1
|
Stockwell SR, Scott DE, Fischer G, Guarino E, Rooney TPC, Feng TS, Moschetti T, Srinivasan R, Alza E, Asteian A, Dagostin C, Alcaide A, Rocaboy M, Blaszczyk B, Higueruelo A, Wang X, Rossmann M, Perrior TR, Blundell TL, Spring DR, McKenzie G, Abell C, Skidmore J, Venkitaraman AR, Hyvönen M. Selective Aurora A-TPX2 Interaction Inhibitors Have In Vivo Efficacy as Targeted Antimitotic Agents. J Med Chem 2024; 67:15521-15536. [PMID: 39190548 PMCID: PMC11403621 DOI: 10.1021/acs.jmedchem.4c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Aurora A kinase, a cell division regulator, is frequently overexpressed in various cancers, provoking genome instability and resistance to antimitotic chemotherapy. Localization and enzymatic activity of Aurora A are regulated by its interaction with the spindle assembly factor TPX2. We have used fragment-based, structure-guided lead discovery to develop small molecule inhibitors of the Aurora A-TPX2 protein-protein interaction (PPI). Our lead compound, CAM2602, inhibits Aurora A:TPX2 interaction, binding Aurora A with 19 nM affinity. CAM2602 exhibits oral bioavailability, causes pharmacodynamic biomarker modulation, and arrests the growth of tumor xenografts. CAM2602 acts by a novel mechanism compared to ATP-competitive inhibitors and is highly specific to Aurora A over Aurora B. Consistent with our finding that Aurora A overexpression drives taxane resistance, these inhibitors synergize with paclitaxel to suppress the outgrowth of pancreatic cancer cells. Our results provide a blueprint for targeting the Aurora A-TPX2 PPI for cancer therapy and suggest a promising clinical utility for this mode of action.
Collapse
Affiliation(s)
- Simon R Stockwell
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Duncan E Scott
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Estrella Guarino
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Timothy P C Rooney
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tzu-Shean Feng
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tommaso Moschetti
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Rajavel Srinivasan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Esther Alza
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Alice Asteian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Claudio Dagostin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Anna Alcaide
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Mathieu Rocaboy
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Beata Blaszczyk
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Alicia Higueruelo
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Xuelu Wang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Maxim Rossmann
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | | | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Grahame McKenzie
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - John Skidmore
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| |
Collapse
|
2
|
Zhang Y, Ma Y, Wang Y, Mukhopadhyay D, Bi Y, Ji B. Aurora kinase a inhibitor MLN8237 suppresses pancreatic cancer growth. Pancreatology 2022; 22:619-625. [PMID: 35550115 PMCID: PMC9189053 DOI: 10.1016/j.pan.2022.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for high mortality due to limited options of appropriate chemotherapy drugs. Here we report that Aurora kinase-A expression is elevated in both human and mouse PDAC samples. MLN8237, an inhibitor of Aurora kinase-A, efficiently reduced the proliferation and motility of PDAC cells in vitro as well as tumor growth in orthotropic xenograft model and genetic pancreatic cancer animal models (p53/LSL/Pdx-Cre mice) in vivo. MLN8237 exhibited tumor inhibitory effect through inhibiting proliferation and migration, and inducing apoptosis and senescence. These results provide the molecular basis for a novel chemotherapy strategy for PDAC patients.
Collapse
Affiliation(s)
- Yuebo Zhang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Yong Ma
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA; Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Yan Bi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3
|
Rio-Vilariño A, del Puerto-Nevado L, García-Foncillas J, Cebrián A. Ras Family of Small GTPases in CRC: New Perspectives for Overcoming Drug Resistance. Cancers (Basel) 2021; 13:3757. [PMID: 34359657 PMCID: PMC8345156 DOI: 10.3390/cancers13153757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer remains among the cancers with the highest incidence, prevalence, and mortality worldwide. Although the development of targeted therapies against the EGFR and VEGFR membrane receptors has considerably improved survival in these patients, the appearance of resistance means that their success is still limited. Overactivation of several members of the Ras-GTPase family is one of the main actors in both tumour progression and the lack of response to cytotoxic and targeted therapies. This fact has led many resources to be devoted over the last decades to the development of targeted therapies against these proteins. However, they have not been as successful as expected in their move to the clinic so far. In this review, we will analyse the role of these Ras-GTPases in the emergence and development of colorectal cancer and their relationship with resistance to targeted therapies, as well as the status and new advances in the design of targeted therapies against these proteins and their possible clinical implications.
Collapse
Affiliation(s)
| | | | - Jesús García-Foncillas
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| | - Arancha Cebrián
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| |
Collapse
|
4
|
Pitts TM, Bradshaw-Pierce EL, Bagby SM, Hyatt SL, Selby HM, Spreafico A, Tentler JJ, McPhillips K, Klauck PJ, Capasso A, Diamond JR, Davis SL, Tan AC, Arcaroli JJ, Purkey A, Messersmith WA, Ecsedy JA, Eckhardt SG. Antitumor activity of the aurora a selective kinase inhibitor, alisertib, against preclinical models of colorectal cancer. Oncotarget 2018; 7:50290-50301. [PMID: 27385211 PMCID: PMC5226583 DOI: 10.18632/oncotarget.10366] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background The Aurora kinases are a family of serine/threonine kinases comprised of Aurora A, B, and C which execute critical steps in mitotic and meiotic progression. Alisertib (MLN8237) is an investigational Aurora A selective inhibitor that has demonstrated activity against a wide variety of tumor types in vitro and in vivo, including CRC. Results CRC cell lines demonstrated varying sensitivity to alisertib with IC50 values ranging from 0.06 to > 5 umol/L. Following exposure to alisertib we observed a decrease in pAurora A, B and C in four CRC cell lines. We also observed an increase in p53 and p21 in a sensitive p53 wildtype cell line in contrast to the p53 mutant cell line or the resistant cell lines. The addition of alisertib to standard CRC treatments demonstrated improvement over single agent arms; however, the benefit was largely less than additive, but not antagonistic. Methods Forty-seven CRC cell lines were exposed to alisertib and IC50s were calculated. Twenty-one PDX models were treated with alisertib and the Tumor Growth Inhibition Index was assessed. Additionally, 5 KRAS wildtype and mutant PDX models were treated with alisertib as single agent or in combination with cetuximab or irinotecan, respectively. Conclusion Alisertib demonstrated anti-proliferative effects against CRC cell lines and PDX models. Our data suggest that the addition of alisertib to standard therapies in colorectal cancer if pursued clinically, will require further investigation of patient selection strategies and these combinations may facilitate future clinical studies.
Collapse
Affiliation(s)
- Todd M Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erica L Bradshaw-Pierce
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Takeda California, San Diego, CA, USA
| | - Stacey M Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie L Hyatt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Heather M Selby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Spreafico
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - John J Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly McPhillips
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter J Klauck
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Capasso
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer R Diamond
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Lindsey Davis
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John J Arcaroli
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alicia Purkey
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Wells A Messersmith
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffery A Ecsedy
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - S Gail Eckhardt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Xu SC, Ning P. Predicting pathogenic genes for primary myelofibrosis based on a system‑network approach. Mol Med Rep 2017; 17:186-192. [PMID: 29115418 PMCID: PMC5780125 DOI: 10.3892/mmr.2017.7847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/11/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to predict pathogenic genes for primary myelofibrosis (PMF) using a system‑network approach by combining protein‑protein interaction (PPI) network and gene expression data with known pathogenic genes. PMF gene expression profiles, known pathogenic genes and protein‑protein interactions were obtained. Using these data, differentially expressed genes (DEGs) were identified between PMF and normal conditions using significance analysis of microarrays, and seed genes were determined based on the intersection of known pathogenic genes and the PMF gene expression profile. A new network was constructed using the seed genes and their adjacent DEGs within the PPI network. Subsequently, a pathogenic network was extracted from the new network, and contained genes that interacted with at least two seed genes, and the candidate pathogenic genes were predicted based on the cohesion with seed genes. Cluster analysis was performed to mine the pathogenic modules from the pathogenic network, and functional analysis was performed to identify the putative biological processes of the candidate pathogenic genes. Results from the present study identified 845 DEGs between PMF and normal conditions, and 45 seed genes in PMF were screened. Subsequently, a pathogenic network comprising 103 nodes and 265 interactions was constructed, and 4 pathogenic modules (modules A‑D) were mined from the pathogenic network. There were nine candidate pathogenic genes contained within Module A and four potential pathogenic genes, including E1A‑binding protein p300, RAS‑like proto‑oncogene A, von Willebrand factor and RAF‑1 proto‑oncogene, serine/threonine kinase, were identified that may be involved in the same biological process with the seed genes. This study predicted 10 candidate pathogenic genes and several signaling pathways that may be related to the pathogenesis of PMF using a system‑network approach. These predictions may shed light on the PMF pathogenesis and may provide guidelines for future experimental verification.
Collapse
Affiliation(s)
- Shu-Cai Xu
- Department of Oncology and Hematology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430015, P.R. China
| | - Peng Ning
- Department of Traumatic Hand and Foot Surgery, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
6
|
Anderson M, Marayati R, Moffitt R, Yeh JJ. Hexokinase 2 promotes tumor growth and metastasis by regulating lactate production in pancreatic cancer. Oncotarget 2017; 8:56081-56094. [PMID: 28915575 PMCID: PMC5593546 DOI: 10.18632/oncotarget.9760] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a KRAS-driven cancer with a high incidence of metastasis and an overall poor prognosis. Previous work in a genetically engineered mouse model of PDAC showed glucose metabolism to be important for maintaining tumor growth. Multiple glycolytic enzymes, including hexokinase 2 (HK2), were upregulated in primary PDAC patient tumors, supporting a role for glycolysis in promoting human disease. HK2 was most highly expressed in PDAC metastases, suggesting a link between HK2 and aggressive tumor biology. In support of this we found HK2 expression to be associated with shorter overall survival in PDAC patients undergoing curative surgery. Transient and stable knockdown of HK2 in primary PDAC cell lines decreased lactate production, anchorage independent growth (AIG) and invasion through a reconstituted matrix. Conversely, stable overexpression of HK2 increased lactate production, cell proliferation, AIG and invasion. Pharmacologic inhibition of lactate production reduced the HK2-driven increase in invasion while addition of extracellular lactate enhanced invasion, together providing a link between glycolytic activity and metastatic potential. Stable knockdown of HK2 decreased primary tumor growth in cell line xenografts and decreased incidence of lung metastasis after tail vein injection. Gene expression analysis of tumors with decreased HK2 expression showed alterations in VEGF-A signaling, a pathway important for angiogenesis and metastasis, consistent with a requirement of HK2 in promoting metastasis. Overall our data provides strong evidence for the role of HK2 in promoting PDAC disease progression, suggesting that direct inhibition of HK2 may be a promising approach in the clinic.
Collapse
Affiliation(s)
- Marybeth Anderson
- Curriculum in Genetics & Molecular Biology, The University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC
| | - Raoud Marayati
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC
| | - Richard Moffitt
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC
| | - Jen Jen Yeh
- Curriculum in Genetics & Molecular Biology, The University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC
- Departments of Surgery and Pharmacology, The University of North Carolina, Chapel Hill, NC
| |
Collapse
|
7
|
Mathison A, Salmonson A, Missfeldt M, Bintz J, Williams M, Kossak S, Nair A, de Assuncao TM, Christensen T, Buttar N, Iovanna J, Huebert R, Lomberk G. Combined AURKA and H3K9 Methyltransferase Targeting Inhibits Cell Growth By Inducing Mitotic Catastrophe. Mol Cancer Res 2017; 15:984-997. [PMID: 28442587 DOI: 10.1158/1541-7786.mcr-17-0063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
The current integrative pathobiologic hypothesis states that pancreatic cancer (PDAC) develops and progresses in response to an interaction between known oncogenes and downstream epigenomic regulators. Congruently, this study tests a new combinatorial therapy based on the inhibition of the Aurora kinase A (AURKA) oncogene and one of its targets, the H3K9 methylation-based epigenetic pathway. This therapeutic combination is effective at inhibiting the in vitro growth of PDAC cells both, in monolayer culture systems, and in three-dimensional spheroids and organoids. The combination also reduces the growth of PDAC xenografts in vivo Mechanistically, it was found that inhibiting methyltransferases of the H3K9 pathway in cells, which are arrested in G2-M after targeting AURKA, decreases H3K9 methylation at centromeres, induces mitotic aberrations, triggers an aberrant mitotic check point response, and ultimately leads to mitotic catastrophe. Combined, these data describe for the first time a hypothesis-driven design of an efficient combinatorial treatment that targets a dual oncogenic-epigenomic pathway to inhibit PDAC cell growth via a cytotoxic mechanism that involves perturbation of normal mitotic progression to end in mitotic catastrophe. Therefore, this new knowledge has significant mechanistic value as it relates to the development of new therapies as well as biomedical relevance.Implications: These results outline a model for the combined inhibition of a genetic-to-epigenetic pathway to inhibit cell growth and suggest an important and provocative consideration for harnessing the capacity of cell-cycle inhibitors to enhance the future use of epigenetic inhibitors. Mol Cancer Res; 15(8); 984-97. ©2017 AACR.
Collapse
Affiliation(s)
- Angela Mathison
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ann Salmonson
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mckenna Missfeldt
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jennifer Bintz
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Monique Williams
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sarah Kossak
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Asha Nair
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Thiago M de Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Trace Christensen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Navtej Buttar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Robert Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Gwen Lomberk
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Metformin Treatment Does Not Inhibit Growth of Pancreatic Cancer Patient-Derived Xenografts. PLoS One 2016; 11:e0147113. [PMID: 26760500 PMCID: PMC4711922 DOI: 10.1371/journal.pone.0147113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/29/2015] [Indexed: 01/27/2023] Open
Abstract
There is currently tremendous interest in developing anti-cancer therapeutics targeting cell signaling pathways important for both cancer cell metabolism and growth. Several epidemiological studies have shown that diabetic patients taking metformin have a decreased incidence of pancreatic cancer. This has prompted efforts to evaluate metformin, a drug with negligible toxicity, as a therapeutic modality in pancreatic cancer. Preclinical studies in cell line xenografts and one study in patient-derived xenograft (PDX) models were promising, while recently published clinical trials showed no benefit to adding metformin to combination therapy regimens for locally advanced and metastatic pancreatic cancer. PDX models in which patient tumors are directly engrafted into immunocompromised mice have been shown to be excellent preclinical models for biomarker discovery and therapeutic development. We evaluated the response of four PDX tumor lines to metformin treatment and found that all four of our PDX lines were resistant to metformin. We found that the mechanisms of resistance may occur through lack of sustained activation of adenosine monophosphate-activated protein kinase (AMPK) or downstream reactivation of the mammalian target of rapamycin (mTOR). Moreover, combined treatment with metformin and mTOR inhibitors failed to improve responses in cell lines, which further indicates that metformin alone or in combination with mTOR inhibitors will be ineffective in patients, and that resistance to metformin may occur through multiple pathways. Further studies are required to better understand these mechanisms of resistance and inform potential combination therapies with metformin and existing or novel therapeutics.
Collapse
|
9
|
Byrne JD, Jajja MRN, O'Neill AT, Bickford LR, Keeler AW, Hyder N, Wagner K, Deal A, Little RE, Moffitt RA, Stack C, Nelson M, Brooks CR, Lee W, Luft JC, Napier ME, Darr D, Anders CK, Stack R, Tepper JE, Wang AZ, Zamboni WC, Yeh JJ, DeSimone JM. Local iontophoretic administration of cytotoxic therapies to solid tumors. Sci Transl Med 2015; 7:273ra14. [PMID: 25653220 DOI: 10.1126/scitranslmed.3009951] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parenteral and oral routes have been the traditional methods of administering cytotoxic agents to cancer patients. Unfortunately, the maximum potential effect of these cytotoxic agents has been limited because of systemic toxicity and poor tumor perfusion. In an attempt to improve the efficacy of cytotoxic agents while mitigating their side effects, we have developed modalities for the localized iontophoretic delivery of cytotoxic agents. These iontophoretic devices were designed to be implanted proximal to the tumor with external control of power and drug flow. Three distinct orthotopic mouse models of cancer and a canine model were evaluated for device efficacy and toxicity. Orthotopic patient-derived pancreatic cancer xenografts treated biweekly with gemcitabine via the device for 7 weeks experienced a mean log2 fold change in tumor volume of -0.8 compared to a mean log2 fold change in tumor volume of 1.1 for intravenous (IV) gemcitabine, 3.0 for IV saline, and 2.6 for device saline groups. The weekly coadministration of systemic cisplatin therapy and transdermal device cisplatin therapy significantly increased tumor growth inhibition and doubled the survival in two aggressive orthotopic models of breast cancer. The addition of radiotherapy to this treatment further extended survival. Device delivery of gemcitabine in dogs resulted in more than 7-fold difference in local drug concentrations and 25-fold lower systemic drug levels than the IV treatment. Overall, these devices have potential paradigm shifting implications for the treatment of pancreatic, breast, and other solid tumors.
Collapse
Affiliation(s)
- James D Byrne
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mohammad R N Jajja
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian T O'Neill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lissett R Bickford
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amanda W Keeler
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nabeel Hyder
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyle Wagner
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Allison Deal
- Lineberger Comprehensive Cancer Center Biostatistics and Clinical Data Management Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan E Little
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard A Moffitt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Colleen Stack
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. School of Medicine, Duke University, Durham, NC 27708, USA. Synecor LLC, Chapel Hill, NC 27517, USA
| | - Meredith Nelson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher R Brooks
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William Lee
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Chris Luft
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary E Napier
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carey K Anders
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard Stack
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Synecor LLC, Chapel Hill, NC 27517, USA. Division of Cardiology, Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Joel E Tepper
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew Z Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Zamboni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Joseph M DeSimone
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
10
|
Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 2015; 47:1168-78. [PMID: 26343385 PMCID: PMC4912058 DOI: 10.1038/ng.3398] [Citation(s) in RCA: 1314] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal disease with a 5-year survival rate of 4%. A key hallmark of PDAC is extensive stromal involvement, which makes capturing precise tumor-specific molecular information difficult. Here we have overcome this problem by applying blind source separation to a diverse collection of PDAC gene expression microarray data, including data from primary tumor, metastatic and normal samples. By digitally separating tumor, stromal and normal gene expression, we have identified and validated two tumor subtypes, including a 'basal-like' subtype that has worse outcome and is molecularly similar to basal tumors in bladder and breast cancers. Furthermore, we define 'normal' and 'activated' stromal subtypes, which are independently prognostic. Our results provide new insights into the molecular composition of PDAC, which may be used to tailor therapies or provide decision support in a clinical setting where the choice and timing of therapies are critical.
Collapse
|
11
|
Niu H, Manfredi M, Ecsedy JA. Scientific Rationale Supporting the Clinical Development Strategy for the Investigational Aurora A Kinase Inhibitor Alisertib in Cancer. Front Oncol 2015; 5:189. [PMID: 26380220 PMCID: PMC4547019 DOI: 10.3389/fonc.2015.00189] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 01/08/2023] Open
Abstract
Alisertib (MLN8237) is a selective small molecule inhibitor of Aurora A kinase that is being developed in multiple cancer indications as a single agent and in combination with other therapies. A significant amount of research has elucidated a role for Aurora A in orchestrating numerous activities of cells transiting through mitosis and has begun to shed light on potential non-mitotic roles for Aurora A as well. These biological insights laid the foundation for multiple clinical trials evaluating the antitumor activity of alisertib in both solid cancers and heme-lymphatic malignancies. Several key facets of Aurora A biology as well as empirical data collected in experimental systems and early clinical trials have directed the development of alisertib toward certain cancer types, including neuroblastoma, small cell lung cancer, neuroendocrine prostate cancer, atypical teratoid/rhabdoid tumors, and breast cancer among others. In addition, these scientific insights provided the rationale for combining alisertib with other therapies, including microtubule perturbing agents, such as taxanes, EGFR inhibitors, hormonal therapies, platinums, and HDAC inhibitors among others. Here, we link the key aspects of the current clinical development of alisertib to the originating scientific rationale and provide an overview of the alisertib clinical experience to date.
Collapse
Affiliation(s)
- Huifeng Niu
- Department of Translational Medicine, Takeda Pharmaceuticals International Co, Cambridge, MA, USA
| | - Mark Manfredi
- Department of Oncology Biology, Takeda Pharmaceuticals International Co, Cambridge, MA, USA
| | - Jeffrey A. Ecsedy
- Department of Translational Medicine, Takeda Pharmaceuticals International Co, Cambridge, MA, USA
| |
Collapse
|
12
|
Katsha A, Belkhiri A, Goff L, El-Rifai W. Aurora kinase A in gastrointestinal cancers: time to target. Mol Cancer 2015; 14:106. [PMID: 25987188 PMCID: PMC4436812 DOI: 10.1186/s12943-015-0375-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/28/2015] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. During the last two decades, several studies have shown amplification and overexpression of Aurora kinase A (AURKA) in several GI malignancies. These studies demonstrated that AURKA not only plays a role in regulating cell cycle and mitosis, but also regulates a number of key oncogenic signaling pathways. Although AURKA inhibitors have moved to phase III clinical trials in lymphomas, there has been slower progress in GI cancers and solid tumors. Ongoing clinical trials testing AURKA inhibitors as a single agent or in combination with conventional chemotherapies are expected to provide important clinical information for targeting AURKA in GI cancers. It is, therefore, imperative to consider investigations of molecular determinants of response and resistance to this class of inhibitors. This will improve evaluation of the efficacy of these drugs and establish biomarker based strategies for enrollment into clinical trials, which hold the future direction for personalized cancer therapy. In this review, we will discuss the available data on AURKA in GI cancers. We will also summarize the major AURKA inhibitors that have been developed and tested in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Ahmed Katsha
- Department of Surgery, Vanderbilt University Medical Center, 760 PRB, 2220 Pierce Avenue, 37232-6308, Nashville, TN, USA.
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, 760 PRB, 2220 Pierce Avenue, 37232-6308, Nashville, TN, USA.
| | - Laura Goff
- Department of Hematology, Department of Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Wael El-Rifai
- Department of Surgery, Vanderbilt University Medical Center, 760 PRB, 2220 Pierce Avenue, 37232-6308, Nashville, TN, USA. .,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
13
|
Wang F, Li H, Yan XG, Zhou ZW, Yi ZG, He ZX, Pan ST, Yang YX, Wang ZZ, Zhang X, Yang T, Qiu JX, Zhou SF. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:575-601. [PMID: 25632225 PMCID: PMC4304576 DOI: 10.2147/dddt.s75221] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5′-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and mechanisms and verify the efficacy and safety of ALS in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Feng Wang
- Department of Hepatobiliary Surgery, General Hospital, Ningxia Medical University, Yinchuan, People's Republic of China ; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Hai Li
- Department of Colorectal Surgery, General Hospital, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiao-Gang Yan
- Department of Oncological Surgery, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Gang Yi
- Department of General Surgery, Changqing Yangehu Hospital, Yinchuan, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People's Republic of China
| | - Shu-Ting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Zuo-Zheng Wang
- Department of Hepatobiliary Surgery, General Hospital, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Tianxing Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
14
|
Tignanelli CJ, Loeza SGH, Yeh JJ. KRAS and PIK3CA Mutation Frequencies in Patient-derived Xenograft Models of Pancreatic and Colorectal Cancer Are Reflective of Patient Tumors and Stable Across Passages. Am Surg 2014. [DOI: 10.1177/000313481408000920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One obstacle in the translation of advances in cancer research into the clinic is a deficiency of adequate preclinical models that recapitulate human disease. Patient-derived xenograft (PDX) models are established by engrafting patient tumor tissue into mice and are advantageous because they capture tumor heterogeneity. One concern with these models is that selective pressure could lead to mutational drift and thus be an inaccurate reflection of patient tumors. Therefore, we evaluated if mutational frequency in PDX models is reflective of patient populations and if crucial mutations are stable across passages. We examined KRAS and PIK3CA gene mutations from pancreatic ductal adenocarcinoma (PDAC) (n = 30) and colorectal cancer (CRC) (n = 37) PDXs for as many as eight passages. DNA was isolated from tumors and target sequences were amplified by polymerase chain reaction. KRAS codons 12/13 and PIK3CA codons 542/545/1047 were examined using pyrosequencing. Twenty-three of 30 (77%) PDAC PDXs had KRAS mutations and one of 30 (3%) had PIK3CA mutations. Fifteen of 37 (41%) CRC PDXs had KRAS mutations and three of 37 (8%) had PIK3CA mutations. Mutations were 100 per cent preserved across passages. We found that the frequency of KRAS (77%) and PIK3CA (3%) mutations in PDAC PDX was similar to frequencies in patient tumors (71 to 100% KRAS, 0 to 11% PIK3CA). Similarly, KRAS (41%) and PIK3CA (8%) mutations in CRC PDX closely paralleled patient tumors (35 to 51% KRAS, 12 to 21% PIK3CA). The accurate mirroring and stability of genetic changes in PDX models compared with patient tumors suggest that these models are good preclinical surrogates for patient tumors.
Collapse
Affiliation(s)
| | - Silvia G. Herrera Loeza
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Jen Jen Yeh
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Tignanelli CJ, Loeza SGH, Yeh JJ. KRAS and PIK3CA mutation frequencies in patient-derived xenograft models of pancreatic and colorectal cancer are reflective of patient tumors and stable across passages. Am Surg 2014; 80:873-877. [PMID: 25197873 PMCID: PMC4425299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
One obstacle in the translation of advances in cancer research into the clinic is a deficiency of adequate preclinical models that recapitulate human disease. Patient-derived xenograft (PDX) models are established by engrafting patient tumor tissue into mice and are advantageous because they capture tumor heterogeneity. One concern with these models is that selective pressure could lead to mutational drift and thus be an inaccurate reflection of patient tumors. Therefore, we evaluated if mutational frequency in PDX models is reflective of patient populations and if crucial mutations are stable across passages. We examined KRAS and PIK3CA gene mutations from pancreatic ductal adenocarcinoma (PDAC) (n = 30) and colorectal cancer (CRC) (n = 37) PDXs for as many as eight passages. DNA was isolated from tumors and target sequences were amplified by polymerase chain reaction. KRAS codons 12/13 and PIK3CA codons 542/545/1047 were examined using pyrosequencing. Twenty-three of 30 (77%) PDAC PDXs had KRAS mutations and one of 30 (3%) had PIK3CA mutations. Fifteen of 37 (41%) CRC PDXs had KRAS mutations and three of 37 (8%) had PIK3CA mutations. Mutations were 100 per cent preserved across passages. We found that the frequency of KRAS (77%) and PIK3CA (3%) mutations in PDAC PDX was similar to frequencies in patient tumors (71 to 100% KRAS, 0 to 11% PIK3CA). Similarly, KRAS (41%) and PIK3CA (8%) mutations in CRC PDX closely paralleled patient tumors (35 to 51% KRAS, 12 to 21% PIK3CA). The accurate mirroring and stability of genetic changes in PDX models compared with patient tumors suggest that these models are good preclinical surrogates for patient tumors.
Collapse
Affiliation(s)
| | | | - Jen Jen Yeh
- Department of Surgery, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
16
|
Proctor A, Herrera-Loeza SG, Wang Q, Lawrence DS, Yeh JJ, Allbritton NL. Measurement of protein kinase B activity in single primary human pancreatic cancer cells. Anal Chem 2014; 86:4573-80. [PMID: 24716819 PMCID: PMC4018172 DOI: 10.1021/ac500616q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023]
Abstract
An optimized peptide substrate was used to measure protein kinase B (PKB) activity in single cells. The peptide substrate was introduced into single cells, and capillary electrophoresis was used to separate and quantify nonphosphorylated and phosphorylated peptide. The system was validated in three model pancreatic cancer cell lines before being applied to primary cells from human pancreatic adenocarcinomas propagated in nude mice. As measured by phosphorylation of peptide substrate, each tumor cell line exhibited statistically different median levels of PKB activity (65%, 21%, and 4% phosphorylation in PANC-1 (human pancreatic carcinoma), CFPAC-1 (human metastatic ductal pancreatic adenocarcinoma), and HPAF-II cells (human pancreatic adenocarcinoma), respectively) with CFPAC-1 cells demonstrating two populations of cells or bimodal behavior in PKB activation levels. The primary cells exhibited highly variable PKB activity at the single cell level, with some cells displaying little to no activity and others possessing very high levels of activity. This system also enabled simultaneous characterization of peptidase action in single cells by measuring the amount of cleaved peptide substrate in each cell. The tumor cell lines displayed degradation rates statistically similar to one another (0.02, 0.06, and 0.1 zmol pg(-1) s(-1), for PANC-1, CFPAC-1, and HPAF-II cells, respectively) while the degradation rate in primary cells was 10-fold slower. The peptide cleavage sites also varied between tissue-cultured and primary cells, with 5- and 8-residue fragments formed in tumor cell lines and only the 8-residue fragment formed in primary cells. These results demonstrate the ability of chemical cytometry to identify important differences in enzymatic behavior between primary cells and tissue-cultured cell lines.
Collapse
Affiliation(s)
- Angela Proctor
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - S. Gabriela Herrera-Loeza
- Lineberger
Comprehensive Cancer Center, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Qunzhao Wang
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - David S. Lawrence
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Division
of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jen Jen Yeh
- Departments
of Surgery and Pharmacology, University
of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Nancy L. Allbritton
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department
of Biomedical Engineering, University of
North Carolina, Chapel Hill, North Carolina 27599, United States and North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|