1
|
Emerging photodynamic/sonodynamic therapies for urological cancers: progress and challenges. J Nanobiotechnology 2022; 20:437. [PMID: 36195918 PMCID: PMC9531473 DOI: 10.1186/s12951-022-01637-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/14/2022] [Indexed: 12/01/2022] Open
Abstract
Photodynamic therapy (PDT), and sonodynamic therapy (SDT) that developed from PDT, have been studied for decades to treat solid tumors. Compared with other deep tumors, the accessibility of urological tumors (e.g., bladder tumor and prostate tumor) makes them more suitable for PDT/SDT that requires exogenous stimulation. Due to the introduction of nanobiotechnology, emerging photo/sonosensitizers modified with different functional components and improved physicochemical properties have many outstanding advantages in cancer treatment compared with traditional photo/sonosensitizers, such as alleviating hypoxia to improve quantum yield, passive/active tumor targeting to increase drug accumulation, and combination with other therapeutic modalities (e.g., chemotherapy, immunotherapy and targeted therapy) to achieve synergistic therapy. As WST11 (TOOKAD® soluble) is currently clinically approved for the treatment of prostate cancer, emerging photo/sonosensitizers have great potential for clinical translation, which requires multidisciplinary participation and extensive clinical trials. Herein, the latest research advances of newly developed photo/sonosensitizers for the treatment of urological cancers, and the efficacy, as well as potential biological effects, are highlighted. In addition, the clinical status of PDT/SDT for urological cancers is presented, and the optimization of the photo/sonosensitizer development procedure for clinical translation is discussed.
Collapse
|
2
|
Jain M, Bouilloux J, Borrego I, Cook S, van den Bergh H, Lange N, Wagnieres G, Giraud MN. Cathepsin B-Cleavable Polymeric Photosensitizer Prodrug for Selective Photodynamic Therapy: In Vitro Studies. Pharmaceuticals (Basel) 2022; 15:564. [PMID: 35631388 PMCID: PMC9146285 DOI: 10.3390/ph15050564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Cathepsin B is a lysosomal cysteine protease that plays an important role in cancer, atherosclerosis, and other inflammatory diseases. The suppression of cathepsin B can inhibit tumor growth. The overexpression of cathepsin B can be used for the imaging and photodynamic therapy (PDT) of cancer. PDT targeting of cathepsin B may have a significant potential for selective destruction of cells with high cathepsin B activity. We synthesized a cathepsin B-cleavable polymeric photosensitizer prodrug (CTSB-PPP) that releases pheophorbide a (Pha), an efficient photosensitizer upon activation with cathepsin B. We determined the concentration dependant uptake in vitro, the safety, and subsequent PDT-induced toxicity of CTSB-PPP, and ROS production. CTSB-PPP was cleaved in bone marrow cells (BMCs), which express a high cathepsin B level. We showed that the intracellular fluorescence of Pha increased with increasing doses (3-48 µM) and exerted significant dark toxicity above 12 µM, as assessed by MTT assay. However, 6 µM showed no toxicity on cell viability and ex vivo vascular function. Time-dependent studies revealed that cellular accumulation of CTSB-PPP (6 µM) peaked at 60 min of treatment. PDT (light dose: 0-100 J/cm2, fluence rate: 100 mW/cm2) was applied after CTSB-PPP treatment (6 µM for 60 min) using a special frontal light diffuser coupled to a diode laser (671 nm). PDT resulted in a light dose-dependent reduction in the viability of BMCs and was associated with an increased intracellular ROS generation. Fluorescence and ROS generation was significantly reduced when the BMCs were pre-treated with E64-d, a cysteine protease inhibitor. In conclusion, we provide evidence that CTSB-PPP showed no dark toxicity at low concentrations. This probe could be utilized as a potential imaging agent to identify cells or tissues with cathepsin B activity. CTSB-PPP-based PDT results in effective cytotoxicity and thus, holds great promise as a therapeutic agent for achieving the selective destruction of cells with high cathepsin B activity.
Collapse
Affiliation(s)
- Manish Jain
- Department EMC, Faculty of Sciences and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.J.); (I.B.); (S.C.)
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Jordan Bouilloux
- School of Pharmaceutical Sciences, Laboratory of Pharmaceutical Technology, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, CH-1211 Genève, Switzerland; (J.B.); (N.L.)
| | - Ines Borrego
- Department EMC, Faculty of Sciences and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.J.); (I.B.); (S.C.)
| | - Stéphane Cook
- Department EMC, Faculty of Sciences and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.J.); (I.B.); (S.C.)
- HFR Hôpital Fribourgeois, CH-1708 Fribourg, Switzerland
| | - Hubert van den Bergh
- Medical Photonics Group, LCOM-ISIC, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland;
| | - Norbert Lange
- School of Pharmaceutical Sciences, Laboratory of Pharmaceutical Technology, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, CH-1211 Genève, Switzerland; (J.B.); (N.L.)
| | - Georges Wagnieres
- Laboratory for Functional and Metabolic Imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), CH-1105 Lausanne, Switzerland;
| | - Marie-Noelle Giraud
- Department EMC, Faculty of Sciences and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.J.); (I.B.); (S.C.)
| |
Collapse
|
3
|
Double-PEGylated Cyclopeptidic Photosensitizer Prodrug Improves Drug Uptake from In Vitro to Hen's Egg Chorioallantoic Membrane Model. Molecules 2021; 26:molecules26206241. [PMID: 34684822 PMCID: PMC8540087 DOI: 10.3390/molecules26206241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Cyclopeptidic photosensitizer prodrugs (cPPPs) are compounds designed to specifically target overexpressed hydrolases such as serine proteases, resulting in their specific activation in close proximity to tumor cells. In this study, we explored a series of conjugates that can be selectively activated by the urokinase plasminogen activator (uPA). They differ from each other by their pheophorbide a (Pha) loading, their number of PEG chains and the eventual presence of black hole quenchers (BHQ3). The involvement of a peptidic linker between the drugs and the cyclopeptidic carrier allows specific cleavage by uPA. Restoration of the photophysical activity was observed in vitro on A549 lung and MCF7 breast cancer cells that exhibited an increase in red fluorescence emission up to 5.1-fold and 7.8-fold, respectively for uPA-cPPQ2+2/5. While these cPPP conjugates do not show dark toxicity, they revealed their phototoxic potential in both cell lines at 5 µM of Phaeq and a blue light fluence of 12.7 J/cm2 that resulted in complete cell death with almost all conjugates. This suggests, in addition to the promising use for cancer diagnosis, a use as a PDT agent. Intravenous injection of tetrasubstituted conjugates in fertilized hen eggs bearing a lung cancer nodule (A549) showed that a double PEGylation was favorable for the selective accumulation of the unquenched Pha moieties in the tumor nodules. Indeed, the diPEGylated uPA-cPPP4/52 induced a 5.2-fold increase in fluorescence, while the monoPEGylated uPA-cPPP4/5 or uPA-cPPQ2+2/5 led to a 0.4-fold increase only.
Collapse
|
4
|
Jasim KA, Waheed IF, Topps M, Gesquiere AJ. Multifunctional system for combined chemodynamic–photodynamic therapy employing the endothelin axis based on conjugated polymer nanoparticles. Polym Chem 2021. [DOI: 10.1039/d1py00964h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most nanomedicines that attack tumors by Reactive Oxygen Species (ROS) based on lipid peroxidation mechanisms require external activation to work.
Collapse
Affiliation(s)
- Khalaf A. Jasim
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq
| | - Ibrahim F. Waheed
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq
| | - Martin Topps
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | - Andre J. Gesquiere
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
- The College of Optics and Photonics (CREOL), University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
5
|
Luby BM, Walsh CD, Zheng G. Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons. Angew Chem Int Ed Engl 2019; 58:2558-2569. [DOI: 10.1002/anie.201805246] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/08/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin M. Luby
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
| | - Connor D. Walsh
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Department of Medical BiophysicsUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
6
|
Luby BM, Walsh CD, Zheng G. Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805246] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Benjamin M. Luby
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
| | - Connor D. Walsh
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Department of Medical BiophysicsUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
7
|
Arora K, Herroon M, Al-Afyouni MH, Toupin NP, Rohrabaugh TN, Loftus LM, Podgorski I, Turro C, Kodanko JJ. Catch and Release Photosensitizers: Combining Dual-Action Ruthenium Complexes with Protease Inactivation for Targeting Invasive Cancers. J Am Chem Soc 2018; 140:14367-14380. [PMID: 30278123 DOI: 10.1021/jacs.8b08853] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dual action agents containing a cysteine protease inhibitor and Ru-based photosensitizer for photodynamic therapy (PDT) were designed, synthesized, and validated in 2D culture and 3D functional imaging assays of triple-negative human breast cancer (TNBC). These combination agents deliver and release Ru-based PDT agents to tumor cells and cause cancer cell death upon irradiation with visible light, while at the same time inactivating cathespin B (CTSB), a cysteine protease strongly associated with invasive and metastatic behavior. In total five Ru-based complexes were synthesized with the formula [Ru(bpy)2(1)](O2CCF3)2 (3), where bpy = 2,2'-bipyridine and 1 = a bipyridine-based epoxysuccinyl inhibitor; [Ru(tpy)(NN)(2)](PF6)2, where tpy = terpiridine, 2 = a pyridine-based epoxysuccinyl inhibitor and NN = 2,2'-bipyridine (4); 6,6'-dimethyl-2,2'-bipyridine (5); benzo[ i]dipyrido[3,2- a:2',3'- c]phenazine (6); and 3,6-dimethylbenzo[ i]dipyrido[3,2- a:2',3'- c]phenazine (7). Compound 3 contains a [Ru(bpy)3]2+ fluorophore and was designed to track the subcellular localization of the conjugates, whereas compounds 4-7 were designed to undergo either photoactivated ligand dissociation and/or singlet oxygen generation. Photochemical studies confirmed that complexes 5 and 7 undergo photoactivated ligand dissociation, whereas 6 and 7 generate singlet oxygen. Inhibitors 1-7 all potently and irreversibly inhibit CTSB. Compounds 4-7 were evaluated against MDA-MB-231 TNBC and MCF-10A breast epithelial cells in 2D and 3D culture for effects on proteolysis and cell viability under dark and light conditions. Collectively, these data reveal that 4-7 potently inhibit dye-quenched (DQ) collagen degradation, whereas only compound 7 causes efficient cell death under light conditions, consistent with its ability to release a Ru(II)-based photosensitizer and to also generate 1O2.
Collapse
Affiliation(s)
- Karan Arora
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Mackenzie Herroon
- Department of Pharmacology, School of Medicine , Wayne State University , Detroit , Michigan 48201 , United States
| | - Malik H Al-Afyouni
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Nicholas P Toupin
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Lauren M Loftus
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine , Wayne State University , Detroit , Michigan 48201 , United States.,Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Jeremy J Kodanko
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States.,Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| |
Collapse
|
8
|
Ruhi MK, Ak A, Gülsoy M. Dose-dependent photochemical/photothermal toxicity of indocyanine green-based therapy on three different cancer cell lines. Photodiagnosis Photodyn Ther 2018; 21:334-343. [PMID: 29339061 DOI: 10.1016/j.pdpdt.2018.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/01/2017] [Accepted: 01/08/2018] [Indexed: 11/26/2022]
Abstract
The Food and Drug Administration-approved Indocyanine Green can be used as a photosensitizer to kill cancer cells selectively. Although indocyanine green is advantageous as a photosensitizer in terms of strong absorption in the near-infrared region, indocyanine green-based cancer treatment is still not approved as a clinical method. Some reasons for this are aggregation at high concentrations, rapid clearance of the photosensitizer from the body, low singlet oxygen quantum yield, and the uncertainty concerning its action mechanism. This in vitro study focuses on two of these points: "what is the cell inhibition mechanism of indocyanine green-based therapy?" and "how the dose-dependent aggregation problem of indocyanine green alters its cell inhibition efficiency?" The following experiments were conducted to provide insight into these points. Nontoxic doses of indocyanine green and near-infrared laser were determined. The aggregation behavior of indocyanine green was verified through experiments. The singlet oxygen quantum yield of indocyanine green at different concentrations were calculated. Various indocyanine green and energy densities of near-infrared light were applied to prostate cancer, neuroblastoma, and colon cancer cells. An MTT assay was performed at the end of the first, second, and third days following the treatments to determine the cell viability. Temperature changes in the medium during laser exposure were recorded. ROS generation following the treatment was verified by using a Total Reactive Oxygen Species detection kit. An apoptosis detection test was performed to establish the cell death mechanism and, finally, the cellular uptakes of the three different cells were measured. According to the results, indocyanine green-based therapy causes cell viability decrease for three cancer cell lines by means of excessive reactive oxygen species production. Different cells have different sensitivities to the therapy possibly because of the differentiation level and structural differences. The singlet oxygen generation of indocyanine green decreases at high concentrations because of aggregation. Nevertheless, better cancer cell killing effect was observed at higher photosensitizer concentrations. This result reveals that the cellular uptake of indocyanine green was determinant for better cancer cell inhibition.
Collapse
Affiliation(s)
- Mustafa Kemal Ruhi
- Bogazici University, Institute of Biomedical Engineering, Uskudar, Istanbul, 34684, Turkey.
| | - Ayşe Ak
- Erzincan University, Engineering Faculty, Biomedical Engineering, Erzincan, 24100, Turkey
| | - Murat Gülsoy
- Bogazici University, Institute of Biomedical Engineering, Uskudar, Istanbul, 34684, Turkey.
| |
Collapse
|
9
|
Bouilloux J, Yuschenko O, Dereka B, Boso G, Zbinden H, Vauthey E, Babič A, Lange N. Cyclopeptidic photosensitizer prodrugs as proteolytically triggered drug delivery systems of pheophorbide A: part I – self-quenched prodrugs. Photochem Photobiol Sci 2018; 17:1728-1738. [DOI: 10.1039/c8pp00317c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RAFTs bearing multiple copies of pheophorbide A allow perfectly defined photosensitizer prodrugs.
Collapse
Affiliation(s)
- Jordan Bouilloux
- School of Pharmaceutical Sciences
- Laboratory of Pharmaceutical Technology
- University of Geneva
- University of Lausanne
- Genève 4
| | - Oleksandr Yuschenko
- School of Chemistry and Biochemistry
- Department of Physical Chemistry
- Ultrafast Photochemistry
- University of Geneva
- Genève 4
| | - Bogdan Dereka
- School of Chemistry and Biochemistry
- Department of Physical Chemistry
- Ultrafast Photochemistry
- University of Geneva
- Genève 4
| | - Gianluca Boso
- Group of Applied Physics
- University of Geneva
- Genève 4
- Switzerland
| | - Hugo Zbinden
- Group of Applied Physics
- University of Geneva
- Genève 4
- Switzerland
| | - Eric Vauthey
- School of Chemistry and Biochemistry
- Department of Physical Chemistry
- Ultrafast Photochemistry
- University of Geneva
- Genève 4
| | - Andréj Babič
- School of Pharmaceutical Sciences
- Laboratory of Pharmaceutical Technology
- University of Geneva
- University of Lausanne
- Genève 4
| | - Norbert Lange
- School of Pharmaceutical Sciences
- Laboratory of Pharmaceutical Technology
- University of Geneva
- University of Lausanne
- Genève 4
| |
Collapse
|
10
|
Luo D, Geng J, Li N, Carter KA, Shao S, Atilla-Gokcumen GE, Lovell JF. Vessel-Targeted Chemophototherapy with Cationic Porphyrin-Phospholipid Liposomes. Mol Cancer Ther 2017; 16:2452-2461. [PMID: 28729400 DOI: 10.1158/1535-7163.mct-17-0276] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/02/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022]
Abstract
Cationic liposomes have been used for targeted drug delivery to tumor blood vessels, via mechanisms that are not fully elucidated. Doxorubicin (Dox)-loaded liposomes were prepared that incorporate a cationic lipid; 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), along with a small amount of porphyrin-phospholipid (PoP). Near-infrared (NIR) light caused release of entrapped Dox via PoP-mediated DOTAP photo-oxidation. The formulation was optimized to enable extremely rapid NIR light-triggered Dox release (i.e., in 15 seconds), while retaining reasonable serum stability. In vitro, cationic PoP liposomes readily bound to both MIA PaCa-2 human pancreatic cancer cells and human vascular endothelial cells. When administered intravenously, cationic PoP liposomes were cleared from circulation within minutes, with most accumulation in the liver and spleen. Fluorescence imaging revealed that some cationic PoP liposomes also localized at the tumor blood vessels. Compared with analogous neutral liposomes, strong tumor photoablation was induced with a single treatment of cationic PoP liposomes and laser irradiation (5 mg/kg Dox and 100 J/cm2 NIR light). Unexpectedly, empty cationic PoP liposomes (lacking Dox) induced equally potent antitumor phototherapeutic effects as the drug loaded ones. A more balanced chemo- and phototherapeutic response was subsequently achieved when antitumor studies were repeated using higher drug dosing (7 mg/kg Dox) and a low fluence phototreatment (20 J/cm2 NIR light). These results demonstrate the feasibility of vessel-targeted chemophototherapy using cationic PoP liposomes and also illustrate synergistic considerations. Mol Cancer Ther; 16(11); 2452-61. ©2017 AACR.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Nasi Li
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York.
| |
Collapse
|
11
|
|
12
|
Tamiaki H, Tanaka T, Wang XF. Photophysical properties of synthetic monomer, dimer, trimer, and tetramer of chlorophyll derivatives and their application to organic solar cells. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Yang Y, Guo Q, Xia M, Li Y, Peng X, Liu T, Tong X, Xu J, Guo H, Qian W, Hou S, Dai J, Wang H, Liu R, Guo Y. Generation and characterization of a target-selectively activated antibody against epidermal growth factor receptor with enhanced anti-tumor potency. MAbs 2015; 7:440-50. [PMID: 25679409 DOI: 10.1080/19420862.2015.1008352] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Panitumumab, as a commercially available antibody, is an effective anticancer therapeutic against epidermal growth factor receptor (EGFR), although it exerts weak antibody-dependent cell-mediated cytotoxicity (ADCC) activity owing to its IgG2 nature. Here, we firstly engineered panitumumab by grafting its variable region into an IgG1 backbone. The engineered panitumumab (denoted as Pan) retained binding activity identical to the parental antibody while exhibiting stronger ADCC activity in vitro and more potent antitumor effect in vivo. To further enhance the target selectivity of Pan, we generated Pan-P by tethering an epitope-blocking peptide to Pan via a tumor-specific protease selective linker. Pan-P showed almost 40-fold weaker affinity compared with Pan, but functional activity was restored to a similar extent as Pan when Pan-P was selectively activated by urokinase-type plasminogen activator (uPA). More importantly, targeted localization of Pan-P was observed in tumor samples from colorectal cancer (CRC) patients and tumor-bearing nude mice, strongly indicating that specific activation also existed ex vivo and in vivo. Furthermore, Pan-P also exhibited effective in vivo antitumor potency similar to Pan. Taken together, our data evidence the enhanced antitumor potency and excellent target selectivity of Pan-P, suggesting its potential use for minimizing on-target toxicity in anti-EGFR therapy.
Collapse
Key Words
- ADCC
- ADCC, antibody-dependent cell-mediated cytotoxicity
- CCK-8, Cell Counting Kit 8Yun
- CI, confidence interval
- CRC, colorectal cancer
- ECD, extracellular domain
- EGFR
- EGFR VIII, EGFR Type III Variant
- EGFR, epidermal growth factor receptor
- ELISA, enzyme-linked immunosorbent assay
- HC, heavy chain
- IgG, Immunoglobulin G
- LC, light chain
- Probody™
- SEC, size exclusion chromatography
- SPR, surface plasmon resonance
- TKI, tyrosine kinase inhibitor
- mAb, monoclonal antibody
- monoclonal antibody
- panitumumab
- target-selective activation
- uPA, urokinase-type plasminogen activator
Collapse
Affiliation(s)
- Yun Yang
- a PLA General Hospital Cancer Center ; PLA School of Medicine ; Beijing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Marien A, Gill I, Ukimura O, Nacim B, Villers A. Target ablation—Image-guided therapy in prostate cancer11Arnaud Marien is supported by a Grant from ARC. Inderbir Gill is a paid consultant for Hansen Medical and EDAP. Osamu Ukimura is an Advisory Board Member of SonaCare Medical LLC. All others have nothing to disclose. Urol Oncol 2014; 32:912-23. [DOI: 10.1016/j.urolonc.2013.10.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 11/28/2022]
|
15
|
Romero Otero J, Garcia Gomez B, Campos Juanatey F, Touijer KA. Prostate cancer biomarkers: an update. Urol Oncol 2014; 32:252-60. [PMID: 24495450 DOI: 10.1016/j.urolonc.2013.09.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 01/07/2023]
Abstract
Many aspects of prostate cancer diagnosis and treatment could be greatly advanced with new, effective biomarkers. Prostate-specific antigen (PSA) has multiple weaknesses as a biomarker, such as not distinguishing well between cancer and benign prostatic hyperplasia or between indolent and aggressive cancers, thus leading to overtreatment, especially unnecessary biopsies. PSA also often fails to indicate accurately which patients are responding to a given treatment. Yet PSA is the only prostate cancer biomarker routinely used by urologists. Here, we provide updated information on the most relevant of the other biomarkers currently in use or in development for prostate cancer. Recent research shows improvement over using PSA alone by comparing total PSA (tPSA) or free PSA (fPSA) with new, related markers, such as prostate cancer antigen (PCA) 3, the individual molecular forms of PSA (proPSA, benign PSA, and intact PSA), and kallikreins other than PSA. Promising results have also been seen with the use of the fusion gene TMPRSS2:ERG and with various forms of the urokinase plasminogen activation receptor. Initially, there were high hopes for early PCA, but those data were not reproducible and thus research on early PCA has been abandoned. Much work remains to be done before any of these biomarkers are fully validated and accepted. Currently, the only markers discussed in this paper with Food and Drug Administration-approved tests are PCA 3 and an isoform of proPSA, [-2]proPSA. Assays are in development for most of the other biomarkers described in this paper. While the biomarker validation process can be long and filled with obstacles, the rewards will be great-in terms of both patient care and costs to the health care system.
Collapse
Affiliation(s)
| | | | - Felix Campos Juanatey
- Hospital Universitario 12 Octubre, Madrid, Spain; Hospital Universitario Marques De Valdecilla, Santander, Spain
| | - Karim A Touijer
- Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY; Department of Urology, Weill Medical College of Cornell University, New York, NY.
| |
Collapse
|