1
|
Lin CJ, Cheng WT, Chen LC, Chen TL, Sheu MT, Lin HL. Oral metronomic therapy of pancreatic cancer with gemcitabine and paclitaxel co-loaded in lecithin-based Self-Nanoemulsifying preconcentrate ( LBSNEP). Int J Pharm 2023; 645:123370. [PMID: 37666310 DOI: 10.1016/j.ijpharm.2023.123370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/06/2023]
Abstract
This study aimed to evaluate gemcitabine (GEM)/paclitaxel (PTX) co-loaded into a lecithin-based self-nanoemulsifying preconcentrate (LBSNEP) orally administered in a metronomic therapeutic manner against pancreatic cancer. LBSNEP was developed and evaluated, composed of Caproyl 90, Tween80, lecithin, TPGS, and propyl glycol at a ratio of 20:20:30:5:25, resulting in a droplet diameter of approximately 180 nm. Cell viability studies on MIA PaCa-2 demonstrated a synergetic effect at a proportion of 1:2 between PTX and GEM. Additionally, LBSNEP and baicalein (BAI) were demonstrated to prevent GEM from being deaminated by cytidine deaminase. The combination of GEM, PTX, and BAI in the LBSNEP showed good dissolution in simulated gastric fluid. The pharmacokinetic study conducted on rats showed that co-administration of GEM, PTX, and BAI in the LBSNEP enhanced the respective relative oral bioavailability levels of GEM and PTX by 1.5- and 2-fold, respectively, compared to the solution group. The tumor inhibition study was conducted with metronomic therapy at a low daily dose compared to conventional therapy at a higher dose every 3 days. Results indicated that oral metronomic delivery of GEM/PTX/BAI LBSNEP could inhibit tumor growth during administration phase, and that there were similar tumor volumes compared to traditional chemotherapy at day 28 even if the dose of metronomic chemotherapy was 2.2-fold less than that of the latter. In conclusion, a self-nanoemulsifying drug-delivery system for the oral delivery of GEM, PTX, and BAI in a metronomic manner enhanced the therapeutic effect on pancreatic cancer, providing an alternative option for chemotherapy.
Collapse
Affiliation(s)
- Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Wen-Ting Cheng
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Tzu-Ling Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Hong-Liang Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Natu J, Nagaraju GP. Gemcitabine effects on tumor microenvironment of pancreatic ductal adenocarcinoma: Special focus on resistance mechanisms and metronomic therapies. Cancer Lett 2023; 573:216382. [PMID: 37666293 DOI: 10.1016/j.canlet.2023.216382] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest malignancies, with dismal survival rates and extremely prevalent chemoresistance. Gemcitabine is one of the primary treatments used in treating PDACs, but its benefits are limited due to chemoresistance, which could be attributed to interactions between the tumor microenvironment (TME) and intracellular processes. In preclinical models, certain schedules of administration of gemcitabine modulate the TME in a manner that does not promote resistance. Metronomic therapy constitutes a promising strategy to overcome some barriers associated with current PDAC treatments. This review will focus on gemcitabine's mechanism in treating PDAC, combination therapies, gemcitabine's interactions with the TME, and gemcitabine in metronomic therapies.
Collapse
Affiliation(s)
- Jay Natu
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA.
| |
Collapse
|
3
|
Zang W, Gao D, Yu M, Long M, Zhang Z, Ji T. Oral Delivery of Gemcitabine-Loaded Glycocholic Acid-Modified Micelles for Cancer Therapy. ACS NANO 2023; 17:18074-18088. [PMID: 37717223 PMCID: PMC10540784 DOI: 10.1021/acsnano.3c04793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The clinical utility of gemcitabine, an antimetabolite antineoplastic agent applied in various chemotherapy treatments, is limited due to the required intravenous injection. Although chemical structure modifications of gemcitabine result in enhanced oral bioavailability, these modifications compromise complex synthetic routes and cause unexpected side effects. In this study, gemcitabine-loaded glycocholic acid-modified micelles (Gem-PPG) were prepared for enhanced oral chemotherapy. The in vitro transport pathway experiments revealed that intact Gem-PPG were transported across the intestinal epithelial monolayer via an apical sodium-dependent bile acid transporter (ASBT)-mediated pathway. In mice, the pharmacokinetic analyses demonstrated that the oral bioavailability of Gem-PPG approached 81%, compared to less than 20% for unmodified micelles. In addition, the antitumor activity of oral Gem-PPG (30 mg/kg, BIW) was superior to that of free drug injection (60 mg/kg, BIW) in the xenograft model. Moreover, the assessments of hematology, blood chemistry, and histology all indicated the hypotoxicity profile of the drug-loaded micelles.
Collapse
Affiliation(s)
- Wenqing Zang
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Duo Gao
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaorong Yu
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Manmei Long
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Zhuan Zhang
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhai Ji
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| |
Collapse
|
4
|
Zhang L, Ke W, Zhao X, Lu Z. Resina Draconis extract exerts anti-HCC effects through METTL3-m6A-Survivin axis. Phytother Res 2022; 36:2542-2557. [PMID: 35443090 DOI: 10.1002/ptr.7467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Herbal medicines have become an important treasure reservoir for anti-HCC drugs because of their high efficiency and low toxicity. Herein, we investigated whether a 75% ethanol extract from Resina Draconis (ERD) exhibited comprehensive anti-HCC effects both in vivo and in vitro. We revealed that ERD effectively inhibited proliferation and triggered apoptosis of HCC cells in a dose- and time-dependent maner, posing no apparent apoptotic toxicity to normal liver cells. Moreover, ERD significantly inhibited the migration, invasion and metastasis of HCC cells. Importantly, ERD treatment effectively inhibited the growth of xenograft HCC in nude mice with low toxicity and low side effects. Molecular mechanism analysis showed that ERD strongly reduced the expression of anti-apoptotic protein Survivin, ultimately leading to the cleavage activation of apoptosis executive proteins such as Caspase 3 and Poly (ADP-ribose) polymerase (PARP). Survivin gene silencing apparently sensitized the apoptotic effect induced by ERD. Further experiments revealed that ERD inhibited N6-methyladenosine (m6 A) modification in Survivin mRNA by downregulating Methyltransferase-like 3 (METTL3) expression and reducing the binding rate of METTL3 and Survivin mRNA. Together, our findings suggest that ERD can be severed as a novel anti-HCC natural product by targeting METTL3-m6 A-Survivin axis.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weiwei Ke
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Immunotherapy Combined with Metronomic Dosing: An Effective Approach for the Treatment of NSCLC. Cancers (Basel) 2021; 13:cancers13081901. [PMID: 33920884 PMCID: PMC8071233 DOI: 10.3390/cancers13081901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Non-small cell lung cancer (NSCLC) claims almost 80% of the total lung cancer cases, with the late-stage disease having an estimated median survival time of up to five years. Patients with NSCLC benefit from traditional maximum tolerated dose (MTD) chemotherapy alone or combined with immunotherapy. However, efficacious such treatment options lead to side effects and poor patient quality of life. We show that metronomic (MTR) chemotherapy—based on the daily administration of chemotherapeutics in low, nontoxic doses—could potentially supplement MTD treatment options and indirectly prevent tumor growth leading to efficacy and less toxicity. Importantly when MTR chemotherapy is combined with an immunotherapy anti-PD1 agent, the anticipated efficacy is achieved with less toxicity, thus providing new options for the treatment of NSCLC. Abstract Pioneering studies on tumor and immune cell interactions have highlighted immune checkpoint inhibitors (ICIs) as revolutionizing interventions for the management of NSCLC, typically combined with traditional MTD chemotherapies, which usually lead to toxicities and resistance to treatment. Alternatively, MTR chemotherapy is based on the daily low dose administration of chemotherapeutics, preventing tumor growth indirectly by targeting the tumor microenvironment. The effects of MTR administration of an oral prodrug of gemcitabine (OralGem), alone or with anti-PD1, were evaluated. Relevant in vitro and in vivo models were developed to investigate the efficacy of MTR alone or with immunotherapy and the potential toxicities associated with each dosing scheme. MTR OralGem restricted tumor angiogenesis by regulating thrombospondin-1 (TSP-1) and vascular endothelial growth factor A (VEGFA) expression. MTR OralGem enhanced antitumor immunity by increasing T effector responses and cytokine release, concomitant with dampening regulatory T cell populations. Promising pharmacokinetic properties afforded minimized blood and thymus toxicity and favorable bioavailability upon MTR administration compared to MTD. The combination of MTR OralGem with immunotherapy was shown to be highly efficacious and tolerable, illuminating it as a strong candidate therapeutic scheme for the treatment of NSCLC.
Collapse
|
6
|
Morris J, Wishka DG, Lopez OD, Rudchenko V, Huang G, Hoffman SN, Borgel S, Georgius K, Carter J, Stotler H, Kunkel MW, Collins JM, Hollingshead MG, Teicher BA. F-aza-T-dCyd (NSC801845), a Novel Cytidine Analog, in Comparative Cell Culture and Xenograft Studies with the Clinical Candidates T-dCyd, F-T-dCyd, and Aza-T-dCyd. Mol Cancer Ther 2021; 20:625-631. [PMID: 33811149 PMCID: PMC8030693 DOI: 10.1158/1535-7163.mct-20-0738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/05/2020] [Accepted: 01/08/2021] [Indexed: 11/16/2022]
Abstract
In this article, 5-aza-4'-thio-2'-β-fluoro-2'-deoxycytidine (F-aza-T-dCyd, NSC801845), a novel cytidine analog, is first disclosed and compared with T-dCyd, F-T-dCyd, and aza-T-dCyd in cell culture and mouse xenograft studies in HCT-116 human colon carcinoma, OVCAR3 human ovarian carcinoma, NCI-H23 human NSCLC carcinoma, HL-60 human leukemia, and the PDX BL0382 bladder carcinoma. In three of five xenograft lines (HCT-116, HL-60, and BL-0382), F-aza-T-dCyd was more efficacious than aza-T-dCyd. Comparable activity was observed for these two agents against the NCI-H23 and OVCAR3 xenografts. In the HCT-116 study, F-aza-T-dCyd [10 mg/kg intraperitoneal (i.p.), QDx5 for four cycles], produced complete regression of the tumors in all mice with a response that proved durable beyond postimplant day 150 (129 days after the last dose). Similarly, complete tumor regression was observed in the HL-60 leukemia xenograft when mice were dosed with F-aza-T-dCyd (10 mg/kg i.p., QDx5 for three cycles). In the PDX BL-0382 bladder study, both oral and i.p. dosing of F-aza-T-dCyd (8 mg/kg QDx5 for three cycles) produced regressions that showed tumor regrowth beginning 13 days after dosing. These findings indicate that further development of F-aza-T-dCyd (NSC801845) is warranted. GRAPHICAL ABSTRACT: http://mct.aacrjournals.org/content/molcanther/20/4/625/F1.large.jpg.
Collapse
Affiliation(s)
- Joel Morris
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland.
| | - Donn G Wishka
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | - Omar D Lopez
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | | | | | | | - Suzanne Borgel
- Leidos Biomedical Laboratories, FNLCR, Frederick, Maryland
| | - Kyle Georgius
- Leidos Biomedical Laboratories, FNLCR, Frederick, Maryland
| | - John Carter
- Leidos Biomedical Laboratories, FNLCR, Frederick, Maryland
| | - Howard Stotler
- Leidos Biomedical Laboratories, FNLCR, Frederick, Maryland
| | - Mark W Kunkel
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | - Jerry M Collins
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | - Melinda G Hollingshead
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | - Beverly A Teicher
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
7
|
Wang Y, Wang G, Chen H, Sun Y, Sun M, Liu X, Jian W, He Z, Sun J. A facile di-acid mono-amidation strategy to prepare cyclization-activating mono-carboxylate transporter 1-targeting gemcitabine prodrugs for enhanced oral delivery. Int J Pharm 2020; 573:118718. [PMID: 31756441 DOI: 10.1016/j.ijpharm.2019.118718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
Abstract
Intestinal mono-carboxylate transporter 1 (MCT1) plays an important role in the oral absorption of short-chain fatty acids that were used as oxidative metabolite. However, the prodrug strategy targeting intestinal MCT1 for oral delivery is rarely exploited. The oral bioavailability of Gemcitabine (Gem) is low mainly due to its poor intestinal permeability and rapid metabolism. Herein, a facile di-acid mono-amidation strategy was firstly developed to target MCT1 for oral chemotherapy. The N4-amino group of Gem is mono-amidated with di-acids containing different carbon chain lengths, which could recognize intestinal MCT1 and are bio-activated at physiological pH independent of the hydrolysis enzymes. The adipic acid-Gem shows higher MCT1 affinity, better gastrointestinal tract stability (3-fold), improved oral bioavailability (8.8-fold), and less gastrointestinal toxicity in comparison to Gem. Moreover the bio-activation rate of the prodrugs decreases with the increased fatty acid chain length of the linkage under physiological conditions. In summary, we present the first evidence that MCT1 could act as a new target for oral prodrug delivery, and that the linkage could modify the bio-activation rate for achieving optimal oral bioavailability. Our findings provide novel knowledge to rationally design intestinal transporter-targeting oral carrier prodrug.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China; School of Pharmacy, Guang Xi University of Chinese Medicine, Wuhe Rode, Nanning 530200, China
| | - Gang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China; School of Pharmacy, Guang Xi University of Chinese Medicine, Wuhe Rode, Nanning 530200, China
| | - Hongxiang Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China; Center for Drug Evaluation, Jianguo Rode, Beijing 100022, China
| | - Yixin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Xiaohong Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Wang Jian
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, China
| | - Zhonggui He
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Jin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China; Municipal Key Laboratory of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, China.
| |
Collapse
|
8
|
Li PW, Luo S, Xiao LY, Tian BL, Wang L, Zhang ZR, Zeng YC. A novel gemcitabine derivative-loaded liposome with great pancreas-targeting ability. Acta Pharmacol Sin 2019; 40:1448-1456. [PMID: 31015736 DOI: 10.1038/s41401-019-0227-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
Gemcitabine (Gem) is a standard first-line treatment for pancreatic cancer (PC). However, its chemotherapeutic efficacy is hampered by various limitations such as short half-life, metabolic inactivation, and lack of tumor localizing. We previously synthesized a lipophilic Gem derivative (Gem formyl hexadecyl ester, GemC16) that exhibited improved antitumor activity in vitro. In this study, a target ligand N,N-dimethyl-1,3-propanediamine was conjugated to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[hydroxyl succinimidyl (polyethylene glycol-2000)] (DSPE-PEG-NHS) to form DSPE-PEG-2N. Then, pancreas-targeting liposomes (2N-LPs) were prepared using the film dispersion-ultrasonic method. GemC16-loaded 2N-LPs displayed near-spherical shapes with an average size distribution of 157.2 nm (polydispersity index (PDI) = 0.201). The encapsulation efficiency of GemC16 was up to 97.3% with a loading capacity of 8.9%. In human PC cell line (BxPC-3) and rat pancreatic acinar cell line (AR42J), cellular uptake of 2N-LPs was significantly enhanced compared with that of unmodified PEG-LPs. 2N-LPs exhibited more potent in vitro cytotoxicity against BxPC-3 and AR42J cell lines than PEG-LPs. After systemic administration in mice, 2N-LPs remarkably increased drug distribution in the pancreas. In an orthotopic tumor mouse model of PC, GemC16-bearing liposomes were more effective in preventing tumor growth than free GemC16. Among these treatments, 2N-LPs showed the best curative effect. Together, 2N-LPs represent a promising nanocarrier to achieve pancreas-targeting drug delivery, and this work would provide new ideas for the chemotherapy of PC.
Collapse
|
9
|
Curtis LT, van Berkel VH, Frieboes HB. Pharmacokinetic/pharmacodynamic modeling of combination-chemotherapy for lung cancer. J Theor Biol 2018; 448:38-52. [PMID: 29614265 DOI: 10.1016/j.jtbi.2018.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Chemotherapy for non-small cell lung cancer (NSCLC) typically involves a doublet regimen for a number of cycles. For any particular patient, a course of treatment is usually chosen from a large number of combinational protocols with drugs in concomitant or sequential administration. In spite of newer drugs and protocols, half of patients with early disease will live less than five years and 95% of those with advanced disease survive for less than one year. Here, we apply mathematical modeling to simulate tumor response to multiple drug regimens, with the capability to assess maximum tolerated dose (MTD) as well as metronomic drug administration. We couple pharmacokinetic-pharmacodynamic intracellular multi-compartment models with a model of vascularized tumor growth, setting input parameters from in vitro data, and using the models to project potential response in vivo. This represents an initial step towards the development of a comprehensive virtual system to evaluate tumor response to combinatorial drug regimens, with the goal to more efficiently identify optimal course of treatment with patient tumor-specific data. We evaluate cisplatin and gemcitabine with clinically-relevant dosages, and simulate four treatment NSCLC scenarios combining MTD and metronomic therapy. This work thus establishes a framework for systematic evaluation of tumor response to combination chemotherapy. The results with the chosen parameter set indicate that although a metronomic regimen may provide advantage over MTD, the combination of these regimens may not necessarily offer improved response. Future model evaluation of chemotherapy possibilities may help to assess their potential value to obtain sustained NSCLC regression for particular patients, with the ultimate goal of optimizing multiple-drug chemotherapy regimens in clinical practice.
Collapse
Affiliation(s)
- Louis T Curtis
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY 40208, USA
| | - Victor H van Berkel
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY 40208, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA; Department of Pharmacology & Toxicology, University of Louisville, KY, USA.
| |
Collapse
|
10
|
Ramayanti O, Brinkkemper M, Verkuijlen SAWM, Ritmaleni L, Go ML, Middeldorp JM. Curcuminoids as EBV Lytic Activators for Adjuvant Treatment in EBV-Positive Carcinomas. Cancers (Basel) 2018; 10:cancers10040089. [PMID: 29565326 PMCID: PMC5923344 DOI: 10.3390/cancers10040089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) persists in nasopharyngeal (NPC) and gastric carcinomas (EBVaGC) in a tightly latent form. Cytolytic virus activation (CLVA) therapy employs gemcitabine and valproic acid (GCb+VPA) to reactivate latent EBV into the lytic phase and antiviral valganciclovir to enhance cell death and prevent virus production. CLVA treatment has proven safe in phase-I/II trials with promising clinical responses in patients with recurrent NPC. However, a major challenge is to maximize EBV lytic reactivation by CLVA. Curcumin, a dietary spice used in Asian countries, is known for its antitumor property and therapeutic potential. Novel curcuminoids that were developed to increase efficacy and bioavailability may serve as oral CLVA adjuvants. We investigated the potential of curcumin and its analogs (curcuminoids) to trigger the EBV lytic cycle in EBVaGC and NPC cells. EBV-reactivating effects were measured by immunoblot and immunofluorescence using monoclonal antibodies specific for EBV lytic proteins. Two of the hit compounds (41, EF24) with high lytic inducing activity were further studied for their synergistic or antagonistic effects when combined with GCb+VPA and analyzed by cytotoxicity and mRNA profiling assays to measure the EBV reactivation. Curcuminoid as a single agent significantly induced EBV reactivation in recombinant GC and NPC lines. The drug effects were dose- and time-dependent. Micromolar concentration of curcuminoid EF24 enhanced the CLVA effect in all cell systems except SNU719, a naturally infected EBVaGC cell that carries a more tightly latent viral genome. These findings indicated that EF24 has potential as EBV lytic activator and may serve as an adjuvant in CLVA treatment.
Collapse
Affiliation(s)
- Octavia Ramayanti
- Department of Pathology, VU University Medical Center, 1081HV Amsterdam, The Netherlands.
| | - Mitch Brinkkemper
- Department of Pathology, VU University Medical Center, 1081HV Amsterdam, The Netherlands.
| | | | - Leni Ritmaleni
- Laboratory of Medicinal Chemistry, Gadjah Mada University, Yogyakarta 55281, Indonesia.
| | - Mei Lin Go
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore.
| | - Jaap M Middeldorp
- Department of Pathology, VU University Medical Center, 1081HV Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem Rev 2016; 116:14379-14455. [PMID: 27960273 DOI: 10.1021/acs.chemrev.6b00209] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleoside, nucleotide, and base analogs have been in the clinic for decades to treat both viral pathogens and neoplasms. More than 20% of patients on anticancer chemotherapy have been treated with one or more of these analogs. This review focuses on the chemical synthesis and biology of anticancer nucleoside, nucleotide, and base analogs that are FDA-approved and in clinical development since 2000. We highlight the cellular biology and clinical biology of analogs, drug resistance mechanisms, and compound specificity towards different cancer types. Furthermore, we explore analog syntheses as well as improved and scale-up syntheses. We conclude with a discussion on what might lie ahead for medicinal chemists, biologists, and physicians as they try to improve analog efficacy through prodrug strategies and drug combinations.
Collapse
Affiliation(s)
- Jadd Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Xiao Lu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Joseph A Hollenbaugh
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Jong Hyun Cho
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
May JP, Undzys E, Roy A, Li SD. Synthesis of a Gemcitabine Prodrug for Remote Loading into Liposomes and Improved Therapeutic Effect. Bioconjug Chem 2015; 27:226-37. [DOI: 10.1021/acs.bioconjchem.5b00619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan P. May
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Drug
Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Elijus Undzys
- Drug
Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Aniruddha Roy
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Drug
Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Shyh-Dar Li
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Drug
Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| |
Collapse
|
13
|
Jin Q, Feng L, Wang DD, Dai ZR, Wang P, Zou LW, Liu ZH, Wang JY, Yu Y, Ge GB, Cui JN, Yang L. A Two-Photon Ratiometric Fluorescent Probe for Imaging Carboxylesterase 2 in Living Cells and Tissues. ACS APPLIED MATERIALS & INTERFACES 2015; 7:28474-28481. [PMID: 26641926 DOI: 10.1021/acsami.5b09573] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, a two-photon ratiometric fluorescent probe NCEN has been designed and developed for highly selective and sensitive sensing of human carboxylesterase 2 (hCE2) based on the catalytic properties and substrate preference of hCE2. Upon addition of hCE2, the probe could be readily hydrolyzed to release 4-amino-1,8-naphthalimide (NAH), which brings remarkable red-shift in fluorescence (90 nm) spectrum. The newly developed probe exhibits good specificity, ultrahigh sensitivity, and has been successfully applied to determine the real activities of hCE2 in complex biological samples such as cell and tissue preparations. NCEN has also been used for two-photon imaging of intracellular hCE2 in living cells as well as in deep-tissues for the first time, and the results showed that the probe exhibited high ratiometric imaging resolution and deep-tissue imaging depth. All these findings suggested that this probe holds great promise for applications in bioimaging of endogenous hCE2 in living cells and in exploring the biological functions of hCE2 in complex biological systems.
Collapse
Affiliation(s)
- Qiang Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Lei Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116012, China
| | - Dan-Dan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Zi-Ru Dai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Ping Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Li-Wei Zou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Zhi-Hong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Jia-Yue Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Yang Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Guang-Bo Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116012, China
| | - Jing-Nan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116012, China
| | - Ling Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
14
|
Faivre SJ, Olszanski AJ, Weigang-Köhler K, Riess H, Cohen RB, Wang X, Myrand SP, Wickremsinhe ER, Horn CL, Ouyang H, Callies S, Benhadji KA, Raymond E. Phase I dose escalation and pharmacokinetic evaluation of two different schedules of LY2334737, an oral gemcitabine prodrug, in patients with advanced solid tumors. Invest New Drugs 2015; 33:1206-16. [PMID: 26377590 DOI: 10.1007/s10637-015-0286-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/03/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND This Phase-I-study aimed to determine the recommended Phase-II-dosing-schedule of LY2334737, an oral gemcitabine prodrug, in patients with advanced/metastatic solid tumors. Pharmacokinetics, cytokeratin-18 (CK18) levels, genetic polymorphisms, and antitumor activity were additionally evaluated. METHODS Patients received escalating doses of LY2334737 either every other day for 21 days (d) followed by 7 days-drug-free period (QoD-arm) or once daily for 7 days every other week (QD-arm). The 28 days-cycles were repeated until disease progression or unacceptable toxicity. Standard 3 + 3 dose-escalation was succeeded by a dose-confirmation phase (12 additional patients to be enrolled on the maximum tolerated dose [MTD]). RESULTS Forty-one patients received QoD- (40-100 mg) and 32 QD-dosing (40-90 mg). On QoD, 3/9 patients experienced dose-limiting toxicities (DLTs) on the 100 mg dose (2 × G3 diarrhea, 1 × G3 transaminase increase); 1 additional DLT (G3 diarrhea) occurred during dose confirmation at 90 mg (12 patients). On QD, 1 patient each experienced DLTs on 60 mg (G3 transaminase increase) and 80 mg (G3 prolonged QTcF-interval); 2/7 patients had 3 DLTs on the 90 mg dose (diarrhea, edema, liver-failure; all G3). The MTD was established at 90 mg for the QoD-arm. Seven patients on QoD and 4 on QD achieved SD (no CR + PR). Pharmacokinetics showed a dose-proportional increase in exposure of LY2334737 and dFdC without accumulation after repeated dosing. Significant increases in CK18 levels were observed. Genetic polymorphism of the cytidine deaminase gene (rs818202) could be associated with ≥ G3 hepatotoxicity. CONCLUSIONS Both schedules displayed linear pharmacokinetics and acceptable safety profiles. The recommended dose and schedule of LY2334737 for subsequent Phase-II-studies is 90 mg given QoD for 21 day.
Collapse
Affiliation(s)
- Sandrine J Faivre
- Department of Medical Oncology, Beaujon University Hospital, Clichy, France
| | | | | | - Hanno Riess
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charite Campus Virchow Hospital, Berlin, Germany
| | - Roger B Cohen
- Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuejing Wang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Scott P Myrand
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | | | - Candice L Horn
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Haojun Ouyang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Sophie Callies
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | | | - Eric Raymond
- Department of Medical Oncology, Beaujon University Hospital, Clichy, France. .,Hospital Beaujon, 100 Bd du General Leclerc, 92118, Clichy, France.
| |
Collapse
|
15
|
Phase 1b study of the oral gemcitabine 'Pro-drug' LY2334737 in combination with capecitabine in patients with advanced solid tumors. Invest New Drugs 2015; 33:432-9. [PMID: 25640850 DOI: 10.1007/s10637-015-0207-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
Abstract
Background This Phase 1b study aimed to determine the recommended Phase 2 dose of LY2334737, an oral pro-drug of gemcitabine, in combination with capecitabine, an oral pro-drug of 5-fluorouracil, in patients with advanced solid tumors. In addition, pharmacokinetics (PK) and tumor response were evaluated. Patients and methods Patients with advanced/metastatic solid tumors received 650 mg/m(2) capecitabine twice daily (BID) and escalating doses of LY2334737 once daily (QD; initial dose 10 mg/day), both for 14 days followed by 7-day drug holiday. Cycles were repeated until progressive disease (PD) or unacceptable toxicity. Results Fifteen patients received a median of 2 (range 1-7) treatment cycles; 14 patients discontinued due to PD, 1 due to toxicity (pyrexia). LY2334737 doses up to 40 mg/day were explored. Three dose-limiting toxicities were reported by 2 patients (fatigue, diarrhea, hyponatremia; all Grade 3). Seven patients achieved stable disease. Enrollment was stopped after unexpected hepatic toxicities were observed with LY2334737 QD in a study of Japanese patients. PK parameters for LY2334737 were consistent with the first-in-human study of LY2334737; PK data after 14 day combination treatment revealed no drug-drug interactions between LY2334737 and capecitabine. Conclusions No drug interactions or unexpected toxicities were observed in US patients when LY2334737 at doses up to 40 mg/day was administered QD in combination with capecitabine BID; the maximum tolerated dose was not reached.
Collapse
|
16
|
Phase 1 dose escalation and pharmacokinetic evaluation of oral gemcitabine prodrug (LY2334737) in combination with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 2014; 73:1205-15. [DOI: 10.1007/s00280-014-2457-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/18/2014] [Indexed: 02/04/2023]
|
17
|
The dipeptide monoester prodrugs of floxuridine and gemcitabine-feasibility of orally administrable nucleoside analogs. Pharmaceuticals (Basel) 2014; 7:169-91. [PMID: 24473270 PMCID: PMC3942691 DOI: 10.3390/ph7020169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/22/2014] [Indexed: 12/19/2022] Open
Abstract
Dipeptide monoester prodrugs of floxuridine and gemcitabine were synthesized. Their chemical stability in buffers, enzymatic stability in cell homogenates, permeability in mouse intestinal membrane along with drug concentration in mouse plasma, and anti-proliferative activity in cancer cells were determined and compared to their parent drugs. Floxuridine prodrug was more enzymatically stable than floxuridine and the degradation from prodrug to parent drug works as the rate-limiting step. On the other hand, gemcitabine prodrug was less enzymatically stable than gemcitabine. Those dipeptide monoester prodrugs exhibited 2.4- to 48.7-fold higher uptake than their parent drugs in Caco-2, Panc-1, and AsPC-1 cells. Floxuridine and gemcitabine prodrugs showed superior permeability in mouse jejunum to their parent drugs and exhibited the higher drug concentration in plasma after in situ mouse perfusion. Cell proliferation assays in ductal pancreatic cancer cells, AsPC-1 and Panc-1, indicated that dipeptide prodrugs of floxuridine and gemcitabine were more potent than their parent drugs. The enhanced potency of nucleoside analogs was attributed to their improved membrane permeability. The prodrug forms of 5′-l-phenylalanyl-l-tyrosyl-floxuridine and 5′-l-phenylalanyl-l-tyrosyl-gemcitabine appeared in mouse plasma after the permeation of intestinal membrane and the first-pass effect, suggesting their potential for the development of oral dosage form for anti-cancer agents.
Collapse
|
18
|
Hamed SS, Straubinger RM, Jusko WJ. Pharmacodynamic modeling of cell cycle and apoptotic effects of gemcitabine on pancreatic adenocarcinoma cells. Cancer Chemother Pharmacol 2013; 72:553-63. [PMID: 23835677 DOI: 10.1007/s00280-013-2226-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/08/2013] [Indexed: 01/19/2023]
Abstract
PURPOSE The standard of care for treating patients with pancreatic adenocarcinomas includes gemcitabine (2',2'-difluorodeoxycytidine). Gemcitabine primarily elicits its response by stalling the DNA replication forks of cells in the S phase of the cell cycle. To provide a quantitative framework for characterizing the cell cycle and apoptotic effects of gemcitabine, we developed a pharmacodynamic model in which the activation of cell cycle checkpoints or cell death is dependent on gemcitabine exposure. METHODS Three pancreatic adenocarcinoma cell lines (AsPC-1, BxPC-3, and MiaPaca-2) were exposed to varying concentrations (0-100,000 ng/mL) of gemcitabine over a period of 96 h in order to quantify proliferation kinetics and cell distributions among the cell cycle phases. The model assumes that the drug can inhibit cycle-phase transitioning in each of the 3 phases (G1, S, and G2/M) and can cause apoptosis of cells in G1 and G2/M phases. Fitting was performed using the ADAPT5 program. RESULTS The time course of gemcitabine effects was well described by the model, and parameters were estimated with good precision. Model predictions and experimental data show that gemcitabine induces cell cycle arrest in the S phase at low concentrations, whereas higher concentrations induce arrest in all cell cycle phases. Furthermore, apoptotic effects of gemcitabine appear to be minimal and take place at later time points. CONCLUSION The pharmacodynamic model developed provides a quantitative, mechanistic interpretation of gemcitabine efficacy in 3 pancreatic cancer cell lines, and provides useful insights for rational selection of chemotherapeutic agents for combination therapy.
Collapse
Affiliation(s)
- Salaheldin S Hamed
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
19
|
Preclinical absorption, distribution, metabolism, and excretion of an oral amide prodrug of gemcitabine designed to deliver prolonged systemic exposure. Pharmaceutics 2013; 5:261-76. [PMID: 24300450 PMCID: PMC3834946 DOI: 10.3390/pharmaceutics5020261] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 11/30/2022] Open
Abstract
Gemcitabine is an intravenously administered nucleoside analog chemotherapeutic agent. The ability to deliver this agent as an oral drug would allow greater flexibility of administration and patient convenience; however, attempts have been fraught with high first-pass metabolism and potential intestinal toxicity. Alternatively, an amide prodrug of gemcitabine (LY2334737) was discovered, which is able to avoid the extensive first-pass metabolism that occurs following administration of gemcitabine. Preclinical in vitro and in vivo experiments were conducted to evaluate the hydrolysis and pharmacokinetics of LY2334737 and its downstream metabolites. In mice, rats, and dogs, the prodrug is absorbed largely intact across the intestinal epithelium and delivers LY2334737 to systemic circulation. The hydrolysis of LY2334737 is relatively slow, resulting in sustained release of gemcitabine in vivo. In vitro experiments identified carboxylesterase 2 (CES2) as a major enzyme involved in the hydrolysis of LY2334737, but with relatively low intrinsic clearance. Following hydrolysis of the prodrug, gemcitabine is cleared predominantly via the formation of its inactive metabolite dFdU. Both biliary and renal excretion was responsible for the elimination of LY2334737 and its metabolites in both mice and dogs.
Collapse
|
20
|
Yamamoto N, Nokihara H, Yamada Y, Uenaka K, Sekiguchi R, Makiuchi T, Slapak CA, Benhadji KA, Tamura T. Phase I study of oral gemcitabine prodrug (LY2334737) in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 2013; 71:1645-55. [PMID: 23616084 DOI: 10.1007/s00280-013-2165-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/12/2013] [Indexed: 01/17/2023]
Abstract
PURPOSE LY2334737 is an oral gemcitabine prodrug. This Phase I study assessed the safety and tolerability of LY2334737 in Japanese patients with solid tumors and evaluated pharmacokinetics (PK), pharmacodynamics, and antitumor activity. METHODS Patients with advanced/metastatic solid tumors received escalating doses of LY2334737 once daily for 14 days, followed by a 7-day drug-free period. Cycles were repeated until discontinuation criteria were met. RESULTS Of 13 patients treated, 3 received 20 mg/day, 6 received 30 mg/day, 4 received 40 mg/day. On the 40 mg dose, 3 patients experienced dose-limiting toxicities (DLTs): hepatic toxicities (e.g., Grade [G]3/4 transaminase and G1-3 bilirubin elevation) and G4 thrombocytopenia; all 3 showed features of disseminated intravascular coagulation. One additional DLT occurred on the 30 mg dose (G3 transaminase elevation). Exploratory pharmacogenetic analyses identified a genetic variation in the CES2 gene potentially associated with these DLTs. PK data showed no clear relationship between the AUC of gemcitabine and its incorporation into leukocyte DNA; 2 of the 3 DLT patients had high incorporation. Two patients (30 mg/day) achieved stable disease with progression-free survival lasting 135 and 155 days. CONCLUSIONS LY2334737 was tolerated by Japanese patients up to 30 mg/day. The toxicities observed at the 40 mg dose may require the development of alternative dosing schedules.
Collapse
Affiliation(s)
- Noboru Yamamoto
- Division of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|