that reached clinical trials is here provided, together with future research directions, focusing on inhibitors that target the SAC components.
Collapse
Affiliation(s)
- Pedro Novais
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia M. A. Silva
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
| | - Isabel Amorim
- GreenUPorto (Sustainable Agrifood Production) Research Center, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal;
| | - Hassan Bousbaa
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
| |
Collapse
|
31
|
Goroshchuk O, Kolosenko I, Kunold E, Vidarsdottir L, Pirmoradian M, Azimi A, Jafari R, Palm-Apergi C. Thermal proteome profiling identifies PIP4K2A and ZADH2 as off-targets of Polo-like kinase 1 inhibitor volasertib. FASEB J 2021; 35:e21741. [PMID: 34143546 DOI: 10.1096/fj.202100457rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
Polo-like kinase 1 (PLK1) is an important cell cycle kinase and an attractive target for anticancer treatments. An ATP-competitive small molecular PLK1 inhibitor, volasertib, has reached phase III in clinical trials in patients with refractory acute myeloid leukemia as a combination treatment with cytarabine. However, severe side effects limited its use. The origin of the side effects is unclear and might be due to insufficient specificity of the drug. Thus, identifying potential off-targets to volasertib is important for future clinical trials and for the development of more specific drugs. In this study, we used thermal proteome profiling (TPP) to identify proteome-wide targets of volasertib. Apart from PLK1 and proteins regulated by PLK1, we identified about 200 potential volasertib off-targets. Comparison of this result with the mass-spectrometry analysis of volasertib-treated cells showed that phosphatidylinositol phosphate and prostaglandin metabolism pathways are affected by volasertib. We confirmed that PIP4K2A and ZADH2-marker proteins for these pathways-are, indeed, stabilized by volasertib. PIP4K2A, however, was not affected by another PLK1 inhibitor onvansertib, suggesting that PIP4K2A is a true off-target of volasertib. Inhibition of these proteins is known to impact both the immune response and fatty acid metabolism and could explain some of the side effects seen in volasertib-treated patients.
Collapse
Affiliation(s)
- Oksana Goroshchuk
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Elena Kunold
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Linda Vidarsdottir
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Mohammad Pirmoradian
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Alireza Azimi
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Rozbeh Jafari
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
32
|
Bewersdorf JP, Zeidan AM. Polo-like kinase inhibition as a therapeutic target in acute myeloid leukemia. Oncotarget 2021; 12:1314-1317. [PMID: 34194628 PMCID: PMC8238245 DOI: 10.18632/oncotarget.27919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
| |
Collapse
|
33
|
Cerrito MG, Grassilli E. Identifying Novel Actionable Targets in Colon Cancer. Biomedicines 2021; 9:biomedicines9050579. [PMID: 34065438 PMCID: PMC8160963 DOI: 10.3390/biomedicines9050579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.
Collapse
|
34
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
35
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
36
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
37
|
Shakeel I, Basheer N, Hasan GM, Afzal M, Hassan MI. Polo-like Kinase 1 as an emerging drug target: structure, function and therapeutic implications. J Drug Target 2021; 29:168-184. [PMID: 32886539 DOI: 10.1080/1061186x.2020.1818760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 1 (PLK1) is a conserved mitotic serine-threonine protein kinase, functions as a regulatory protein, and is involved in the progression of the mitotic cycle. It plays important roles in the regulation of cell division, maintenance of genome stability, in spindle assembly, mitosis, and DNA-damage response. PLK1 is consist of a N-terminal serine-threonine kinase domain, and a C-terminal Polo-box domain (regulatory site). The expression of PLK1 is controlled by transcription repressor in the G1 stage and transcription activators in the G2 stage of the cell cycle. Overexpression of PLK1 results in undermining of checkpoints causes excessive cellular division resulting in abnormal cell growth, leading to the development of cancer. Blocking the expression of PLK1 by an antibody, RNA interference, or kinase inhibitors, causes a subsequent reduction in the proliferation of tumour cells and induction of apoptosis in tumour cells without affecting the healthy cells, suggesting an attractive target for drug development. In this review, we discuss detailed information on expression, gene and protein structures, role in different diseases, and progress in the design and development of PLK1 inhibitors. We have performed an in-depth analysis of the PLK1 inhibitors and their therapeutic implications with special focus to the cancer therapeutics.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Neha Basheer
- Institute of Neuroimmunology, Slovak Republic Bratislava, Bratislava, Slovakia
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
38
|
Cortes J, Podoltsev N, Kantarjian H, Borthakur G, Zeidan AM, Stahl M, Taube T, Fagan N, Rajeswari S, Uy GL. Phase 1 dose escalation trial of volasertib in combination with decitabine in patients with acute myeloid leukemia. Int J Hematol 2021; 113:92-99. [PMID: 32951163 DOI: 10.1007/s12185-020-02994-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/19/2020] [Accepted: 09/07/2020] [Indexed: 11/30/2022]
Abstract
Polo-like kinase 1 (PLK1) regulates mitotic checkpoints and cell division. PLK1 overexpression is reported in numerous cancers, including acute myeloid leukemia (AML), and is associated with poor prognosis. Volasertib is a selective, potent cell-cycle kinase inhibitor that targets PLK to induce mitotic arrest and apoptosis. This phase 1 trial investigated the maximum tolerated dose (MTD), safety, pharmacokinetics, and anti-leukemic activity of volasertib in combination with decitabine in AML patients aged ≥ 65 years. Thirteen patients were treated with escalating volasertib doses (3 + 3 design; 300 mg, 350 mg, and 400 mg) plus standard-dose decitabine. Dose-limiting toxicity was reported in one patient in cycle 1; the MTD of volasertib in combination with decitabine was determined as 400 mg. The most common treatment-emergent adverse events were febrile neutropenia, pneumonia, and decreased appetite. Objective response rate was 23%. The combination was well tolerated, and the adverse event profile was in line with previous findings.
Collapse
Affiliation(s)
- Jorge Cortes
- Department of Leukemia, Anderson Cancer Center, University of Texas, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Nikolai Podoltsev
- Department of Internal Medicine, Hematology Section, Yale University School of Medicine, New Haven, CT, USA
| | - Hagop Kantarjian
- Department of Leukemia, Anderson Cancer Center, University of Texas, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Gautam Borthakur
- Department of Leukemia, Anderson Cancer Center, University of Texas, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Hematology Section, Yale University School of Medicine, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Internal Medicine, Hematology Section, Yale University School of Medicine, New Haven, CT, USA
| | - Tillmann Taube
- Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Nora Fagan
- Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | | | - Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
39
|
Deng Z, Chen G, Liu S, Li Y, Zhong J, Zhang B, Li L, Huang H, Wang Z, Xu Q, Deng X. Discovery of methyl 3-((2-((1-(dimethylglycyl)-5-methoxyindolin-6-yl)amino)-5-(trifluoro-methyl) pyrimidin-4-yl)amino)thiophene-2-carboxylate as a potent and selective polo-like kinase 1 (PLK1) inhibitor for combating hepatocellular carcinoma. Eur J Med Chem 2020; 206:112697. [PMID: 32814244 DOI: 10.1016/j.ejmech.2020.112697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/01/2020] [Accepted: 07/25/2020] [Indexed: 11/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide and targeted therapeutics exhibit limited success. Polo-like kinase 1 (PLK1), a Ser/Thr kinase, plays a pivotal role in cell-cycle regulation and is considered a promising target in HCC. Here, via structural optimization using both biochemical kinase assays and cellular antiproliferation assays, we discovered a potent and selective PLK1 kinase inhibitor, compound 31. Compound 31 exhibited biochemical activity with IC50 of < 0.508 nM against PLK1 and a KINOMEscan selectivity score (S(1)) of 0.02 at a concentration of 1 μM. Furthermore, 31 showed broad antiproliferative activity against a variety of cancer cell lines, with the lowest antiproliferative IC50 (11.1 nM) in the HCC cell line HepG2. A detailed mechanistic study of 31 revealed that inhibition of PLK1 by 31 induces mitotic arrest at the G2/M phase checkpoint, thus leading to cancer cell apoptosis. Moreover, 31 exhibited profound antitumor efficacy in a xenograft mouse model. Collectively, these results establish compound 31 as a good starting point for the development of PLK1 targeted therapeutics for HCC.
Collapse
Affiliation(s)
- Zhou Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Guyue Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shuang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yunzhan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiaji Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Baoding Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Huiying Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zheng Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
40
|
Cimino SK, Eng C. Up-and-Coming Experimental Drug Options for Metastatic Colorectal Cancer. J Exp Pharmacol 2020; 12:475-485. [PMID: 33204182 PMCID: PMC7667584 DOI: 10.2147/jep.s259287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is one of the top causes of cancer and cancer-related deaths worldwide. The prognosis of metastatic colorectal cancer is poor and treatment options are limited. Many patients will run out of treatment options before they become medically unfit for therapy. As such, there is a need to expand upon the current understanding of disease biology as well as drug resistance mechanisms in order to create new approaches for therapy. In this review article, we will discuss the mechanistic rationale and clinical data for new drugs and therapeutic combinations under development for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Sarah K Cimino
- Department of Pharmacy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cathy Eng
- Department of Medicine: Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
41
|
Zeidan AM, Ridinger M, Lin TL, Becker PS, Schiller GJ, Patel PA, Spira AI, Tsai ML, Samuëlsz E, Silberman SL, Erlander M, Wang ES. A Phase Ib Study of Onvansertib, a Novel Oral PLK1 Inhibitor, in Combination Therapy for Patients with Relapsed or Refractory Acute Myeloid Leukemia. Clin Cancer Res 2020; 26:6132-6140. [DOI: 10.1158/1078-0432.ccr-20-2586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
|
42
|
Kolosenko I, Palm-Apergi C. Small-molecule inhibitors for targeting polo-like kinase 1. Future Med Chem 2020; 12:1457-1460. [PMID: 32638616 DOI: 10.4155/fmc-2020-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Affiliation(s)
- Iryna Kolosenko
- Department of Laboratory Medicine, Biomolecular & Cellular Medicine, Karolinska Institutet, Stockholm, 141 57 Huddinge, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Biomolecular & Cellular Medicine, Karolinska Institutet, Stockholm, 141 57 Huddinge, Sweden
| |
Collapse
|
43
|
D’Amico S, Krasnowska EK, Manni I, Toietta G, Baldari S, Piaggio G, Ranalli M, Gambacurta A, Vernieri C, Di Giacinto F, Bernassola F, de Braud F, Lucibello M. DHA Affects Microtubule Dynamics Through Reduction of Phospho-TCTP Levels and Enhances the Antiproliferative Effect of T-DM1 in Trastuzumab-Resistant HER2-Positive Breast Cancer Cell Lines. Cells 2020; 9:E1260. [PMID: 32438775 PMCID: PMC7290969 DOI: 10.3390/cells9051260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
Trastuzumab emtansine (T-DM1) is an anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugated to the microtubule-targeting agent emtansine (DM1). T-DM1 is an effective agent in the treatment of patients with HER2-positive breast cancer whose disease has progressed on the first-line trastuzumab containing chemotherapy. However, both primary and acquired tumour resistance limit its efficacy. Increased levels of the phosphorylated form of Translationally Controlled Tumour Protein (phospho-TCTP) have been shown to be associated with a poor clinical response to trastuzumab therapy in HER2-positive breast cancer. Here we show that phospho-TCTP is essential for correct mitosis in human mammary epithelial cells. Reduction of phospho-TCTP levels by dihydroartemisinin (DHA) causes mitotic aberration and increases microtubule density in the trastuzumab-resistant breast cancer cells HCC1954 and HCC1569. Combinatorial studies show that T-DM1 when combined with DHA is more effective in killing breast cells compared to the effect induced by any single agent. In an orthotopic breast cancer xenograft model (HCC1954), the growth of the tumour cells resumes after having achieved a complete response to T-DM1 treatment. Conversely, DHA and T-DM1 treatment induces a severe and irreversible cytotoxic effect, even after treatment interruption, thus, improving the long-term efficacy of T-DM1. These results suggest that DHA increases the effect of T-DM1 as poison for microtubules and supports the clinical development of the combination of DHA and T-DM1 for the treatment of aggressive HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Silvia D’Amico
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| | - Ewa Krystyna Krasnowska
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| | - Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (G.T.); (S.B.)
| | - Silvia Baldari
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (G.T.); (S.B.)
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Marco Ranalli
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.V.); (F.d.B.)
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Flavio Di Giacinto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.V.); (F.d.B.)
- Oncology and Hemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Maria Lucibello
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| |
Collapse
|
44
|
Wang X, Li B, Ciotkowska A, Rutz B, Erlander MG, Ridinger M, Wang R, Tamalunas A, Waidelich R, Stief CG, Hennenberg M. Onvansertib, a polo-like kinase 1 inhibitor, inhibits prostate stromal cell growth and prostate smooth muscle contraction, which is additive to inhibition by α 1-blockers. Eur J Pharmacol 2020; 873:172985. [PMID: 32017934 DOI: 10.1016/j.ejphar.2020.172985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 02/02/2023]
Abstract
Prostate smooth muscle contraction and prostate enlargement contribute to lower urinary tract symptoms suggestive of benign prostatic hyperplasia. Recent evidence demonstrated that inhibitors for polo-like kinases (PLKs) inhibit smooth muscle contraction of human prostate tissues. However, their additive effects to α1-blockers, and effects on prostate growth are unknown. Here, we examined effects of a novel and highly selective PLK1 inhibitor, onvansertib on prostate smooth muscle contraction alone and in combination with α1-blockers, and on proliferation and viability of prostate stromal cells (WPMY-1). Prostate tissues were obtained from radical prostatectomy. Contractions were studied in an organ bath. Proliferation and viability were assessed by plate colony, EdU, and CCK-8 assay. Electric field stimulation (EFS)-induced contractions of human prostate tissues were inhibited to 34% by 100 nM and 1 μM onvansertib at 32 Hz, and to 48% and 47% by the α1-blockers tamsulosin and silodosin. Combination of onvansertib with tamsulosin or silodosin further reduced EFS-induced contractions in comparison to α1-blockers alone (59% and 61% respectively), and to onvansertib alone (68% for both). Noradrenaline-, phenylephrine-, methoxamine-, endothelin-1-, and ATP-induced contractions were inhibited by onvansertib (100 nM) to similar extent. Viability and proliferation of WPMY-1 cells were reduced in a concentration- and time-dependent manner (24-72 h, 10-100 nM). Onvansertib inhibits neurogenic, adrenergic, and endothelin-1- and ATP-induced contractions of human prostate smooth muscle, and proliferation of stromal cells. Contractions are reduced not more than 50% by α1-blockers. Combination of α1-blockers with onvansertib provides additive inhibition of prostate contractions.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Bingsheng Li
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Beata Rutz
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Ruixiao Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
45
|
Identification of PLK1 as a New Therapeutic Target in Mucinous Ovarian Carcinoma. Cancers (Basel) 2020; 12:cancers12030672. [PMID: 32183025 PMCID: PMC7140026 DOI: 10.3390/cancers12030672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 01/04/2023] Open
Abstract
Mucinous epithelial ovarian cancer (mEOC) is a rare subset of epithelial ovarian cancer. When diagnosed at a late stage, its prognosis is very poor, as it is quite chemo-resistant. To find new therapeutic options for mEOC, we performed high-throughput screening using a siRNA library directed against human protein kinases in a mEOC cell line, and polo-like kinase1 (PLK1) was identified as the kinase whose downregulation interfered with cell proliferation. Both PLK1 siRNA and two specific PLK1 inhibitors (onvansertib and volasertib) were able to inhibit cell growth, induce apoptosis and block cells in the G2/M phase of the cell cycle. We evaluated, in vitro, the combinations of PLK1 inhibitors and different chemotherapeutic drugs currently used in the treatment of mEOC, and we observed a synergistic effect of PLK1 inhibitors and antimitotic drugs. When translated into an in vivo xenograft model, the combination of onvansertib and paclitaxel resulted in stronger tumor regressions and in a longer mice survival than the single treatments. These effects were associated with a higher induction of mitotic block and induction of apoptosis, similarly to what was observed in vitro. These data suggest that the combination onvansertib/paclitaxel could represent a new active therapeutic option in mEOC.
Collapse
|
46
|
Ghelli Luserna di Rorà A, Martinelli G, Simonetti G. The balance between mitotic death and mitotic slippage in acute leukemia: a new therapeutic window? J Hematol Oncol 2019; 12:123. [PMID: 31771633 PMCID: PMC6880427 DOI: 10.1186/s13045-019-0808-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Mitosis is the process whereby an eukaryotic cell divides into two identical copies. Different multiprotein complexes are involved in the fine regulation of cell division, including the mitotic promoting factor and the anaphase promoting complex. Prolonged mitosis can result in cellular division, cell death, or mitotic slippage, the latter leading to a new interphase without cellular division. Mitotic slippage is one of the causes of genomic instability and has an important therapeutic and clinical impact. It has been widely studied in solid tumors but not in hematological malignancies, in particular, in acute leukemia. We review the literature data available on mitotic regulation, alterations in mitotic proteins occurring in acute leukemia, induction of prolonged mitosis and its consequences, focusing in particular on the balance between cell death and mitotic slippage and on its therapeutic potentials. We also present the most recent preclinical and clinical data on the efficacy of second-generation mitotic drugs (CDK1-Cyclin B1, APC/CCDC20, PLK, Aurora kinase inhibitors). Despite the poor clinical activity showed by these drugs as single agents, they offer a potential therapeutic window for synthetic lethal combinations aimed to selectively target leukemic cells at the right time, thus decreasing the risk of mitotic slippage events.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
47
|
Giordano A, Liu Y, Armeson K, Park Y, Ridinger M, Erlander M, Reuben J, Britten C, Kappler C, Yeh E, Ethier S. Polo-like kinase 1 (Plk1) inhibition synergizes with taxanes in triple negative breast cancer. PLoS One 2019; 14:e0224420. [PMID: 31751384 PMCID: PMC6872222 DOI: 10.1371/journal.pone.0224420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Within triple negative breast cancer, several molecular subtypes have been identified, underlying the heterogeneity of such an aggressive disease. The basal-like subtype is characterized by mutations in the TP53 gene, and is associated with a low pathologic complete response rate following neoadjuvant chemotherapy. In a genome-scale short hairpin RNA (shRNA) screen of breast cancer cells, polo-like kinase 1 (Plk1) was a frequent and strong hit in the basal breast cancer cell lines indicating its importance for growth and survival of these breast cancer cells. Plk1 regulates progression of cells through the G2-M phase of the cell cycle. We assessed the activity of two ATP-competitive Plk1 inhibitors, GSK461364 and onvansertib, alone and with a taxane in a set of triple negative breast cancer cell lines and in vivo. GSK461364 showed synergism with docetaxel in SUM149 (Combination Index 0.70) and SUM159 (CI, 0.62). GSK461364 in combination with docetaxel decreased the clonogenic potential (interaction test for SUM149 and SUM159, p<0.001 and p = 0.01, respectively) and the tumorsphere formation of SUM149 and SUM159 (interaction test, p = 0.01 and p< 0.001). In the SUM159 xenograft model, onvansertib plus paclitaxel significantly decreased tumor volume compared to single agent paclitaxel (p<0.0001). Inhibition of Plk1 in combination with taxanes shows promising results in a subset of triple negative breast cancer intrinsically resistant to chemotherapy. Onvansertib showed significant tumor volume shrinkage when combined with paclitaxel in vivo and should be considered in clinical trials for the treatment of triple negative cancers.
Collapse
Affiliation(s)
- Antonio Giordano
- Department of Medicine, Division of Hematology & Oncology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yueying Liu
- Department of Medicine, Division of Hematology & Oncology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kent Armeson
- Department of Public Health Sciences, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yeonhee Park
- Department of Public Health Sciences, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Maya Ridinger
- Trovagene Oncology, San Diego, California, United States of America
| | - Mark Erlander
- Trovagene Oncology, San Diego, California, United States of America
| | - James Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Carolyn Britten
- Department of Medicine, Division of Hematology & Oncology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Christiana Kappler
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Elizabeth Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indianapolis, United States of America
| | - Stephen Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
48
|
Zhao Y, Wang X. PLK4: a promising target for cancer therapy. J Cancer Res Clin Oncol 2019; 145:2413-2422. [PMID: 31492983 DOI: 10.1007/s00432-019-02994-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase that regulates centriole duplication. PLK4 deregulation causes centrosome number abnormalities, mitotic defects, chromosomal instability and, consequently, tumorigenesis. Therefore, PLK4 has emerged as a therapeutic target for the treatment of multiple cancers. In this review, we summarize the critical role of centrosome amplification and PLK4 in cancer. We also highlight recent advances in the development of PLK4 inhibitors and discuss potential combination therapies for cancer. METHODS The relevant literature from PubMed is reviewed in this article. The ClinicalTrials.gov database was searched for clinical trials related to the specific topic. RESULTS PLK4 is aberrantly expressed in multiple cancers and has prognostic value. Targeting PLK4 with inhibitors suppresses tumor growth in vitro and in vivo. CONCLUSIONS PLK4 plays an important role in centrosome amplification and tumor progression. PLK4 inhibitors used alone or in combination with other drugs have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for cancer. The results of relevant clinical trials await evaluation.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, 250021, Shandong, China.
| |
Collapse
|
49
|
Borba JV, Silva AC, Ramos PI, Grazzia N, Miguel DC, Muratov EN, Furnham N, Andrade CH. Unveiling the Kinomes of Leishmania infantum and L. braziliensis Empowers the Discovery of New Kinase Targets and Antileishmanial Compounds. Comput Struct Biotechnol J 2019; 17:352-361. [PMID: 30949306 PMCID: PMC6429582 DOI: 10.1016/j.csbj.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania (NTD) endemic in 98 countries. Although some drugs are available, current treatments deal with issues such as toxicity, low efficacy, and emergence of resistance. Therefore, there is an urgent need to identify new targets for the development of new antileishmanial drugs. Protein kinases (PKs), which play an essential role in many biological processes, have become potential drug targets for many parasitic diseases. A refined bioinformatics pipeline was applied in order to define and compare the kinomes of L. infantum and L. braziliensis, species that cause cutaneous and visceral manifestations of leishmaniasis in the Americas, the latter being potentially fatal if untreated. Respectively, 224 and 221 PKs were identified in L. infantum and L. braziliensis overall. Almost all unclassified eukaryotic PKs were assigned to six of nine major kinase groups and, consequently, most have been classified into family and subfamily. Furthermore, revealing the kinomes for both Leishmania species allowed for the prioritization of potential drug targets that could be explored for discovering new drugs against leishmaniasis. Finally, we used a drug repurposing approach and prioritized seven approved drugs and investigational compounds to be experimentally tested against Leishmania. Trametinib and NMS-1286937 inhibited the growth of L. infantum and L. braziliensis promastigotes and amastigotes and therefore might be good candidates for the drug repurposing pipeline.
Collapse
Affiliation(s)
- Joyce V.B. Borba
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| | - Arthur C. Silva
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| | - Pablo I.P. Ramos
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA, 40296-710, Brazil
| | - Nathalia Grazzia
- LEBIL – Laboratory of Leishmania Biology Infection Studies, Department of Animal Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Danilo C. Miguel
- LEBIL – Laboratory of Leishmania Biology Infection Studies, Department of Animal Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eugene N. Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Carolina H. Andrade
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| |
Collapse
|
50
|
Goroshchuk O, Kolosenko I, Vidarsdottir L, Azimi A, Palm-Apergi C. Polo-like kinases and acute leukemia. Oncogene 2019; 38:1-16. [PMID: 30104712 DOI: 10.1038/s41388-018-0443-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Acute leukemia is a common malignancy among children and adults worldwide and many patients suffer from chronic health issues using current therapeutic approaches. Therefore, there is a great need for the development of novel and more specific therapies with fewer side effects. The family of Polo-like kinases (Plks) is a group of five serine/threonine kinases that play an important role in cell cycle regulation and are critical targets for therapeutic invention. Plk1 and Plk4 are novel targets for cancer therapy as leukemic cells often express higher levels than normal cells. In contrast, Plk2 and Plk3 are considered to be tumor suppressors. Several small molecule inhibitors have been developed for targeting Plk1 inhibition. Despite reaching phase III clinical trials, one of the ATP-competitive Plk1 inhibitor, volasertib, did not induce an objective clinical response and even caused lethal side effects in some patients. In order to improve the specificity of the Plk1 inhibitors and reduce off-target side effects, novel RNA interference (RNAi)-based therapies have been developed. In this review, we summarize the mechanisms of action of the Plk family members in acute leukemia, describe preclinical studies and clinical trials involving Plk-targeting drugs and discuss novel approaches in Plk targeting.
Collapse
Affiliation(s)
- Oksana Goroshchuk
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Linda Vidarsdottir
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Alireza Azimi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|