1
|
Rios SA, Oyervides S, Uribe D, Reyes AM, Fanniel V, Vazquez J, Keniry M. Emerging Therapies for Glioblastoma. Cancers (Basel) 2024; 16:1485. [PMID: 38672566 PMCID: PMC11048459 DOI: 10.3390/cancers16081485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma is most commonly a primary brain tumor and the utmost malignant one, with a survival rate of approximately 12-18 months. Glioblastoma is highly heterogeneous, demonstrating that different types of cells from the same tumor can manifest distinct gene expression patterns and biological behaviors. Conventional therapies such as temozolomide, radiation, and surgery have limitations. As of now, there is no cure for glioblastoma. Alternative treatment methods to eradicate glioblastoma are discussed in this review, including targeted therapies to PI3K, NFKβ, JAK-STAT, CK2, WNT, NOTCH, Hedgehog, and TGFβ pathways. The highly novel application of oncolytic viruses and nanomaterials in combating glioblastoma are also discussed. Despite scores of clinical trials for glioblastoma, the prognosis remains poor. Progress in breaching the blood-brain barrier with nanomaterials and novel avenues for targeted and combination treatments hold promise for the future development of efficacious glioblastoma therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Megan Keniry
- School of Integrative Biological and Chemical Sciences, College of Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (S.A.R.); (D.U.); (A.M.R.)
| |
Collapse
|
2
|
Caffo M, Casili G, Caruso G, Barresi V, Campolo M, Paterniti I, Minutoli L, Ius T, Esposito E. DKK3 Expression in Glioblastoma: Correlations with Biomolecular Markers. Int J Mol Sci 2024; 25:4091. [PMID: 38612910 PMCID: PMC11012478 DOI: 10.3390/ijms25074091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Glioblastoma is the most common malignant primary tumor of the CNS. The prognosis is dismal, with a median survival of 15 months. Surgical treatment followed by adjuvant therapies such as radiotherapy and chemotherapy characterize the classical strategy. The WNT pathway plays a key role in cellular proliferation, differentiation, and invasion. The DKK3 protein, capable of acting as a tumor suppressor, also appears to be able to modulate the WNT pathway. We performed, in a series of 40 patients, immunohistochemical and Western blot evaluations of DKK3 to better understand how the expression of this protein can influence clinical behavior. We used a statistical analysis, with correlations between the expression of DKK3 and overall survival, age, sex, Ki-67, p53, and MGMT and IDH status. We also correlated our data with information included in the cBioPortal database. In our analyses, DKK3 expression, in both immunohistochemistry and Western blot analyses, was reduced or absent in many cases, showing downregulation. To date, no clinical study exists in the literature that reports a potential correlation between IDH and MGMT status and the WNT pathway through the expression of DKK3. Modulation of this pathway through the expression of DKK3 could represent a new tailored therapeutic strategy in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (G.C.); (M.C.); (I.P.); (E.E.)
| | - Gerardo Caruso
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37124 Verona, Italy;
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (G.C.); (M.C.); (I.P.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (G.C.); (M.C.); (I.P.); (E.E.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy;
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, 33100 Udine, Italy;
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (G.C.); (M.C.); (I.P.); (E.E.)
| |
Collapse
|
3
|
Fang KT, Su CS, Layos JJ, Lau NYS, Cheng KH. Haploinsufficiency of Adenomatous Polyposis Coli Coupled with Kirsten Rat Sarcoma Viral Oncogene Homologue Activation and P53 Loss Provokes High-Grade Glioblastoma Formation in Mice. Cancers (Basel) 2024; 16:1046. [PMID: 38473403 DOI: 10.3390/cancers16051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and deadly type of brain tumor originating from glial cells. Despite decades of clinical trials and research, there has been limited success in improving survival rates. However, molecular pathology studies have provided a detailed understanding of the genetic alterations associated with the formation and progression of glioblastoma-such as Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling activation (5%), P53 mutations (25%), and adenomatous polyposis coli (APC) alterations (2%)-laying the groundwork for further investigation into the biological and biochemical basis of this malignancy. These analyses have been crucial in revealing the sequential appearance of specific genetic lesions at distinct histopathological stages during the development of GBM. To further explore the pathogenesis and progression of glioblastoma, here, we developed the glial-fibrillary-acidic-protein (GFAP)-Cre-driven mouse model and demonstrated that activated KRAS and p53 deficiencies play distinct and cooperative roles in initiating glioma tumorigenesis. Additionally, the combination of APC haploinsufficiency with mutant Kras activation and p53 deletion resulted in the rapid progression of GBM, characterized by perivascular inflammation, large necrotic areas, and multinucleated giant cells. Consequently, our GBM models have proven to be invaluable resources for identifying early disease biomarkers in glioblastoma, as they closely mimic the human disease. The insights gained from these models may pave the way for potential advancements in the diagnosis and treatment of this challenging brain tumor.
Collapse
Affiliation(s)
- Kuan-Te Fang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chuan-Shiang Su
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jhoanna Jane Layos
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Nga Yin Sadonna Lau
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Ghosh D, Pryor B, Jiang N. Cellular signaling in glioblastoma: A molecular and clinical perspective. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:1-47. [PMID: 38782497 DOI: 10.1016/bs.ircmb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor with an average life expectancy of less than 15 months. Such high patient mortality in GBM is pertaining to the presence of clinical and molecular heterogeneity attributed to various genetic and epigenetic alterations. Such alterations in critically important signaling pathways are attributed to aberrant gene signaling. Different subclasses of GBM show predominance of different genetic alterations and therefore, understanding the complex signaling pathways and their key molecular components in different subclasses of GBM is extremely important with respect to clinical management. In this book chapter, we summarize the common and important signaling pathways that play a significant role in different subclasses and discuss their therapeutic targeting approaches in terms of preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Debarati Ghosh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| | - Brett Pryor
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nancy Jiang
- Wellesley College, Wellesley, MA, United States
| |
Collapse
|
5
|
Qiu L, Sun Y, Ning H, Chen G, Zhao W, Gao Y. The scaffold protein AXIN1: gene ontology, signal network, and physiological function. Cell Commun Signal 2024; 22:77. [PMID: 38291457 PMCID: PMC10826278 DOI: 10.1186/s12964-024-01482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
AXIN1, has been initially identified as a prominent antagonist within the WNT/β-catenin signaling pathway, and subsequently unveiled its integral involvement across a diverse spectrum of signaling cascades. These encompass the WNT/β-catenin, Hippo, TGFβ, AMPK, mTOR, MAPK, and antioxidant signaling pathways. The versatile engagement of AXIN1 underscores its pivotal role in the modulation of developmental biological signaling, maintenance of metabolic homeostasis, and coordination of cellular stress responses. The multifaceted functionalities of AXIN1 render it as a compelling candidate for targeted intervention in the realms of degenerative pathologies, systemic metabolic disorders, cancer therapeutics, and anti-aging strategies. This review provides an intricate exploration of the mechanisms governing mammalian AXIN1 gene expression and protein turnover since its initial discovery, while also elucidating its significance in the regulation of signaling pathways, tissue development, and carcinogenesis. Furthermore, we have introduced the innovative concept of the AXIN1-Associated Phosphokinase Complex (AAPC), where the scaffold protein AXIN1 assumes a pivotal role in orchestrating site-specific phosphorylation modifications through interactions with various phosphokinases and their respective substrates.
Collapse
Affiliation(s)
- Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haoming Ning
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
7
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
8
|
Alkailani MI, Aittaleb M, Tissir F. WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Front Mol Neurosci 2022; 15:1017568. [PMID: 36267699 PMCID: PMC9577257 DOI: 10.3389/fnmol.2022.1017568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Neurogenesis and tumorigenesis share signaling molecules/pathways involved in cell proliferation, differentiation, migration, and death. Self-renewal of neural stem cells is a tightly regulated process that secures the accuracy of cell division and eliminates cells that undergo mitotic errors. Abnormalities in the molecular mechanisms controlling this process can trigger aneuploidy and genome instability, leading to neoplastic transformation. Mutations that affect cell adhesion, polarity, or migration enhance the invasive potential and favor the progression of tumors. Here, we review recent evidence of the WNT pathway’s involvement in both neurogenesis and tumorigenesis and discuss the experimental progress on therapeutic opportunities targeting components of this pathway.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mohamed Aittaleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Fadel Tissir,
| |
Collapse
|
9
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
10
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Hassan R, Mohi-Ud-Din R, Dar MO, Shah AJ, Mir PA, Shaikh M, Pottoo FH. Bioactive Heterocyclic Compounds as Potential Therapeutics in the Treatment of Gliomas: A Review. Anticancer Agents Med Chem 2021; 22:551-565. [PMID: 34488596 DOI: 10.2174/1871520621666210901112954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most alarming diseases, with an estimation of 9.6 million deaths in 2018. Glioma occurs in glial cells surrounding nerve cells. The majority of the patients with gliomas have a terminal prognosis, and the ailment has significant sway on patients and their families, be it physical, psychological, or economic wellbeing. As Glioma exhibits, both intra and inter tumour heterogeneity with multidrug resistance and current therapies are ineffective. So the development of safer anti gliomas agents is the need of hour. Bioactive heterocyclic compounds, eithernatural or synthetic,are of potential interest since they have been active against different targets with a wide range of biological activities, including anticancer activities. In addition, they can cross the biological barriers and thus interfere with various signalling pathways to induce cancer cell death. All these advantages make bioactive natural compounds prospective candidates in the management of glioma. In this review, we assessed various bioactive heterocyclic compounds, such as jaceosidin, hispudlin, luteolin, silibinin, cannabidiol, tetrahydrocannabinol, didemnin B, thymoquinone, paclitaxel, doxorubicin, and cucurbitacins for their potential anti-glioma activity. Also, different kinds of chemical reactions to obtain various heterocyclic derivatives, e.g. indole, indazole, benzimidazole, benzoquinone, quinoline, quinazoline, pyrimidine, and triazine, are listed.
Collapse
Affiliation(s)
- Reyaz Hassan
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir. India
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir. India
| | - Mohammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Science and Research (NIPER), S.A.S. Nagar, Mohali, Punjab-160062. India
| | - Abdul Jalil Shah
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir. India
| | - Prince Ahad Mir
- Amritsar Pharmacy College, 12 KM stone Amritsar Jalandhar GT Road, Mandwala-143001. India
| | - Majeed Shaikh
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001. India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam. Saudi Arabia
| |
Collapse
|
12
|
Liu Z, Wang P, Wold EA, Song Q, Zhao C, Wang C, Zhou J. Small-Molecule Inhibitors Targeting the Canonical WNT Signaling Pathway for the Treatment of Cancer. J Med Chem 2021; 64:4257-4288. [PMID: 33822624 DOI: 10.1021/acs.jmedchem.0c01799] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Canonical WNT signaling is an important developmental pathway that has attracted increased attention for anticancer drug discovery. From the production and secretion of WNT ligands, their binding to membrane receptors, and the β-catenin destruction complex to the expansive β-catenin transcriptional complex, multiple components have been investigated as drug targets to modulate WNT signaling. Significant progress in developing WNT inhibitors such as porcupine inhibitors, tankyrase inhibitors, β-catenin/coactivators, protein-protein interaction inhibitors, casein kinase modulators, DVL inhibitors, and dCTPP1 inhibitors has been made, with several candidates (e.g., LGK-974, PRI-724, and ETC-159) in human clinical trials. Herein we summarize recent progress in the drug discovery and development of small-molecule inhibitors targeting the canonical WNT pathway, focusing on their specific target proteins, in vitro and in vivo activities, physicochemical properties, and therapeutic potential. The relevant opportunities and challenges toward maintaining the balance between efficacy and toxicity in effectively targeting this pathway are also highlighted.
Collapse
Affiliation(s)
- Zhiqing Liu
- Institute of Evolution and Marine Biodiversity, College of Food Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Qiaoling Song
- Institute of Evolution and Marine Biodiversity, College of Food Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chenyang Zhao
- Institute of Evolution and Marine Biodiversity, College of Food Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Changyun Wang
- Institute of Evolution and Marine Biodiversity, College of Food Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
13
|
El-Sehemy A, Selvadurai H, Ortin-Martinez A, Pokrajac N, Mamatjan Y, Tachibana N, Rowland K, Lee L, Park N, Aldape K, Dirks P, Wallace VA. Norrin mediates tumor-promoting and -suppressive effects in glioblastoma via Notch and Wnt. J Clin Invest 2021; 130:3069-3086. [PMID: 32182224 DOI: 10.1172/jci128994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) contains a subpopulation of cells, GBM stem cells (GSCs), that maintain the bulk tumor and represent a key therapeutic target. Norrin is a Wnt ligand that binds Frizzled class receptor 4 (FZD4) to activate canonical Wnt signaling. Although Norrin, encoded by NDP, has a well-described role in vascular development, its function in human tumorigenesis is largely unexplored. Here, we show that NDP expression is enriched in neurological cancers, including GBM, and its levels positively correlated with survival in a GBM subtype defined by low expression of ASCL1, a proneural factor. We investigated the function of Norrin and FZD4 in GSCs and found that it mediated opposing tumor-suppressive and -promoting effects on ASCL1lo and ASCL1hi GSCs. Consistent with a potential tumor-suppressive effect of Norrin suggested by the tumor outcome data, we found that Norrin signaling through FZD4 inhibited growth in ASCL1lo GSCs. In contrast, in ASCL1hi GSCs Norrin promoted Notch signaling, independently of WNT, to promote tumor progression. Forced ASCL1 expression reversed the tumor-suppressive effects of Norrin in ASCL1lo GSCs. Our results identify Norrin as a modulator of human brain cancer progression and reveal an unanticipated Notch-mediated function of Norrin in regulating cancer stem cell biology. This study identifies an unanticipated role of Norrin in human brain cancer progression. In addition, we provide preclinical evidence suggesting Norrin and canonical Wnt signaling as potential therapeutic targets for GBM subtype-restricted cancer stem cells.
Collapse
Affiliation(s)
- Ahmed El-Sehemy
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Hayden Selvadurai
- Developmental and Stem Cell Biology Program and.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Arturo Ortin-Martinez
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Neno Pokrajac
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Yasin Mamatjan
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Canada
| | - Nobuhiko Tachibana
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Katherine Rowland
- Developmental and Stem Cell Biology Program and.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program and.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Nicole Park
- Developmental and Stem Cell Biology Program and.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Kenneth Aldape
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Canada.,Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Peter Dirks
- Developmental and Stem Cell Biology Program and.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada
| | - Valerie A Wallace
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Damale MG, Pathan SK, Shinde DB, Patil RH, Arote RB, Sangshetti JN. Insights of tankyrases: A novel target for drug discovery. Eur J Med Chem 2020; 207:112712. [PMID: 32877803 DOI: 10.1016/j.ejmech.2020.112712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Tankyrases are the group of enzymes belonging to a class of Poly (ADP-ribose) polymerase (PARP) recently named ADP-ribosyltransferase (ARTD). The two isoforms of tankyrase i.e. tankyrase1 (TNKS1) and tankyrase2 (TNKS2) were abundantly expressed in various biological functions in telomere regulation, Wnt/β-catenin signaling pathway, viral replication, endogenous hormone regulation, glucose transport, cherubism disease, erectile dysfunction, and apoptosis. The structural analysis, mechanistic information, in vitro and in vivo studies led identification and development of several classes of tankyrase inhibitors under clinical phases. In the nutshell, this review will drive future research on tankyrase as it enlighten the structural and functional features of TNKS 1 and TNKS 2, different classes of inhibitors with their structure-activity relationship studies, molecular modeling studies, as well as past, current and future perspective of the different class of tankyrase inhibitors.
Collapse
Affiliation(s)
- Manoj G Damale
- Department of Pharmaceutical Medicinal Chemistry, Srinath College of Pharmacy, Aurangabad, 431136, MS, India
| | - Shahebaaz K Pathan
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS, 431001, India
| | | | - Rajendra H Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, M.S, India
| | - Rohidas B Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jaiprakash N Sangshetti
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS, 431001, India.
| |
Collapse
|
15
|
Litak J, Grochowski C, Litak J, Osuchowska I, Gosik K, Radzikowska E, Kamieniak P, Rolinski J. TLR-4 Signaling vs. Immune Checkpoints, miRNAs Molecules, Cancer Stem Cells, and Wingless-Signaling Interplay in Glioblastoma Multiforme-Future Perspectives. Int J Mol Sci 2020; 21:ijms21093114. [PMID: 32354122 PMCID: PMC7247696 DOI: 10.3390/ijms21093114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like-receptor (TLR) family members were detected in the central nervous system (CNS). TLR occurrence was noticed and widely described in glioblastomamultiforme (GBM) cells. After ligand attachment, TLR-4 reorients domains and dimerizes, activates an intracellular cascade, and promotes further cytoplasmatic signaling. There is evidence pointing at a strong relation between TLR-4 signaling and micro ribonucleic acid (miRNA) expression. The TLR-4/miRNA interplay changes typical signaling and encourages them to be a target for modern immunotherapy. TLR-4 agonists initiate signaling and promote programmed death ligand-1 (PD-1L) expression. Most of those molecules are intensively expressed in the GBM microenvironment, resulting in the autocrine induction of regional immunosuppression. Another potential target for immunotreatment is connected with limited TLR-4 signaling that promotes Wnt/DKK-3/claudine-5 signaling, resulting in a limitation of GBM invasiveness. Interestingly, TLR-4 expression results in bordering proliferative trends in cancer stem cells (CSC) and GBM. All of these potential targets could bring new hope for patients suffering from this incurable disease. Clinical trials concerning TLR-4 signaling inhibition/promotion in many cancers are recruiting patients. There is still a lot to do in the field of GBM immunotherapy.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Laboratory of Virtual Man, Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Correspondence:
| | - Joanna Litak
- St. John‘s Cancer Center in Lublin, 20-090 Lublin, Poland
| | - Ida Osuchowska
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Krzysztof Gosik
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Piotr Kamieniak
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jacek Rolinski
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
16
|
Tarasov VV, Svistunov AA, Chubarev VN, Zatsepilova TA, Preferanskaya NG, Stepanova OI, Sokolov AV, Dostdar SA, Minyaeva NN, Neganova ME, Klochkov SG, Mikhaleva LM, Somasundaram SG, Kirkland CE, Aliev G. Feasibility of Targeting Glioblastoma Stem Cells: From Concept to Clinical Trials. Curr Top Med Chem 2020; 19:2974-2984. [PMID: 31721715 DOI: 10.2174/1568026619666191112140939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/25/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Glioblastoma is a highly aggressive and invasive brain and Central Nervous System (CNS) tumor. Current treatment options do not prolong overall survival significantly because the disease is highly prone to relapse. Therefore, research to find new therapies is of paramount importance. It has been discovered that glioblastomas contain a population of cells with stem-like properties and that these cells are may be responsible for tumor recurrence. METHODS A review of relevant papers and clinical trials in the field was conducted. A PubMed search with related keywords was used to gather the data. For example, "glioblastoma stem cells AND WNT signaling" is an example used to find information on clinical trials using the database ClinicalTrials.gov. RESULTS Cancer stem cell research has several fundamental issues and uncertainties that should be taken into consideration. Theoretically, a number of treatment options that target glioblastoma stem cells are available for patients. However, only a few of them have obtained promising results in clinical trials. Several strategies are still under investigation. CONCLUSION The majority of treatments to target cancer stem cells have failed during clinical trials. Taking into account a number of biases in the field and the number of unsuccessful investigations, the application of the cancer stem cells concept is questionable in clinical settings, at least with respect to glioblastoma.
Collapse
Affiliation(s)
- Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Andrey A Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Tamara A Zatsepilova
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Nina G Preferanskaya
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Olga I Stepanova
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Alexander V Sokolov
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Samira A Dostdar
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Nina N Minyaeva
- National Research University Higher School of Economics, 20 Myasnitskaya Street, Moscow 101000,Russian Federation
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432,Russian Federation
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432,Russian Federation
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow 117418,Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV,United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV,United States
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation.,Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432,Russian Federation.,Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow 117418,Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229,United States
| |
Collapse
|
17
|
Guo G, Liu J, Ren Y, Mao X, Hao Y, Zhong C, Chen X, Wang X, Wu Y, Lian S, Mei L, Zhao Y. FRAT1 Enhances the Proliferation and Tumorigenesis of CD133 +Nestin + Glioma Stem Cells In Vitro and In Vivo. J Cancer 2020; 11:2421-2430. [PMID: 32201513 PMCID: PMC7066019 DOI: 10.7150/jca.37622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/18/2020] [Indexed: 02/01/2023] Open
Abstract
Glioma stem cells (GSCs) are considered the source for development, recurrence, and poor prognosis of glioma, so treatment targeted GSCs is of great interest. The frequently rearranged in advanced T cell lymphomas-1 (FRAT1) gene is an important member of the Wnt/β-catenin signaling transduction pathway, and aberrantly activation of Wnt signaling has been identified to contribute to the tumorigenesis, proliferation, invasion of a variety kinds of cancer stem cells. However, correlations between FRAT1 and GSCs and the specific mechanisms remain unclear. In this study, we aimed to investigate the effect of FRAT1 on GSCs proliferation, colony formation, sphere formation and tumorigenesity in vitro and in vivo and its underlying mechanism. Lentiviral transfection was used to construct GSCs with low FRAT1 expression. The expression of FRAT1 on GSCs proliferation in vitro was assessed by cell counting kit-8(CCK-8). Colony formation and sphere formation assays were conducted to assess the colony and sphere formation ability of GSCs. Then, an intracranial glioma nude mouse model was built to measure the effect of low FRAT1 expression on GSCs proliferation and tumorigenesity in vivo. Real-time PCR, Western blot, and Immunohistochemistry were processed to detect the mRNA and protein expressions of FRAT1, β-catenin in the glioma tissue of xenograft mice to study their correlations. The functional assays verifed that low FRAT1 expression inhibited CD133+Nestin+ GSCs proliferation, colony formation, sphere formation ability in vitro. In vivo GSCs xenograft mice model showed that low FRAT1 expression suppressed the proliferation and tumorigenesity of CD133+Nestin+ GSCs and reduced β-catenin mRNA and protein expression. Furthermore, the expression of FRAT1 and β-catenin were positively correlated. Altogether, results indicate that FRAT1 enhances the proliferation, colony formation, sphere formation and tumorigenesity of CD133+Nestin+ glioma stem cells in vitro and in vivo as well as the expression of β-catenin. Therefore, inhibiting proliferation of GSCs and FRAT1 may be a molecular target to GSCs in treating human glioma in the future.
Collapse
Affiliation(s)
- Geng Guo
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, No.85 Jiefangnan Road, Taiyuan, Shanxi 030001, People's Republic of China
| | - Jing Liu
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, No.85 Jiefangnan Road, Taiyuan, Shanxi 030001, People's Republic of China
| | - Yeqing Ren
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, No.85 Jiefangnan Road, Taiyuan, Shanxi 030001, People's Republic of China
| | - Xinggang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changlexi Road, Xi'an, Shaanxi 710032, People's Republic of China
| | - Yining Hao
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, No.85 Jiefangnan Road, Taiyuan, Shanxi 030001, People's Republic of China
| | - Chengliang Zhong
- GCP Center, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Tianjin 300192, People's Republic of China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.6 Tiantan Xili, Beijing 100050, People's Republic of China
| | - Xiaogang Wang
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, No.85 Jiefangnan Road, Taiyuan, Shanxi 030001, People's Republic of China
| | - Yongqiang Wu
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, No.85 Jiefangnan Road, Taiyuan, Shanxi 030001, People's Republic of China
| | - Shizhong Lian
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, No.85 Jiefangnan Road, Taiyuan, Shanxi 030001, People's Republic of China
| | - Lin Mei
- Department of Orthopedics, The First Hospital, Shanxi Medical University, No.85 Jiefangnan Road, Taiyuan, Shanxi 030001, People's Republic of China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.6 Tiantan Xili, Beijing 100050, People's Republic of China
| |
Collapse
|
18
|
Yamaguchi K, Nagatoishi S, Tsumoto K, Furukawa Y. Discovery of chemical probes that suppress Wnt/β-catenin signaling through high-throughput screening. Cancer Sci 2020; 111:783-794. [PMID: 31912579 PMCID: PMC7060471 DOI: 10.1111/cas.14297] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Aberrant activation of the Wnt/β‐catenin signaling pathway has been observed in a wide range of human tumors. Deregulation of the pathway is closely linked to various aspects of human carcinogenesis such as cell viability, regulation of cell cycle, epithelial‐mesenchymal transition, and maintenance of stemness. In addition, recent studies have disclosed the involvement of Wnt signaling in immune evasion of tumor cells. The accumulation of β‐catenin in the nucleus is a common feature of cancer cells carrying defects in the pathway, which leads to the continuous activation of T‐cell factor (TCF)/LEF transcription factors. Consequently, a genetic program is switched on, leading to the uncontrolled growth, prolonged survival, and acquisition of mesenchymal phenotype. As β‐catenin/TCF serves as a signaling hub for the pathway, β‐catenin/TCF‐dependent transcriptional activity is a relevant readout of the pathway. To date, a wide variety of synthetic TCF/LEF reporters has been developed, and high‐throughput screening (HTS) using these reporters has made significant contributions to the discovery of Wnt inhibitors. Indeed, HTS led to the identification of chemical probes targeting porcupine, a membrane bound O‐acyltransferase, and CREB‐binding protein, a transcriptional coactivator. This review focuses on various screening strategies for the discovery of Wnt inhibitors and their mode of action to help the creation of new concepts for assay/screening methods.
Collapse
Affiliation(s)
- Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagatoishi
- Project Division of Advanced Biopharmaceutical Science, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Project Division of Advanced Biopharmaceutical Science, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Wang J, Quan X, Peng D, Hu G. Long non‑coding RNA DLEU1 promotes cell proliferation of glioblastoma multiforme. Mol Med Rep 2019; 20:1873-1882. [PMID: 31257517 DOI: 10.3892/mmr.2019.10428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/10/2019] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumor with high morbidity and mortality. This study investigated the role of long non‑coding RNAs (lncRNAs) in glioblastomagenesis progression. Using the GSE2223 and GSE59612 datasets, and RNA sequencing data of GBM from The Cancer Genome Atlas, differentially expressed (DE) genes including DE messenger RNAs (DEmRNAs) and DElncRNAs between GBM and normal controls were identified. Based on the competing endogenous RNA hypothesis, DElncRNA‑micro RNA (miRNA)‑DEmRNA interactions were obtained by target gene prediction. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes pathway analysis of DEmRNAs in the DElncRNA‑miRNA‑DEmRNA network was performed. Expression and function analyses of DElncRNAs were performed by reverse transcription‑polymerase chain reaction (RT‑PCR) and an established viability assay, respectively. In total, 712 DE genes were identified. Significant upregulation of lncRNA deleted in lymphocytic leukemia 1 (DLEU1) was revealed in GBM and a number of other types of cancer. DLEU1 interacted with 315 miRNAs and 105 DEmRNAs. The DEmRNAs were mainly enriched in tumorigenesis‑associated GO terms (angiogenesis, positive regulation of cell proliferation, positive regulation of fibroblast apoptotic processes and regulation of neutrophil migration) and pathways (Hippo signaling pathway, cancer pathways, and Wnt signaling pathway). Correlation analysis revealed that mRNA TNF receptor associated factor 4 (TRAF4) was associated with DLEU1 expression. RT‑PCR demonstrated that the expression levels of DLEU1 and TRAF4 were increased in GBM tissues. Small interfering RNA demonstrated that silencing DLEU1 downregulated TRAF4. The viability of GBM cells was significantly decreased following RNA interference with DLEU1 and TRAF4 production. The results demonstrate that DLEU1 and TRAF4 is highly expressed in GBM tissues and promotes proliferation of GBM cells. It may act as a competing endogenous RNA and influence tumorigenesis of GBM.
Collapse
Affiliation(s)
- Jiancun Wang
- Department of Neurosurgery, People's Hospital of Zhangjiajie, Zhangjiajie, Hunan 427000, P.R. China
| | - Xingyun Quan
- Department of Neurosurgery, People's Hospital of Zhangjiajie, Zhangjiajie, Hunan 427000, P.R. China
| | - Dingting Peng
- Department of Neurosurgery, People's Hospital of Zhangjiajie, Zhangjiajie, Hunan 427000, P.R. China
| | - Guancheng Hu
- Department of Neurosurgery, People's Hospital of Zhangjiajie, Zhangjiajie, Hunan 427000, P.R. China
| |
Collapse
|
20
|
Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Łos MJ, Fakharian E, Ebrahimi M, Hamidieh AA. Glioblastoma cancer stem cell biology: Potential theranostic targets. Drug Resist Updat 2019; 42:35-45. [PMID: 30877905 DOI: 10.1016/j.drup.2018.03.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is among the most incurable cancers. GBMs survival rate has not markedly improved, despite new radical surgery protocols, the introduction of new anticancer drugs, new treatment protocols, and advances in radiation techniques. The low efficacy of therapy, and short interval between remission and recurrence, could be attributed to the resistance of a small fraction of tumorigenic cells to treatment. The existence and importance of cancer stem cells (CSCs) is perceived by some as controversial. Experimental evidences suggest that the presence of therapy-resistant glioblastoma stem cells (GSCs) could explain tumor recurrence and metastasis. Some scientists, including most of the authors of this review, believe that GSCs are the driving force behind GBM relapses, whereas others however, question the existence of GSCs. Evidence has accumulated indicating that non-tumorigenic cancer cells with high heterogeneity, could undergo reprogramming and become GSCs. Hence, targeting GSCs as the "root cells" initiating malignancy has been proposed to eradicate this devastating disease. Most standard treatments fail to completely eradicate GSCs, which can then cause the recurrence of the disease. To effectively target GSCs, a comprehensive understanding of the biology of GSCs as well as the mechanisms by which these cells survive during treatment and develop into new tumor, is urgently needed. Herein, we provide an overview of the molecular features of GSCs, and elaborate how to facilitate their detection and efficient targeting for therapeutic interventions. We also discuss GBM classifications based on the molecular stem cell subtypes with a focus on potential therapeutic approaches.
Collapse
Affiliation(s)
- Farzaneh Sharifzad
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
| | - Javad Verdi
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soura Mardpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Azizi
- Heart Rhythm Program, Southlake Regional Health Centre, Toronto ON Canada
| | - Adeleh Taghikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Immunology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology in Gliwice, Poland
| | - Esmail Fakharian
- Department of Neurosurgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Amir Ali Hamidieh
- Pediatric Stem Cell Transplant Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Fernandes GFDS, Fernandes BC, Valente V, Dos Santos JL. Recent advances in the discovery of small molecules targeting glioblastoma. Eur J Med Chem 2018; 164:8-26. [PMID: 30583248 DOI: 10.1016/j.ejmech.2018.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is one of the most common central nervous system cancers. It is characterized as a fast-growing tumor that arises from multiple cell types with neural stem-cell-like properties. Additionally, GBM tumors are highly invasive, which is attributed to the presence of glioblastoma stem cells that makes surgery ineffective in most cases. Currently, temozolomide is the unique chemotherapy option approved by the U.S. Food and Drug Administration for GBM treatment. This review analyzes the emergence and development of new synthetic small molecules discovered as promising anti-glioblastoma agents. A number of compounds were described herein and grouped according to the main chemical class used in the drug discovery process. Importantly, we focused only on synthetic compounds published in the last 10 years, thus excluding natural products. Furthermore, we included in this review only those most biologically active compounds with proven in vitro and/or in vivo efficacy.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, 14800-060, Brazil
| | - Barbara Colatto Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Valeria Valente
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, 14800-060, Brazil.
| |
Collapse
|
22
|
Hardwick LJA, Philpott A. Xenopus Models of Cancer: Expanding the Oncologist's Toolbox. Front Physiol 2018; 9:1660. [PMID: 30538639 PMCID: PMC6277521 DOI: 10.3389/fphys.2018.01660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023] Open
Abstract
The use of the Xenopus model system has provided diverse contributions to cancer research, not least because of the striking parallels between tumour pathogenesis and early embryo development. Cell cycle regulation, signalling pathways, and cell behaviours such as migration are frequently perturbed in cancers; all have been investigated using Xenopus, and these developmental events can additionally act as an assay for drug development studies. In this mini-review, we focus our discussion primarily on whole embryo Xenopus models informing cancer biology; the contributions to date and future potential. Insights into tumour immunity, oncogene function, and visualisation of vascular responses during tumour formation have all been achieved with naturally occurring tumours and induced-tumour-like-structures in Xenopus. Finally, as we are now entering the era of genetically modified Xenopus models, we can harness genome editing techniques to recapitulate human disease through creating embryos with analogous genetic abnormalities. With the speed, versatility and accessibility that epitomise the Xenopus system, this new range of pre-clinical Xenopus models has great potential to advance our mechanistic understanding of oncogenesis and provide an early in vivo model for chemotherapeutic development.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Philpott Lab, Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Cambridge, United Kingdom.,Wellcome MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Peterhouse, University of Cambridge, Cambridge, United Kingdom
| | - Anna Philpott
- Philpott Lab, Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Cambridge, United Kingdom.,Wellcome MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Polson ES, Kuchler VB, Abbosh C, Ross EM, Mathew RK, Beard HA, da Silva B, Holding AN, Ballereau S, Chuntharpursat-Bon E, Williams J, Griffiths HBS, Shao H, Patel A, Davies AJ, Droop A, Chumas P, Short SC, Lorger M, Gestwicki JE, Roberts LD, Bon RS, Allison SJ, Zhu S, Markowetz F, Wurdak H. KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice. Sci Transl Med 2018; 10:eaar2718. [PMID: 30111643 DOI: 10.1126/scitranslmed.aar2718] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/24/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
Abstract
Pharmacological inhibition of uncontrolled cell growth with small-molecule inhibitors is a potential strategy for treating glioblastoma multiforme (GBM), the most malignant primary brain cancer. We showed that the synthetic small-molecule KHS101 promoted tumor cell death in diverse GBM cell models, independent of their tumor subtype, and without affecting the viability of noncancerous brain cell lines. KHS101 exerted cytotoxic effects by disrupting the mitochondrial chaperone heat shock protein family D member 1 (HSPD1). In GBM cells, KHS101 promoted aggregation of proteins regulating mitochondrial integrity and energy metabolism. Mitochondrial bioenergetic capacity and glycolytic activity were selectively impaired in KHS101-treated GBM cells. In two intracranial patient-derived xenograft tumor models in mice, systemic administration of KHS101 reduced tumor growth and increased survival without discernible side effects. These findings suggest that targeting of HSPD1-dependent metabolic pathways might be an effective strategy for treating GBM.
Collapse
Affiliation(s)
- Euan S Polson
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Edith M Ross
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ryan K Mathew
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Neurosurgery, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Hester A Beard
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | - Andrew N Holding
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Stephane Ballereau
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | | | - Hollie B S Griffiths
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Hao Shao
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Anjana Patel
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Adam J Davies
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair Droop
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Paul Chumas
- Department of Neurosurgery, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Susan C Short
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mihaela Lorger
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Lee D Roberts
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Robin S Bon
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Simon J Allison
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Shoutian Zhu
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, USA
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Heiko Wurdak
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
24
|
Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F, Ciccarelli R. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel) 2018; 9:genes9020105. [PMID: 29462960 PMCID: PMC5852601 DOI: 10.3390/genes9020105] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely “cancer stem cells”, are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| |
Collapse
|
25
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
26
|
Brogi S, Maramai S, Brindisi M, Chemi G, Porcari V, Corallo C, Gennari L, Novellino E, Ramunno A, Butini S, Campiani G, Gemma S. Activation of the Wnt Pathway by Small Peptides: Rational Design, Synthesis and Biological Evaluation. ChemMedChem 2017; 12:2074-2085. [PMID: 29131552 DOI: 10.1002/cmdc.201700551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/03/2017] [Indexed: 12/13/2022]
Abstract
A computational analysis of the X-ray structure of the low-density lipoprotein receptor-related protein 6 (LRP6) with the Dickkopf-1 (DKK1) C-terminal fragment has allowed us to rationally design a small set of decapeptides. These compounds behave as agonists of the canonical Wnt pathway in the micromolar range when tested on a dual luciferase Wnt functional assay in glioblastoma cells. Two of the oligopeptides showed a lack of cytotoxicity in human primary osteoblasts isolated from sponge bone tissue (femoral heads or knees of elderly patients). According to the mechanism of action, the studies revealed a dose- and time-dependent increase in the viability of human osteoblasts. These results may indicate a potential therapeutic application of this class of compounds in the treatment of bone diseases related to aging, such as osteoporosis.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Samuele Maramai
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giulia Chemi
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Valentina Porcari
- Siena Biotech S.p.A., Strada del Petriccio e Belriguardo 35, Siena, 53100, Italy
| | - Claudio Corallo
- Department of Medical, Surgical and Neurological Sciences, S. Maria alle Scotte Hospital Siena, University of Siena, viale Mario Bracci 1, 53100, Siena, Italy
| | - Luigi Gennari
- Department of Medical, Surgical and Neurological Sciences, S. Maria alle Scotte Hospital Siena, University of Siena, viale Mario Bracci 1, 53100, Siena, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Anna Ramunno
- Dipartimento di Farmacia/DIFARMA, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
27
|
McCord M, Mukouyama YS, Gilbert MR, Jackson S. Targeting WNT Signaling for Multifaceted Glioblastoma Therapy. Front Cell Neurosci 2017; 11:318. [PMID: 29081735 PMCID: PMC5645527 DOI: 10.3389/fncel.2017.00318] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/26/2017] [Indexed: 01/17/2023] Open
Abstract
The WNT signaling pathway has been of great interest to developmental biologists for decades and has more recently become a central topic for study in cancer biology. It is vital for cell growth and regulation of embryogenesis in many organ systems, particularly the CNS and its associated vasculature. We summarize the role of WNT in CNS development and describe how WNT signaling makes key contributions to malignant glioma stemness, invasiveness, therapeutic resistance, and angiogenesis. The role of WNT in these mechanisms, along with creation and maintainance of the blood-brain barrier (BBB), points to the potential of WNT as a multi-faceted target in malignant glioma therapy.
Collapse
Affiliation(s)
- Matthew McCord
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetic and Developmental Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Sadhana Jackson
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
28
|
Miranda A, Blanco-Prieto MJ, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. Int J Pharm 2017; 531:389-410. [DOI: 10.1016/j.ijpharm.2017.07.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
29
|
El-Sheshtawy HS, Abdelmonsef AH, Abboudy SM, Younes AMM, Taha MM, Hassan MA. Synthesis, Structural, and Theoretical Studies of Quinazoline-2,4-dione Derivatives. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1325747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hamdy S. El-Sheshtawy
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, Egypt
| | | | | | | | - Mohamed Mobark Taha
- Chemistry Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Mamdouh Adly Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sinai University, Arish, Egypt
| |
Collapse
|
30
|
Afghani N, Mehta T, Wang J, Tang N, Skalli O, Quick QA. Microtubule actin cross-linking factor 1, a novel target in glioblastoma. Int J Oncol 2016; 50:310-316. [PMID: 27959385 DOI: 10.3892/ijo.2016.3798] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
Genetic heterogeneity is recognized as a major contributing factor of glioblastoma resistance to clinical treatment modalities and consequently low overall survival rates. This genetic diversity results in variations in protein expression, both intratumorally and between individual glioblastoma patients. In this regard, the spectraplakin protein, microtubule actin cross-linking factor 1 (MACF1), was examined in glioblastoma. An expression analysis of MACF1 in various types of brain tumor tissue revealed that MACF1 was predominately present in grade III-IV astroctyomas and grade IV glioblastoma, but not in normal brain tissue, normal human astrocytes and lower grade brain tumors. Subsequent genetic inhibition experiments showed that suppression of MACF1 selectively inhibited glioblastoma cell proliferation and migration in cell lines established from patient derived xenograft mouse models and immortalized glioblastoma cell lines that were associated with downregulation of the Wnt-signaling mediators, Axin1 and β-catenin. Additionally, concomitant MACF1 silencing with the chemotherapeutic agent temozolomide (TMZ) used for the clinical treatment of glioblastomas cooperatively reduced the proliferative capacity of glioblastoma cells. In conclusion, the present study represents the first investigation on the functional role of MACF1 in tumor cell biology, as well as demonstrates its potential as a unique biomarker that can be targeted synergistically with TMZ as part of a combinatorial therapeutic approach for the treatment of genetically multifarious glioblastomas.
Collapse
Affiliation(s)
- Najlaa Afghani
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Toral Mehta
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Jialiang Wang
- Department of Neurological Surgery, Vanderbilt Medical Center, Nashville, TN, USA
| | - Nan Tang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Omar Skalli
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Quincy A Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| |
Collapse
|
31
|
Matteucci M, Casieri V, Gabisonia K, Aquaro GD, Agostini S, Pollio G, Diamanti D, Rossi M, Travagli M, Porcari V, Recchia FA, Lionetti V. Magnetic resonance imaging of infarct-induced canonical wingless/integrated (Wnt)/β-catenin/T-cell factor pathway activation, in vivo. Cardiovasc Res 2016; 112:645-655. [PMID: 27671803 DOI: 10.1093/cvr/cvw214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 01/16/2023] Open
Abstract
AIMS Combined magnetic resonance imaging (MRI) of molecular and morpho-functional changes might prove highly valuable for the elucidation of pathological processes involved in the development of cardiac diseases. Our aim was to test a novel MRI reporter gene for in vivo assessment of the canonical Wnt/β-catenin/TCF pathway activation, an important regulator of post-ischaemic cardiac remodelling. METHODS AND RESULTS We designed and developed a chimeric construct encoding for both of iron-binding human ferritin heavy chain (hFTH) controlled by the β-catenin-responsive TCF/lymphoid-enhancer binding factor (Lef) promoter and constitutively expressed green fluorescent protein (GFP). It was carried by adeno-associated virus serotype 9 (rAAV9) vectors and delivered to the peri-infarct myocardium of rats subjected to coronary ligation (n = 11). By 1.5 T MRI and a multiecho T2* gradient echo sequence, we detected iron accumulation only in the border zone of the transduced infarcted hearts. In the same cardiac area, post-mortem histological analysis confirmed the co-existence of iron accumulation and GFP. The iron signal was absent when rats (n = 6) were chronically treated with SEN195 (10 mg/kg/day), a small-molecular inhibitor of β-catenin/TCF-dependent gene transcription. Canonical Wnt pathway inhibition attenuated the post-ischaemic remodelling process, as demonstrated by the significant preservation of cardiac function, the 42 ± 1% increase of peri-infarct arteriolar density and 43 ± 3% reduction in infarct scar size compared with untreated animals. CONCLUSIONS The TCF/Lef promoter-hFTH construct is a novel and reliable MRI reporter gene for in vivo detection of the canonical Wnt/β-catenin/TCF activation state in response to cardiac injury and therapeutic interventions.
Collapse
Affiliation(s)
- Marco Matteucci
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Valentina Casieri
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Khatia Gabisonia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | | | - Silvia Agostini
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | | | | | - Marco Rossi
- Siena Biotech Medicine Research Centre, 53100 Siena, Italy
| | | | | | - Fabio A Recchia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 19140 Philadelphia, PA, USA
| | - Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy .,Fondazione Toscana 'G. Monasterio', 56124 Pisa, Italy
| |
Collapse
|
32
|
Lu B, Green BA, Farr JM, Lopes FCM, Van Raay TJ. Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials. Cancers (Basel) 2016; 8:cancers8090082. [PMID: 27598201 PMCID: PMC5040984 DOI: 10.3390/cancers8090082] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway is intricately involved in many aspects of development and is the root cause of an increasing number of diseases. For example, colorectal cancer is the second leading cause of death in the industrialized world and aberration of Wnt signaling within the colonic stem cell is the cause of more than 90% of these cancers. Despite our advances in successfully targeting other pathways, such as Human Epidermal Growth Factor Receptor 2 (HER2), there are no clinically relevant therapies available for Wnt-related diseases. Here, we investigated where research activities are focused with respect to Wnt signaling modulators by searching the United States Patent and Trade Office (USPTO) for patents and patent applications related to Wnt modulators and compared this to clinical trials focusing on Wnt modulation. We found that while the transition of intellectual property surrounding the Wnt ligand-receptor interface to clinical trials is robust, this is not true for specific inhibitors of β-catenin, which is constitutively active in many cancers. Considering the ubiquitous use of the synthetic T-cell Factor/Lymphoid Enhancer Factor (TCF/Lef) reporter system and its success in identifying novel modulators in vitro, we speculate that this model of drug discovery does not capture the complexity of in vivo Wnt signaling that may be required if we are to successfully target the Wnt pathway in the clinic. Notwithstanding, increasingly more complex models are being developed, which may not be high throughput, but more pragmatic in our pursuit to control Wnt signaling.
Collapse
Affiliation(s)
- Benjamin Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Brooke A Green
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jacqueline M Farr
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Flávia C M Lopes
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Terence J Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
33
|
Suwala AK, Hanaford A, Kahlert UD, Maciaczyk J. Clipping the Wings of Glioblastoma: Modulation of WNT as a Novel Therapeutic Strategy. J Neuropathol Exp Neurol 2016; 75:388-96. [PMID: 26979081 DOI: 10.1093/jnen/nlw013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor and has a dismal prognosis. Aberrant WNT signaling is known to promote glioma cell growth and dissemination and resistance to conventional radio- and chemotherapy. Moreover, a population of cancer stem-like cells that promote glioma growth and recurrence are strongly dependent on WNT signaling. Here, we discuss the role and mechanisms of aberrant canonical and noncanonical WNT signaling in GBM. We present current clinical approaches aimed at modulating WNT activity and evaluate their clinical perspective as a novel treatment option for GBM.
Collapse
Affiliation(s)
- Abigail K Suwala
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH)
| | - Allison Hanaford
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH)
| | - Ulf D Kahlert
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH)
| | - Jaroslaw Maciaczyk
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH).
| |
Collapse
|
34
|
Rossi M, Massai L, Diamanti D, Fiengo P, De Rosa A, Magrini R, Magnoni L, Chellini S, Coniglio S, Diodato E, Pilli E, Caradonna NP, Sardone G, Monti M, Roggeri R, Lionetti V, Recchia F, Tunici P, Valensin S, Scali C, Pollio G, Porcari V. Multimodal molecular imaging system for pathway-specific reporter gene expression. Eur J Pharm Sci 2016; 86:136-42. [PMID: 26987608 DOI: 10.1016/j.ejps.2016.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Preclinical imaging modalities represent an essential tool to develop a modern and translational biomedical research. To date, Optical Imaging (OI) and Magnetic Resonance Imaging (MRI) are used principally in separate studies for molecular imaging studies. We decided to combine OI and MRI together through the development of a lentiviral vector to monitor the Wnt pathway response to Lithium Chloride (LiCl) treatment. The construct was stably infected in glioblastoma cells and, after intracranial transplantation in mice, serial MRI and OI imaging sessions were performed to detect human ferritin heavy chain protein (hFTH) and firefly luciferase enzyme (FLuc) respectively. The system allowed also ex vivo analysis using a constitutive fluorescence protein expression. In mice, LiCl administration has shown significantly increment of luminescence signal and a lower signal of T2 values (P<0.05), recorded noninvasively with OI and a 7 Tesla MRI scanner. This study indicates that OI and MRI can be performed in a single in vivo experiment, providing an in vivo proof-of-concept for drug discovery projects in preclinical phase.
Collapse
Affiliation(s)
- Marco Rossi
- Siena Biotech Medicine Research Centre, Siena, Italy.
| | - Luisa Massai
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | | | | | | | - Sara Chellini
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | - Elena Pilli
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | | | | | - Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Recchia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Carla Scali
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | |
Collapse
|
35
|
WNT signaling in glioblastoma and therapeutic opportunities. J Transl Med 2016; 96:137-50. [PMID: 26641068 DOI: 10.1038/labinvest.2015.140] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/19/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
WNTs and their downstream effectors regulate proliferation, death, and migration and cell fate decision. Deregulation of WNT signaling is associated with various cancers including GBM, which is the most malignant primary brain cancer. In this review, we will summarize the experimental evidence supporting oncogenic roles of WNT signaling in GBM and discuss current progress in the targeting of WNT signaling as an anti-cancer approach. In particular, we will focus on (1) genetic and epigenetic alterations that lead to aberrant WNT pathway activation in GBM, (2) WNT-mediated control of GBM stem cell maintenance and invasion, and (3) cross-talk between WNT and other signaling pathways in GBM. We will then review the discovery of agents that can inhibit WNT signaling in preclinical models and the current status of human clinical trials.
Collapse
|
36
|
Small-molecule inhibitors of Wnt signaling pathway: towards novel anticancer therapeutics. Future Med Chem 2015; 7:2485-505. [PMID: 26670195 DOI: 10.4155/fmc.15.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Wnt signaling pathway involves secreted glycoproteins that bind to the Frizzled family receptors to activate intracellular signal transduction events that regulate cell proliferation, apoptosis, cell migration and many critical aspects of developmental biology. DISCUSSION Aberrant Wnt signaling underlies a wide range of pathologies in humans including tumor initiation, tumor growth, cell senescence, cell death, differentiation and metastasis. The inhibition of Wnt signaling offers a novel approach for anticancer therapeutics. CONCLUSION Focusing on recent developments, we reviewed the small-molecule inhibitors targeting various components of Wnt signaling pathways and the progress from the discovery of lead compounds to highly potent inhibitors with significant therapeutic potential.
Collapse
|
37
|
Pharmacologic Wnt Inhibition Reduces Proliferation, Survival, and Clonogenicity of Glioblastoma Cells. J Neuropathol Exp Neurol 2015. [PMID: 26222502 DOI: 10.1097/nen.0000000000000227] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Wingless (Wnt) signaling is an important pathway in gliomagenesis and in the growth of stem-like glioma cells. Using immunohistochemistry to assess the translocation of β-catenin protein, we identified intranuclear staining suggesting Wnt pathway activation in 8 of 43 surgical samples (19%) from adult patients with glioblastoma and in 9 of 30 surgical samples (30%) from pediatric patients with glioblastoma. Wnt activity, evidenced by nuclear β-catenin in our cohort and high expression of its target AXIN2 (axis inhibitor protein 2) in published glioma datasets, was associated with shorter patient survival, although this was not statistically significant. We determined the effects of the porcupine inhibitor LGK974 on 3 glioblastoma cell lines with elevated AXIN2 and found that it reduced Wnt pathway activity by 50% or more, as assessed by T-cell factor luciferase reporters. Wnt inhibition led to suppression of growth, proliferation in cultures, and modest induction of cell death. LGK974 reduced NANOG messenger RNA levels and the fraction of cells expressing the stem cell marker CD133 in neurosphere cultures, induced glial differentiation, and suppressed clonogenicity. These data indicate that LGK974 is a promising new agent that can inhibit the canonical Wnt pathway in vitro, slow tumor growth, and deplete stem-like clonogenic cells, thereby providing further support for targeting Wnt in patients with glioblastoma.
Collapse
|
38
|
Del Bello F, Farande A, Giannella M, Piergentili A, Quaglia W, Benicchi T, Cappelli F, Nencini A, Salerno M, Thomas RJ, Travagli M, Varrone M. Identification of 2-aminopyrimidine derivatives as inhibitors of the canonical Wnt signaling pathway. Bioorg Med Chem 2015; 23:5725-33. [DOI: 10.1016/j.bmc.2015.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/18/2023]
|
39
|
Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 2015; 6:1359-70. [PMID: 25312641 PMCID: PMC4237465 DOI: 10.15252/emmm.201302627] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of brain tumor with a more than 90% 5-year mortality. GBM has a paltry median survival of 12.6 months attributed to the unique treatment limitations such as the high average age of onset, tumor location, and poor current understandings of the tumor pathophysiology. The resection techniques, chemotherapic strategies, and radiation therapy currently used to treat GBM have slowly evolved, but the improvements have not translated to marked increases in patient survival. Here, we will discuss the recent progress in our understanding of GBM pathophysiology, and the diagnostic techniques and treatment options. The discussion will include biomarkers, tumor imaging, novel therapies such as monoclonal antibodies and small-molecule inhibitors, and the heterogeneity resulting from the GBM cancer stem cell population.
Collapse
Affiliation(s)
- Steven K Carlsson
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaun P Brothers
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
40
|
Nencini A, Pratelli C, Quinn JM, Salerno M, Tunici P, De Robertis A, Valensin S, Mennillo F, Rossi M, Bakker A, Benicchi T, Cappelli F, Turlizzi E, Nibbio M, Caradonna NP, Zanelli U, Andreini M, Magnani M, Varrone M. Structure–activity relationship and properties optimization of a series of Quinazoline-2,4-diones as inhibitors of the canonical Wnt pathway. Eur J Med Chem 2015; 95:526-45. [DOI: 10.1016/j.ejmech.2015.03.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
|
41
|
Mechanisms regulating glioma invasion. Cancer Lett 2015; 362:1-7. [PMID: 25796440 DOI: 10.1016/j.canlet.2015.03.015] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/10/2023]
Abstract
Glioblastoma (GBM) is the most aggressive, deadliest, and most common brain malignancy in adults. Despite the advances made in surgical techniques, radiotherapy and chemotherapy, the median survival for GBM patients has remained at a mere 14 months. GBM poses several unique challenges to currently available treatments for the disease. For example, GBM cells have the propensity to aggressively infiltrate/invade into the normal brain tissues and along the vascular tracks, which prevents complete resection of all malignant cells and limits the effect of localized radiotherapy while sparing normal tissue. Although anti-angiogenic treatment exerts anti-edematic effect in GBM, unfortunately, tumors progress with acquired increased invasiveness. Therefore, it is an important task to gain a deeper understanding of the intrinsic and post-treatment invasive phenotypes of GBM in hopes that the gained knowledge would lead to novel GBM treatments that are more effective and less toxic. This review will give an overview of some of the signaling pathways that have been shown to positively and negatively regulate GBM invasion, including, the PI3K/Akt, Wnt, sonic hedgehog-GLI1, and microRNAs. The review will also discuss several approaches to cancer therapies potentially altering GBM invasiveness.
Collapse
|
42
|
Hardwick LJA, Philpott A. An oncologist׳s friend: How Xenopus contributes to cancer research. Dev Biol 2015; 408:180-7. [PMID: 25704511 PMCID: PMC4684227 DOI: 10.1016/j.ydbio.2015.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 01/10/2023]
Abstract
One of the most striking features of the Xenopus system is the versatility in providing a unique range of both in vitro and in vivo models that are rapid, accessible and easily manipulated. Here we present an overview of the diverse contribution that Xenopus has made to advance our understanding of tumour biology and behaviour; a contribution that goes beyond the traditional view of Xenopus as a developmental model organism. From the utility of the egg and oocyte extract system to the use of whole embryos as developmental or induced tumour models, the Xenopus system has been fundamental to investigation of cell cycle mechanisms, cell metabolism, cell signalling and cell behaviour, and has allowed an increasing appreciation of the parallels between early development and the pathogenesis of tumour progression and metastasis. Although not the prototypical oncological model system, we propose that Xenopus is an adaptable and multifunctional tool in the oncologist׳s arsenal.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.
| |
Collapse
|
43
|
Abstract
High-grade gliomas remain incurable and lethal. Through the availability of the stem-like cells responsible for glioblastoma (GB) formation, expansion, resilience and recurrence, the discovery of glioma cancer stem cells (GCSCs) is revolutionizing this field. GCSCs provide an unprecedented opportunity to reproduce and study GB pathophysiology more accurately. This critically emphasizes our ability to unambiguously identify, isolate and investigate cells that do qualify as GCSCs, to use them as a potential model that is truly predictive of GBs and of their regulation and response to therapeutic agents. We review this concept against the background of key findings on somatic, neural and solid tumour stem cells (SCs), also taking into account the emerging phenomenon of phenotypic SC plasticity. We suggest that basic approaches in these areas can be imported into the GCSC field, so that the same functional method used to identify normal somatic SCs becomes the most appropriate to define GCSCs. This, combined with knowledge of the cellular and molecular basis of normal adult neurogenesis, promises to improve the identification of GCSCs and of selective markers, as well as the development of innovative, more specific and efficacious antiglioma strategies.
Collapse
Affiliation(s)
- E Binda
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Milan, Italy
| | | | | |
Collapse
|
44
|
De Robertis A, Mennillo F, Rossi M, Valensin S, Tunici P, Mori E, Caradonna N, Varrone M, Salerno M. Human Sarcoma growth is sensitive to small-molecule mediated AXIN stabilization. PLoS One 2014; 9:e97847. [PMID: 24842792 PMCID: PMC4026528 DOI: 10.1371/journal.pone.0097847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/25/2014] [Indexed: 11/19/2022] Open
Abstract
Sarcomas are mesenchymal tumors showing high molecular heterogeneity, reflected at the histological level by the existence of more than fifty different subtypes. Genetic and epigenetic evidences link aberrant activation of the Wnt signaling to growth and progression of human sarcomas. This phenomenon, mainly accomplished by autocrine loop activity, is sustained by gene amplification, over-expression of Wnt ligands and co-receptors or epigenetic silencing of endogenous Wnt antagonists. We previously showed that pharmacological inhibition of Wnt signaling mediated by Axin stabilization produced in vitro and in vivo antitumor activity in glioblastoma tumors. Here, we report that targeting different sarcoma cell lines with the Wnt inhibitor/Axin stabilizer SEN461 produces a less transformed phenotype, as supported by modulation of anchorage-independent growth in vitro. At the molecular level, SEN461 treatment enhanced the stability of the scaffold protein Axin1, a key negative regulator of the Wnt signaling with tumor suppressor function, resulting in downstream effects coherent with inhibition of canonical Wnt signaling. Genetic phenocopy of small molecule Axin stabilization, through Axin1 over-expression, coherently resulted in strong impairment of soft-agar growth. Importantly, sarcoma growth inhibition through pharmacological Axin stabilization was also observed in a xenograft model in vivo in female CD-1 nude mice. Our findings suggest the usefulness of Wnt inhibitors with Axin stabilization activity as a potentialyl clinical relevant strategy for certain types of sarcomas.
Collapse
Affiliation(s)
- Alessandra De Robertis
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Federica Mennillo
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Marco Rossi
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- In Vivo Pharmacology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Silvia Valensin
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Patrizia Tunici
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- In Vivo Pharmacology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Elisa Mori
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- Data Analysis Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Nicola Caradonna
- MET Profiling Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Maurizio Varrone
- Department of Medicinal Chemistry, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Massimiliano Salerno
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- * E-mail:
| |
Collapse
|
45
|
Betti M, Genesio E, Panico A, Sanna Coccone S, Wiedenau P. Process Development and Scale-Up for the Preparation of the 1-Methyl-quinazoline-2,4-dione Wnt Inhibitor SEN461. Org Process Res Dev 2013. [DOI: 10.1021/op400145w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matteo Betti
- Process Chemistry Unit and ‡Compound Management & Analysis Unit, Siena Biotech SpA, 53100 Siena, Italy
| | - Eva Genesio
- Process Chemistry Unit and ‡Compound Management & Analysis Unit, Siena Biotech SpA, 53100 Siena, Italy
| | - Alessandro Panico
- Process Chemistry Unit and ‡Compound Management & Analysis Unit, Siena Biotech SpA, 53100 Siena, Italy
| | - Salvatore Sanna Coccone
- Process Chemistry Unit and ‡Compound Management & Analysis Unit, Siena Biotech SpA, 53100 Siena, Italy
| | - Paul Wiedenau
- Process Chemistry Unit and ‡Compound Management & Analysis Unit, Siena Biotech SpA, 53100 Siena, Italy
| |
Collapse
|