1
|
Chen Y, Zou Z, Găman MA, Xu L, Li J. NADPH oxidase mediated oxidative stress signaling in FLT3-ITD acute myeloid leukemia. Cell Death Discov 2023; 9:208. [PMID: 37391442 DOI: 10.1038/s41420-023-01528-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The internal tandem duplication of the juxtamembrane domain of the FMS-like tyrosine kinase 3 (FLT3-ITD) is the most common genetic change in acute myeloid leukemia (AML), and about 30% of all AMLs harbor a FLT3-ITD mutation. Even though FLT3 inhibitors have displayed encouraging effects in FLT3-ITD-mutated AML, the extent of the clinical response to these compounds is cut short due to the rapid development of drug resistance. Evidence has shown that FLT3-ITD triggered activation of oxidative stress signaling may exert a pivotal role in drug resistance. The downstream pathways of FLT3-ITD, including STAT5, PI3K/AKT, and RAS/MAPK, are considered to be major oxidative stress signaling pathways. These downstream pathways can inhibit apoptosis and promote proliferation and survival by regulating apoptosis-related genes and promoting the generation of reactive oxygen species (ROS) through NADPH oxidase (NOX) or other mechanisms. Appropriate levels of ROS may promote proliferation, but high levels of ROS can lead to oxidative damage to the DNA and increase genomic instability. In addition, post-translational modifications of FLT3-ITD and changes in its subcellular localization can affect downstream signaling which may also be one of the mechanisms leading to drug resistance. In this review, we summarized the research progress on NOX mediated oxidative stress signaling and its relationship with drug resistance in FLT3-ITD AML, and discuss the possible new targets in FLT3-ITD signal blocking to reverse drug resistance in FLT3-ITD-mutated AML.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Zhenyou Zou
- Institute of Psychosis Prevention, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, 542005, China.
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
2
|
Electrostatic anti-CD33-antibody-protamine nanocarriers as platform for a targeted treatment of acute myeloid leukemia. J Hematol Oncol 2022; 15:171. [PMID: 36457063 PMCID: PMC9716776 DOI: 10.1186/s13045-022-01390-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a fatal clonal hematopoietic malignancy, which results from the accumulation of several genetic aberrations in myeloid progenitor cells, with a worldwide 5-year survival prognosis of about 30%. Therefore, the development of more effective therapeutics with novel mode of action is urgently demanded. One common mutated gene in the AML is the DNA-methyltransferase DNMT3A whose function in the development and maintenance of AML is still unclear. To specifically target "undruggable" oncogenes, we initially invented an RNAi-based targeted therapy option that uses the internalization capacity of a colorectal cancer specific anti-EGFR-antibody bound to cationic protamine and the anionic siRNA. Here, we present a new experimental platform technology of molecular oncogene targeting in AML. METHODS Our AML-targeting system consists of an internalizing anti-CD33-antibody-protamine conjugate, which together with anionic molecules such as siRNA or ibrutinib-Cy3.5 and cationic free protamine spontaneously assembles into vesicular nanocarriers in aqueous solution. These nanocarriers were analyzed concerning their physical properties and relevant characteristics in vitro in cell lines and in vivo in xenograft tumor models and patient-derived xenograft leukemia models with the aim to prepare them for translation into clinical application. RESULTS The nanocarriers formed depend on a balanced electrostatic combination of the positively charged cationic protamine-conjugated anti-CD33 antibody, unbound cationic protamine and the anionic cargo. This nanocarrier transports its cargo safely into the AML target cells and has therapeutic activity against AML in vitro and in vivo. siRNAs directed specifically against two common mutated genes in the AML, the DNA-methyltransferase DNMT3A and FLT3-ITD lead to a reduction of clonal growth in vitro in AML cell lines and inhibit tumor growth in vivo in xenotransplanted cell lines. Moreover, oncogene knockdown of DNMT3A leads to increased survival of mice carrying leukemia patient-derived xenografts. Furthermore, an anionic derivative of the approved Bruton's kinase (BTK) inhibitor ibrutinib, ibrutinib-Cy3.5, is also transported by this nanocarrier into AML cells and decreases colony formation. CONCLUSIONS We report important results toward innovative personalized, targeted treatment options via electrostatic nanocarrier therapy in AML.
Collapse
|
3
|
Zeng Z, Ly C, Daver N, Cortes J, Kantarjian HM, Andreeff M, Konopleva M. High-throughput proteomic profiling reveals mechanisms of action of AMG925, a dual FLT3-CDK4/6 kinase inhibitor targeting AML and AML stem/progenitor cells. Ann Hematol 2021; 100:1485-1496. [PMID: 33787984 DOI: 10.1007/s00277-021-04493-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022]
Abstract
FLT3 mutations, which are found in a third of patients with acute myeloid leukemia (AML), are associated with poor prognosis. Responses to currently available FLT3 inhibitors in AML patients are typically transient and followed by disease recurrence. Thus, FLT3 inhibitors with new inhibitory mechanisms are needed to improve therapeutic outcomes. AMG925 is a novel, potent, small-molecule dual inhibitor of FLT3 and CDK4/6. In this study. we determined the antileukemic effects and mechanisms of action of AMG925 in AML cell lines and primary samples, in particular AML stem/progenitor cells. AMG925 inhibited cell growth and promoted apoptosis in AML cells with or without FLT3 mutations. Reverse-phase protein array profiling confirmed its on-target effects on FLT3-CDK4/6-regulated pathways and identified unrevealed signaling network alterations in AML blasts and stem/progenitor cells in response to AMG925. Mass cytometry identified pathways that may confer resistance to AMG925 in phenotypically defined AML stem/progenitor cells and demonstrated that combined blockade of FLT3-CDK4/6 and AKT/mTOR signaling facilitated stem cell death. Our findings provide a rationale for the mechanism-based inhibition of FLT3-CDK4/6 and for combinatorial approaches to improve the efficacy of FLT3 inhibition in both FLT3 wild-type and FLT3-mutated AML.
Collapse
Affiliation(s)
- Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charlie Ly
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Cyclin-Dependent Kinase Inhibitors in Hematological Malignancies-Current Understanding, (Pre-)Clinical Application and Promising Approaches. Cancers (Basel) 2021; 13:cancers13102497. [PMID: 34065376 PMCID: PMC8161389 DOI: 10.3390/cancers13102497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cyclin-dependent kinases are involved in the regulation of cancer-initiating processes like cell cycle progression, transcription, and DNA repair. In hematological neoplasms, these enzymes are often overexpressed, resulting in increased cell proliferation and cancer progression. Early (pre-)clinical data using cyclin-dependent kinase inhibitors are promising but identifying the right drug for each subgroup and patient is challenging. Certain chromosomal abnormalities and signaling molecule activities are considered as potential biomarkers. We therefore summarized relevant studies investigating cyclin-dependent kinase inhibitors in hematological malignancies and further discuss molecular mechanisms of resistance and other open questions. Abstract Genetically altered stem or progenitor cells feature gross chromosomal abnormalities, inducing modified ability of self-renewal and abnormal hematopoiesis. Cyclin-dependent kinases (CDK) regulate cell cycle progression, transcription, DNA repair and are aberrantly expressed in hematopoietic malignancies. Incorporation of CDK inhibitors (CDKIs) into the existing therapeutic regimens therefore constitutes a promising strategy. However, the complex molecular heterogeneity and different clinical presentation is challenging for selecting the right target and defining the ideal combination to mediate long-term disease control. Preclinical and early clinical data suggest that specific CDKIs have activity in selected patients, dependent on the existing rearrangements and mutations, potentially acting as biomarkers. Indeed, CDK6, expressed in hematopoietic cells, is a direct target of MLL fusion proteins often observed in acute leukemia and thus contributes to leukemogenesis. The high frequency of aberrancies in the retinoblastoma pathway additionally warrants application of CDKIs in hematopoietic neoplasms. In this review, we describe the preclinical and clinical advances recently made in the use of CDKIs. These include the FDA-approved CDK4/6 inhibitors, traditional and novel pan-CDKIs, as well as dual kinase inhibitors. We additionally provide an overview on molecular mechanisms of response vs. resistance and discuss open questions.
Collapse
|
5
|
Wang Z, Cai J, Cheng J, Yang W, Zhu Y, Li H, Lu T, Chen Y, Lu S. FLT3 Inhibitors in Acute Myeloid Leukemia: Challenges and Recent Developments in Overcoming Resistance. J Med Chem 2021; 64:2878-2900. [PMID: 33719439 DOI: 10.1021/acs.jmedchem.0c01851] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene are often present in newly diagnosed acute myeloid leukemia (AML) patients with an incidence rate of approximately 30%. Recently, many FLT3 inhibitors have been developed and exhibit positive preclinical and clinical effects against AML. However, patients develop resistance soon after undergoing FLT3 inhibitor treatment, resulting in short durable responses and poor clinical effects. This review will discuss the main mechanisms of resistance to clinical FLT3 inhibitors and summarize the emerging strategies that are utilized to overcome drug resistance. Basically, medicinal chemistry efforts to develop new small-molecule FLT3 inhibitors offer a direct solution to this problem. Other potential strategies include the combination of FLT3 inhibitors with other therapies and the development of multitarget inhibitors. It is hoped that this review will provide inspiring insights into the discovery of new AML therapies that can eventually overcome the resistance to current FLT3 inhibitors.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jiongheng Cai
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jie Cheng
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Wenqianzi Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yifan Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| |
Collapse
|
6
|
Kennedy VE, Smith CC. FLT3 Mutations in Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front Oncol 2021; 10:612880. [PMID: 33425766 PMCID: PMC7787101 DOI: 10.3389/fonc.2020.612880] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
The FLT3 receptor is overexpressed on the majority of acute myeloid leukemia (AML) blasts. Mutations in FLT3 are the most common genetic alteration in AML, identified in approximately one third of newly diagnosed patients. FLT3 internal tandem duplication mutations (FLT3-ITD) are associated with increased relapse and inferior overall survival. Multiple small molecule inhibitors of FLT3 signaling have been identified, two of which (midostaurin and gilteritinib) are currently approved in the United States, and many more of which are in clinical trials. Despite significant advances, resistance to FLT3 inhibitors through secondary FLT3 mutations, upregulation of parallel pathways, and extracellular signaling remains an ongoing challenge. Novel therapeutic strategies to overcome resistance, including combining FLT3 inhibitors with other antileukemic agents, development of new FLT3 inhibitors, and FLT3-directed immunotherapy are in active clinical development. Multiple questions regarding FLT3-mutated AML remain. In this review, we highlight several of the current most intriguing controversies in the field including the role of FLT3 inhibitors in maintenance therapy, the role of hematopoietic cell transplantation in FLT3-mutated AML, use of FLT3 inhibitors in FLT3 wild-type disease, significance of non-canonical FLT3 mutations, and finally, emerging concerns regarding clonal evolution.
Collapse
Affiliation(s)
- Vanessa E Kennedy
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Catherine C Smith
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Yuan K, Wang X, Dong H, Min W, Hao H, Yang P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm Sin B 2021; 11:30-54. [PMID: 33532179 PMCID: PMC7838032 DOI: 10.1016/j.apsb.2020.05.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 01/02/2023] Open
Abstract
The sustained cell proliferation resulting from dysregulation of the cell cycle and activation of cyclin-dependent kinases (CDKs) is a hallmark of cancer. The inhibition of CDKs is a highly promising and attractive strategy for the development of anticancer drugs. In particular, third-generation CDK inhibitors can selectively inhibit CDK4/6 and regulate the cell cycle by suppressing the G1 to S phase transition, exhibiting a perfect balance between anticancer efficacy and general toxicity. To date, three selective CDK4/6 inhibitors have received approval from the U.S. Food and Drug Administration (FDA), and 15 CDK4/6 inhibitors are in clinical trials for the treatment of cancers. In this perspective, we discuss the crucial roles of CDK4/6 in regulating the cell cycle and cancer cells, analyze the rationale for selectively inhibiting CDK4/6 for cancer treatment, review the latest advances in highly selective CDK4/6 inhibitors with different chemical scaffolds, explain the mechanisms associated with CDK4/6 inhibitor resistance and describe solutions to overcome this issue, and briefly introduce proteolysis targeting chimera (PROTAC), a new and revolutionary technique used to degrade CDK4/6.
Collapse
Key Words
- AKT, protein kinase B
- AML, acute myeloid leukemia
- CDK4/6
- CDKs, cyclin-dependent kinases
- CIP/KIP, cyclin-dependent kinase inhibitor 1/kinase inhibitory protein
- CKIs, cyclin-dependent kinase inhibitors
- CPU, China Pharmaceutical University
- CRPC, castration-resistant prostate cancer
- Cancer
- Cell cycle
- Drug resistance
- ER, estrogen receptor
- ERK, extracellular regulated protein kinases
- FDA, U.S. Food and Drug Administration
- FLT, fms-like tyrosine kinase
- HER2, human epidermal growth factor receptor 2
- INK4, inhibitors of CDK4
- JAK, janus kinase
- MCL, mantle cell lymphoma
- MM, multiple myeloma
- NSCLC, non-small cell lung cancer
- ORR, overall response rates
- PDK1, 3-phosphoinositide-dependent protein kinase 1
- PFS, progression-free survival
- PI3K, phosphatidylinositol 3-hydroxy kinase
- PR, progesterone receptor
- PROTAC
- PROTAC, proteolysis targeting chimera
- RB, retinoblastoma protein
- SPH, Shanghai Pharmaceuticals Holding Co., Ltd.
- STATs, signal transducers and activators of transcription
- Selectivity
- UNISA, University of South Australia
Collapse
Affiliation(s)
- Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haojie Dong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Mologni L, Marzaro G, Redaelli S, Zambon A. Dual Kinase Targeting in Leukemia. Cancers (Basel) 2021; 13:E119. [PMID: 33401428 PMCID: PMC7796318 DOI: 10.3390/cancers13010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Pharmacological cancer therapy is often based on the concurrent inhibition of different survival pathways to improve treatment outcomes and to reduce the risk of relapses. While this strategy is traditionally pursued only through the co-administration of several drugs, the recent development of multi-targeting drugs (i.e., compounds intrinsically able to simultaneously target several macromolecules involved in cancer onset) has had a dramatic impact on cancer treatment. This review focuses on the most recent developments in dual-kinase inhibitors used in acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and lymphoid tumors, giving details on preclinical studies as well as ongoing clinical trials. A brief overview of dual-targeting inhibitors (kinase/histone deacetylase (HDAC) and kinase/tubulin polymerization inhibitors) applied to leukemia is also given. Finally, the very recently developed Proteolysis Targeting Chimeras (PROTAC)-based kinase inhibitors are presented.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy;
| | - Sara Redaelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
9
|
Scheiblecker L, Kollmann K, Sexl V. CDK4/6 and MAPK-Crosstalk as Opportunity for Cancer Treatment. Pharmaceuticals (Basel) 2020; 13:E418. [PMID: 33255177 PMCID: PMC7760252 DOI: 10.3390/ph13120418] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the development of targeted therapies and novel inhibitors, cancer remains an undefeated disease. Resistance mechanisms arise quickly and alternative treatment options are urgently required, which may be partially met by drug combinations. Protein kinases as signaling switchboards are frequently deregulated in cancer and signify vulnerable nodes and potential therapeutic targets. We here focus on the cell cycle kinase CDK6 and on the MAPK pathway and on their interplay. We also provide an overview on clinical studies examining the effects of combinational treatments currently explored for several cancer types.
Collapse
Affiliation(s)
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (L.S.); (K.K.)
| |
Collapse
|
10
|
Ma W, Liang F, Zhan H, Jiang X, Gao C, Zhang X, Zhang K, Sun Q, Hu H, Zhao Z. Activated FMS-like tyrosine kinase 3 ameliorates angiotensin II-induced cardiac remodelling. Acta Physiol (Oxf) 2020; 230:e13519. [PMID: 32480429 DOI: 10.1111/apha.13519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
AIM FMS-like receptor tyrosine kinase 3 (Flt3) has been reported to be increased in cardiomyocytes responding to ischaemic stress. This study was to determine whether Flt3 activation could ameliorate pressure overload-induced heart hypertrophy and fibrosis, and to elucidate the mechanisms of action. METHODS In vivo cardiac hypertrophy and remodelling experiments were conducted by infusing angiotensin II (Ang II) chronically in male C57BL/6 mice. Flt3-specific ligand (FL) was administered intraperitoneally every two days (5 µg/mouse). In vitro experiments on hypertrophy, apoptosis and autophagy mechanism were performed in neonatal rat cardiomyocytes (NRCMs) and H9c2 cells with adenovirus vector-mediated overexpression of Flt3. RESULTS Our results demonstrated that following chronic Ang II infusion for 4 weeks, the mice exhibited heart hypertrophy, fibrosis, apoptosis and contractile dysfunction. Meanwhile, Ang II induced autophagic responses in mouse hearts, as evidenced by increased LC3 II and decreased P62 expression. These pathological alterations in Ang II-treated mice were significantly ameliorated by Flt3 activation with FL administration. In NRCMs and Flt3-overexpressed H9c2 cells, FL attenuated Ang II-induced pathological autophagy and inactivated AMPK/mTORC1/FoxO3a signalling, thereby efficiently mitigating cell hypertrophy and apoptosis. Conversely, the AMPK activator metformin or the mTORC1 inhibitor rapamycin reversed the effects of FL on the alterations of autophagy, hypertrophy and apoptosis in cardiomyocytes induced by Ang II. CONCLUSION Flt3 activation ameliorates cardiac hypertrophy, fibrosis and contractile dysfunction in the mouse model of chronic pressure overload, most likely via suppressing AMPK/mTORC1/FoxO3a-mediated autophagy. These results provide new evidence supporting Flt3 as a novel therapeutic target in maladaptive cardiac remodelling.
Collapse
Affiliation(s)
- Wenzhuo Ma
- Department of Pharmacology School of Basic Medicine Sciences Xi'an Jiaotong University Health Science Center Xi’an Shaanxi China
- Key Laboratory of Environment and Genes Related to Diseases Ministry of Education Xi'an Jiaotong University Xi’an Shaanxi China
| | - Fanfan Liang
- Department of Pharmacology School of Basic Medicine Sciences Xi'an Jiaotong University Health Science Center Xi’an Shaanxi China
- Key Laboratory of Environment and Genes Related to Diseases Ministry of Education Xi'an Jiaotong University Xi’an Shaanxi China
| | - Heqin Zhan
- Department of Pharmacology School of Basic Medicine Sciences Xi'an Jiaotong University Health Science Center Xi’an Shaanxi China
- Department of Pharmacology College of Pharmacy Xinxiang Medical University Xinxiang Henan China
| | - Xixi Jiang
- Department of Pharmacology School of Basic Medicine Sciences Xi'an Jiaotong University Health Science Center Xi’an Shaanxi China
- Key Laboratory of Environment and Genes Related to Diseases Ministry of Education Xi'an Jiaotong University Xi’an Shaanxi China
| | - Chenying Gao
- Department of Pharmacology School of Basic Medicine Sciences Xi'an Jiaotong University Health Science Center Xi’an Shaanxi China
- Key Laboratory of Environment and Genes Related to Diseases Ministry of Education Xi'an Jiaotong University Xi’an Shaanxi China
| | - Xin Zhang
- Department of Pharmacology School of Basic Medicine Sciences Xi'an Jiaotong University Health Science Center Xi’an Shaanxi China
- Key Laboratory of Environment and Genes Related to Diseases Ministry of Education Xi'an Jiaotong University Xi’an Shaanxi China
| | - Kaina Zhang
- Department of Pharmacology School of Basic Medicine Sciences Xi'an Jiaotong University Health Science Center Xi’an Shaanxi China
- Key Laboratory of Environment and Genes Related to Diseases Ministry of Education Xi'an Jiaotong University Xi’an Shaanxi China
| | - Qiang Sun
- Department of Pharmacology School of Basic Medicine Sciences Xi'an Jiaotong University Health Science Center Xi’an Shaanxi China
- Key Laboratory of Environment and Genes Related to Diseases Ministry of Education Xi'an Jiaotong University Xi’an Shaanxi China
| | - Hao Hu
- Department of Pharmacology School of Basic Medicine Sciences Xi'an Jiaotong University Health Science Center Xi’an Shaanxi China
- Key Laboratory of Environment and Genes Related to Diseases Ministry of Education Xi'an Jiaotong University Xi’an Shaanxi China
| | - Zhenghang Zhao
- Department of Pharmacology School of Basic Medicine Sciences Xi'an Jiaotong University Health Science Center Xi’an Shaanxi China
- Key Laboratory of Environment and Genes Related to Diseases Ministry of Education Xi'an Jiaotong University Xi’an Shaanxi China
| |
Collapse
|
11
|
Melgar K, Walker MM, Jones LM, Bolanos LC, Hueneman K, Wunderlich M, Jiang JK, Wilson KM, Zhang X, Sutter P, Wang A, Xu X, Choi K, Tawa G, Lorimer D, Abendroth J, O'Brien E, Hoyt SB, Berman E, Famulare CA, Mulloy JC, Levine RL, Perentesis JP, Thomas CJ, Starczynowski DT. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci Transl Med 2020; 11:11/508/eaaw8828. [PMID: 31484791 DOI: 10.1126/scitranslmed.aaw8828] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
Targeted inhibitors to oncogenic kinases demonstrate encouraging clinical responses early in the treatment course; however, most patients will relapse because of target-dependent mechanisms that mitigate enzyme-inhibitor binding or through target-independent mechanisms, such as alternate activation of survival and proliferation pathways, known as adaptive resistance. Here, we describe mechanisms of adaptive resistance in FMS-like receptor tyrosine kinase (FLT3)-mutant acute myeloid leukemia (AML) by examining integrative in-cell kinase and gene regulatory network responses after oncogenic signaling blockade by FLT3 inhibitors (FLT3i). We identified activation of innate immune stress response pathways after treatment of FLT3-mutant AML cells with FLT3i and showed that innate immune pathway activation via the interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) complex contributes to adaptive resistance in FLT3-mutant AML cells. To overcome this adaptive resistance mechanism, we developed a small molecule that simultaneously inhibits FLT3 and IRAK1/4 kinases. The multikinase FLT3-IRAK1/4 inhibitor eliminated adaptively resistant FLT3-mutant AML cells in vitro and in vivo and displayed superior efficacy as compared to current targeted FLT3 therapies. These findings uncover a polypharmacologic strategy for overcoming adaptive resistance to therapy in AML by targeting immune stress response pathways.
Collapse
Affiliation(s)
- Katelyn Melgar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Morgan M Walker
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jian-Kang Jiang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick Sutter
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Wang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gregory Tawa
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott B Hoyt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellin Berman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher A Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ross L Levine
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA. .,Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20829, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. .,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
12
|
Zhong Y, Qiu RZ, Sun SL, Zhao C, Fan TY, Chen M, Li NG, Shi ZH. Small-Molecule Fms-like Tyrosine Kinase 3 Inhibitors: An Attractive and Efficient Method for the Treatment of Acute Myeloid Leukemia. J Med Chem 2020; 63:12403-12428. [PMID: 32659083 DOI: 10.1021/acs.jmedchem.0c00696] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is an important member of the class III receptor tyrosine kinase (RTK) family, which is involved in the proliferation of hematopoietic cells and lymphocytes. In recent years, increasing evidence have demonstrated that the activation and mutation of FLT3 is closely implicated in the occurrence and development of acute myeloid leukemia (AML). The exploration of small-molecule inhibitors targeting FLT3 has aroused wide interest of pharmaceutical chemists and is expected to bring new hope for AML therapy. In this review, we specifically highlighted FLT3 mediated JAK/STAT, RAS/MAPK, and PI3K/AKT/mTOR signaling. The structural properties and biological activities of representative FLT3 inhibitors reported from 2014 to the present were also summarized. In addition, the major challenges in the current advance of novel FLT3 inhibitors were further analyzed, with the aim to guide future drug discovery.
Collapse
Affiliation(s)
- Yue Zhong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Run-Ze Qiu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian-Yuan Fan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
13
|
Uras IZ, Sexl V, Kollmann K. CDK6 Inhibition: A Novel Approach in AML Management. Int J Mol Sci 2020; 21:ijms21072528. [PMID: 32260549 PMCID: PMC7178035 DOI: 10.3390/ijms21072528] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease with an aggressive clinical course and high mortality rate. The standard of care for patients has only changed minimally over the past 40 years. However, potentially useful agents have moved from bench to bedside with the potential to revolutionize therapeutic strategies. As such, cell-cycle inhibitors have been discussed as alternative treatment options for AML. In this review, we focus on cyclin-dependent kinase 6 (CDK6) emerging as a key molecule with distinct functions in different subsets of AML. CDK6 exerts its effects in a kinase-dependent and -independent manner which is of clinical significance as current inhibitors only target the enzymatic activity.
Collapse
Affiliation(s)
- Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria;
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: + 43-1-25077-2917
| |
Collapse
|
14
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
15
|
Yuan T, Qi B, Jiang Z, Dong W, Zhong L, Bai L, Tong R, Yu J, Shi J. Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade. Eur J Med Chem 2019; 178:468-483. [PMID: 31207462 DOI: 10.1016/j.ejmech.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 06/02/2019] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease characterized by abnormal growth and differentiation of hematopoietic stem cells. Although the pathogenesis has not been fully elucidated, many specific gene mutations have been found in AML. Fms-like tyrosine kinase 3 (FLT3) is recognized as a drug target for the treatment of AML, and the activation mutations of FLT3 were found in about 30% of AML patients. Targeted inhibition of FLT3 receptor tyrosine kinase has shown promising results in the treatment of FLT3 mutation AML. Unfortunately, the therapeutic effects of FLT3 tyrosine kinase inhibitors used as AML monotherapy are usually accompanied by the high risk of resistance development within a few months after treatment. FLT3 dual inhibitors were generated with the co-inhibition of FLT3 and another target, such as CDK4, JAK2, MEK, Mer, Pim, etc., to solve the problems mentioned above. As a result, the therapeutic effect of the drug is significantly improved, while the toxic and side effects are reduced. Besides, the life quality of AML patients with FLT3 mutation has been effectively improved. In this paper, we reviewed the studies of dual FLT3 inhibitors that have been discovered in recent years for the treatment of AML.
Collapse
Affiliation(s)
- Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Baowen Qi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Wenjuan Dong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jiying Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
16
|
Abstract
FLT3 mutations are one of the most common findings in acute myeloid leukemia (AML). FLT3 inhibitors have been in active clinical development. Midostaurin as the first-in-class FLT3 inhibitor has been approved for treatment of patients with FLT3-mutated AML. In this review, we summarized the preclinical and clinical studies on new FLT3 inhibitors, including sorafenib, lestaurtinib, sunitinib, tandutinib, quizartinib, midostaurin, gilteritinib, crenolanib, cabozantinib, Sel24-B489, G-749, AMG 925, TTT-3002, and FF-10101. New generation FLT3 inhibitors and combination therapies may overcome resistance to first-generation agents.
Collapse
Affiliation(s)
- Mei Wu
- Department of Hematology, The People’s Hospital of Bozhou, Bozhou, 236800 China
| | - Chuntuan Li
- Department of Hematology, First Hospital of Quanzhou affiliated to Fujian Medical University, Quanzhou, 362000 China
| | - Xiongpeng Zhu
- Department of Hematology, First Hospital of Quanzhou affiliated to Fujian Medical University, Quanzhou, 362000 China
| |
Collapse
|
17
|
Payton M, Cheung HK, Ninniri MSS, Marinaccio C, Wayne WC, Hanestad K, Crispino JD, Juan G, Coxon A. Dual Targeting of Aurora Kinases with AMG 900 Exhibits Potent Preclinical Activity Against Acute Myeloid Leukemia with Distinct Post-Mitotic Outcomes. Mol Cancer Ther 2018; 17:2575-2585. [PMID: 30266802 PMCID: PMC6279493 DOI: 10.1158/1535-7163.mct-18-0186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/15/2018] [Accepted: 09/25/2018] [Indexed: 01/19/2023]
Abstract
Aurora kinase A and B have essential and non-overlapping roles in mitosis, with elevated expression in a subset of human cancers, including acute myeloid leukemia (AML). In this study, pan-aurora kinase inhibitor (AKI) AMG 900 distinguishes itself as an anti-leukemic agent that is more uniformly potent against a panel of AML cell lines than are isoform-selective AKIs and classic AML drugs. AMG 900 inhibited AML cell growth by inducing polyploidization and/or apoptosis. AMG 900 and aurora-B-selective inhibitor AZD1152-hQPA showed comparable cellular effects on AML lines that do not harbor a FLT3-ITD mutation. AMG 900 was active against P-glycoprotein-expressing AML cells resistant to AZD1152-hQPA and was effective at inducing expression of megakaryocyte-lineage markers (CD41, CD42) on human CHRF-288-11 cells and mouse Jak2 V617F cells. In MOLM-13 cells, inhibition of p-histone H3 by AMG 900 was associated with polyploidy, extra centrosomes, accumulation of p53 protein, apoptosis, and cleavage of Bcl-2 protein. Co-administration of cytarabine (Ara-C) with AMG 900 potentiated cell killing in a subset of AML lines, with evidence of attenuated polyploidization. AMG 900 inhibited the proliferation of primary human bone marrow cells in culture, with a better proliferation recovery profile relative to classic antimitotic drug docetaxel. In vivo, AMG 900 significantly reduced tumor burden in a systemic MOLM-13 xenograft model where we demonstrate the utility of 3'-deoxy-3'-18F-fluorothymidine [18F]FLT positron emission tomographic (PET)-CT imaging to measure the antiproliferative effects of AMG 900 in skeletal tissues in mice.
Collapse
Affiliation(s)
- Marc Payton
- Amgen Discovery Research, Thousand Oaks, California.
| | | | | | | | | | | | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Gloria Juan
- Amgen Medical Sciences, Thousand Oaks, California
| | - Angela Coxon
- Amgen Discovery Research, Thousand Oaks, California
| |
Collapse
|
18
|
Gucký T, Řezníčková E, Radošová Muchová T, Jorda R, Klejová Z, Malínková V, Berka K, Bazgier V, Ajani H, Lepšík M, Divoký V, Kryštof V. Discovery of N 2-(4-Amino-cyclohexyl)-9-cyclopentyl- N 6-(4-morpholin-4-ylmethyl-phenyl)- 9H-purine-2,6-diamine as a Potent FLT3 Kinase Inhibitor for Acute Myeloid Leukemia with FLT3 Mutations. J Med Chem 2018; 61:3855-3869. [PMID: 29672049 DOI: 10.1021/acs.jmedchem.7b01529] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
FLT3 tyrosine kinase is a potential drug target in acute myeloid leukemia (AML) because patients with FLT3-ITD mutations respond poorly to standard cytotoxic agents and there is a clear link between the disease and the oncogenic properties of FLT3. We present novel 2,6,9-trisubstituted purine derivatives with potent FLT3 inhibitory activity. The lead compound 7d displays nanomolar activity in biochemical assays and selectively blocks proliferation of AML cell lines harboring FLT3-ITD mutations, whereas other transformed and normal human cells are several orders of magnitude less sensitive. The MV4-11 cells treated with 7d suppressed the phosphorylation of FLT3 and its downstream signaling pathways, with subsequent G1 cell cycle arrest and apoptosis. Additionally, a single dose of 7d in mice with subcutaneous MV4-11 xenografts caused sustained inhibition of FLT3 and STAT5 phosphorylation over 48 h, in contrast to the shorter effect observed after administration of the reference FLT3 inhibitor quizartinib.
Collapse
Affiliation(s)
- Tomáš Gucký
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science , Palacký University , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| | - Eva Řezníčková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany AS CR , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| | - Tereza Radošová Muchová
- Department of Biology, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 3 , 775 15 Olomouc , Czech Republic
| | - Radek Jorda
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany AS CR , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| | - Zuzana Klejová
- Department of Biology, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 3 , 775 15 Olomouc , Czech Republic
| | - Veronika Malínková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science , Palacký University , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , 17. listopadu 12 , 771 46 Olomouc , Czech Republic
| | - Václav Bazgier
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , 17. listopadu 12 , 771 46 Olomouc , Czech Republic
| | - Haresh Ajani
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , 17. listopadu 12 , 771 46 Olomouc , Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic
| | - Vladimír Divoký
- Department of Biology, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 3 , 775 15 Olomouc , Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany AS CR , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| |
Collapse
|
19
|
Dual FLT3/TOPK inhibitor with activity against FLT3-ITD secondary mutations potently inhibits acute myeloid leukemia cell lines. Future Med Chem 2018; 10:823-835. [PMID: 29437468 PMCID: PMC6367750 DOI: 10.4155/fmc-2017-0298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: Approximately 30% of acute myeloid leukemia (AML) patients carry FLT3 tyrosine kinase domain (TKD) mutations or internal tandem duplication (FLT3-ITD). Currently there is a paucity of compounds that are active against drug-resistant FLT3-ITD, which contains secondary mutations in the TKD, mainly at residues D835/F691. Results: HSD1169, a novel compound, is active against FLT3-ITD (D835 or F691). HSD1169 is also active against T-LAK cell-originated protein kinase (TOPK), a collaborating kinase that is highly expressed in AML cell lines. HSD1169 was active against MV4–11 and Molm-14 (FLT3-ITD cell lines) but not NOMO-1 or HL60 (FLT3-WT cell lines). HSD1169 was also active against sorafenib-resistant Molm13-res cell line (containing FLT3-ITD/D835Y). Conclusion: HSD1169 or an analog could become a therapeutic agent for AML containing drug-resistant FLT3-ITD.
Collapse
|
20
|
Lopez S, Voisset E, Tisserand JC, Mosca C, Prebet T, Santamaria D, Dubreuil P, De Sepulveda P. An essential pathway links FLT3-ITD, HCK and CDK6 in acute myeloid leukemia. Oncotarget 2018; 7:51163-51173. [PMID: 27323399 PMCID: PMC5239466 DOI: 10.18632/oncotarget.9965] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/25/2016] [Indexed: 11/25/2022] Open
Abstract
CDK4/CDK6 and RB proteins drive the progression through the G1 phase of the cell cycle. In acute myeloid leukemia (AML), the activity of the CDK/Cyclin D complex is increased. The mechanism involved is unknown, as are the respective roles played by CDK4 or CDK6 in this process. Here, we report that AML cells carrying FLT3-ITD mutations are dependent on CDK6 for cell proliferation while CDK4 is not essential. We showed that FLT3-ITD signaling is responsible for CDK6 overexpression, through a pathway involving the SRC-family kinase HCK. Accordingly, FLT3-ITD failed to transform primary hematopoietic progenitor cells from Cdk6-/- mice. Our results demonstrate that CDK6 is the primary target of CDK4/CDK6 inhibitors in FLT3-ITD positive AML. Furthermore, we delineate an essential protein kinase pathway -FLT3/HCK/CDK6- in the context of AML with FLT3-ITD mutations.
Collapse
Affiliation(s)
- Sophie Lopez
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France
| | - Edwige Voisset
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France.,Present address: Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Julie C Tisserand
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France
| | - Cyndie Mosca
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France
| | | | | | - Patrice Dubreuil
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France
| | - Paulo De Sepulveda
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France
| |
Collapse
|
21
|
Dual Inhibition of Mnk2 and FLT3 for potential treatment of acute myeloid leukaemia. Eur J Med Chem 2017; 139:762-772. [DOI: 10.1016/j.ejmech.2017.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
|
22
|
Ghiaur G, Levis M. Mechanisms of Resistance to FLT3 Inhibitors and the Role of the Bone Marrow Microenvironment. Hematol Oncol Clin North Am 2017; 31:681-692. [PMID: 28673395 DOI: 10.1016/j.hoc.2017.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence of FLT3 mutations in acute myeloid leukemia (AML) carries a particularly poor prognosis, making the development of FLT3 inhibitors an imperative goal. The last decade has seen an abundance of clinical trials using these drugs alone or in combination with chemotherapy. This culminated with the recent approval by the US Food and Drug Administration of Midostaurin for the treatment of FLT3-mutated AML. Initial success has been followed by the emergence of clinical resistance. Although novel FLT3 inhibitors are being developed, studies into mechanisms of resistance raise hope of new strategies to prevent emergence of resistance and eliminate minimal residual disease.
Collapse
Affiliation(s)
- Gabriel Ghiaur
- Adult Leukemia Program, Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street CRB I, Room 243, Baltimore, MD 21287, USA.
| | - Mark Levis
- Adult Leukemia Program, Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street CRB I, Room 2M44, Baltimore, MD 21287, USA
| |
Collapse
|
23
|
Di Giovanni C, Novellino E, Chilin A, Lavecchia A, Marzaro G. Investigational drugs targeting cyclin-dependent kinases for the treatment of cancer: an update on recent findings (2013-2016). Expert Opin Investig Drugs 2017; 25:1215-30. [PMID: 27606939 DOI: 10.1080/13543784.2016.1234603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cell cycle and gene transcription are under the control of cyclin-dependent kinases (CDKs), whose activity depends on the binding with cyclins. Deregulated CDK activities have been reported in a majority of human cancers, representing potential therapeutic targets. AREAS COVERED This review provides preclinical and clinical (phase I/II) updates of promising therapeutic compounds targeting CDKs published between 2013 and 2016 EXPERT OPINION: First generation pan-CDK inhibitors showed marked toxicity in clinical trials and most compounds were discontinued. Despite their failure was ascribed also to inadequate patient selection rules, novel pan-CDK inhibitors have entered clinical trials with still poorly defined selection strategies. The most interesting results have been obtained with dual CDK4/6 inhibitors and through a more accurate evaluation of predictive biomarkers, suggesting the usefulness of CDK inhibitors for personalized treatment. The increased knowledge on the roles of CDKs in cell cycle and gene transcription suggests to review also the anticancer potential of first generation CDK inhibitors by defining more appropriate rules for patients engagement. Recent findings has highlighted CDK8 as a novel target for cancer treatment. Indeed some biomarkers for CDK8 inhibition sensitivity have already been proposed. CDK8 inhibition is also supposed to prevent cancer metastasis.
Collapse
Affiliation(s)
- Carmen Di Giovanni
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Ettore Novellino
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Adriana Chilin
- b Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| | - Antonio Lavecchia
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Giovanni Marzaro
- b Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| |
Collapse
|
24
|
Ong E, Szedlak A, Kang Y, Smith P, Smith N, McBride M, Finlay D, Vuori K, Mason J, Ball ED, Piermarocchi C, Paternostro G. A scalable method for molecular network reconstruction identifies properties of targets and mutations in acute myeloid leukemia. J Comput Biol 2016; 22:266-88. [PMID: 25844667 DOI: 10.1089/cmb.2014.0297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A key aim of systems biology is the reconstruction of molecular networks. We do not yet, however, have networks that integrate information from all datasets available for a particular clinical condition. This is in part due to the limited scalability, in terms of required computational time and power, of existing algorithms. Network reconstruction methods should also be scalable in the sense of allowing scientists from different backgrounds to efficiently integrate additional data. We present a network model of acute myeloid leukemia (AML). In the current version (AML 2.1), we have used gene expression data (both microarray and RNA-seq) from 5 different studies comprising a total of 771 AML samples and a protein-protein interactions dataset. Our scalable network reconstruction method is in part based on the well-known property of gene expression correlation among interacting molecules. The difficulty of distinguishing between direct and indirect interactions is addressed by optimizing the coefficient of variation of gene expression, using a validated gold-standard dataset of direct interactions. Computational time is much reduced compared to other network reconstruction methods. A key feature is the study of the reproducibility of interactions found in independent clinical datasets. An analysis of the most significant clusters, and of the network properties (intraset efficiency, degree, betweenness centrality, and PageRank) of common AML mutations demonstrated the biological significance of the network. A statistical analysis of the response of blast cells from 11 AML patients to a library of kinase inhibitors provided an experimental validation of the network. A combination of network and experimental data identified CDK1, CDK2, CDK4, and CDK6 and other kinases as potential therapeutic targets in AML.
Collapse
|
25
|
Ramos NR, Mo CC, Karp JE, Hourigan CS. Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia. J Clin Med 2015; 4:665-95. [PMID: 25932335 PMCID: PMC4412468 DOI: 10.3390/jcm4040665] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023] Open
Abstract
The limited sensitivity of the historical treatment response criteria for acute myeloid leukemia (AML) has resulted in a different paradigm for treatment compared with most other cancers presenting with widely disseminated disease. Initial cytotoxic induction chemotherapy is often able to reduce tumor burden to a level sufficient to meet the current criteria for "complete" remission. Nevertheless, most AML patients ultimately die from their disease, most commonly as clinically evident relapsed AML. Despite a variety of available salvage therapy options, prognosis in patients with relapsed or refractory AML is generally poor. In this review, we outline the commonly utilized salvage cytotoxic therapy interventions and then highlight novel investigational efforts currently in clinical trials using both pathway-targeted agents and immunotherapy based approaches. We conclude that there is no current standard of care for adult relapsed or refractory AML other than offering referral to an appropriate clinical trial.
Collapse
Affiliation(s)
- Nestor R. Ramos
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, USA; E-Mail:
- Department of Hematology-Oncology, John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA; E-Mail:
| | - Clifton C. Mo
- Department of Hematology-Oncology, John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA; E-Mail:
| | - Judith E. Karp
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; E-Mail:
| | - Christopher S. Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, USA; E-Mail:
| |
Collapse
|
26
|
Li C, Liu L, Liang L, Xia Z, Li Z, Wang X, McGee LR, Newhall K, Sinclair A, Kamb A, Wickramasinghe D, Dai K. AMG 925 is a dual FLT3/CDK4 inhibitor with the potential to overcome FLT3 inhibitor resistance in acute myeloid leukemia. Mol Cancer Ther 2014; 14:375-83. [PMID: 25487917 DOI: 10.1158/1535-7163.mct-14-0388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to FLT3 inhibitors is a serious clinical issue in treating acute myelogenous leukemia (AML). AMG 925, a dual FLT3/CDK4 inhibitor, has been developed to overcome this resistance. It is hypothesized that the combined inhibition of FLT3 and CDK4 may reduce occurrence of the FLT3 resistance mutations, and thereby prolong clinical responses. To test this hypothesis, we attempted to isolate AML cell clones resistant to AMG 925 or to FLT3 inhibitors. After a selection of over 8 months with AMG 925, we could only isolate partially resistant clones. No new mutations in FLT3 were found, but a 2- to 3-fold increase in total FLT3 protein was detected and believed to contribute to the partial resistance. In contrast, selection with the FLT3 inhibitors sorafenib or AC220 (Quizartinib), led to a resistance and the appearance of a number of mutations in FLT3 kinase domains, including the known hot spot sites D835 and F691. However, when AC220 was combined with the CDK4 inhibitor PD0332991 (palbociclib) at 0.1 μmol/L or higher, no resistance mutations were obtained, indicating that the CDK4-inhibiting activity of AMG 925 contributed to the failure to develop drug resistance. AMG 925 was shown to potently inhibit the FLT3 inhibitor-resistant mutation D835Y/V. This feature of AMG 925 was also considered to contribute to the lack of resistance mutations to the compound. Together, our data suggest that AMG 925 has the potential to reduce resistance mutations in FLT3 and may prolong clinical responses.
Collapse
Affiliation(s)
- Cong Li
- Amgen Discovery Research, Amgen Inc., South San Francisco, California.
| | - Liqin Liu
- Amgen Discovery Research, Amgen Inc., South San Francisco, California
| | - Lingming Liang
- Amgen Discovery Research, Amgen Inc., South San Francisco, California
| | - Zhen Xia
- Amgen Discovery Research, Amgen Inc., South San Francisco, California
| | - Zhihong Li
- Amgen Discovery Research, Amgen Inc., South San Francisco, California
| | - Xianghong Wang
- Amgen Discovery Research, Amgen Inc., South San Francisco, California
| | - Lawrence R McGee
- Amgen Discovery Research, Amgen Inc., South San Francisco, California
| | - Katie Newhall
- Amgen Discovery Research, Amgen Inc., South San Francisco, California
| | - Angus Sinclair
- Amgen Discovery Research, Amgen Inc., South San Francisco, California
| | - Alexander Kamb
- Amgen Discovery Research, Amgen Inc., South San Francisco, California
| | | | - Kang Dai
- Amgen Discovery Research, Amgen Inc., South San Francisco, California
| |
Collapse
|
27
|
Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, Kaupinis A, Valius M. Highlights of the Latest Advances in Research on CDK Inhibitors. Cancers (Basel) 2014; 6:2224-42. [PMID: 25349887 PMCID: PMC4276963 DOI: 10.3390/cancers6042224] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 11/16/2022] Open
Abstract
Uncontrolled proliferation is the hallmark of cancer and other proliferative disorders and abnormal cell cycle regulation is, therefore, common in these diseases. Cyclin-dependent kinases (CDKs) play a crucial role in the control of the cell cycle and proliferation. These kinases are frequently deregulated in various cancers, viral infections, neurodegenerative diseases, ischemia and some proliferative disorders. This led to a rigorous pursuit for small-molecule CDK inhibitors for therapeutic uses. Early efforts to block CDKs with nonselective CDK inhibitors led to little specificity and efficacy but apparent toxicity, but the recent advance of selective CDK inhibitors allowed the first successful efforts to target these kinases for the therapies of several diseases. Major ongoing efforts are to develop CDK inhibitors as monotherapies and rational combinations with chemotherapy and other targeted drugs.
Collapse
Affiliation(s)
- Jonas Cicenas
- CALIPHO Group, Swiss Institute of Bioinformatics, CMU-1, rue Michel Servet' Geneva 4 CH-1211, Switzerland.
| | | | | | | | | | - Algirdas Kaupinis
- Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius LT-08662, Lithuania.
| | - Mindaugas Valius
- Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius LT-08662, Lithuania.
| |
Collapse
|
28
|
Zhang Y, Hsu CP, Lu JF, Kuchimanchi M, Sun YN, Ma J, Xu G, Zhang Y, Xu Y, Weidner M, Huard J, D'Argenio DZ. FLT3 and CDK4/6 inhibitors: signaling mechanisms and tumor burden in subcutaneous and orthotopic mouse models of acute myeloid leukemia. J Pharmacokinet Pharmacodyn 2014; 41:675-91. [PMID: 25326874 DOI: 10.1007/s10928-014-9393-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/06/2014] [Indexed: 01/08/2023]
Abstract
FLT3(ITD) subtype acute myeloid leukemia (AML) has a poor prognosis with currently available therapies. A number of small molecule inhibitors of FLT3 and/or CDK4/6 are currently under development. A more complete and quantitative understanding of the mechanisms of action of FLT3 and CDK4/6 inhibitors may better inform the development of current and future compounds that act on one or both of the molecular targets, and thus may lead to improved treatments for AML. In this study, we investigated in both subcutaneous and orthotopic AML mouse models, the mechanisms of action of three FLT3 and/or CDK4/6 inhibitors: AMG925 (Amgen), sorafenib (Bayer and Onyx), and quizartinib (Ambit Biosciences). A composite model was developed to integrate the plasma pharmacokinetics of these three compounds on their respective molecular targets, the coupling between the target pathways, as well as the resulting effects on tumor burden reduction in the subcutaneous xenograft model. A sequential modeling approach was used, wherein model structures and estimated parameters from upstream processes (e.g. PK, cellular signaling) were fixed for modeling subsequent downstream processes (cellular signaling, tumor burden). Pooled data analysis was employed for the plasma PK and cellular signaling modeling, while population modeling was applied to the tumor burden modeling. The resulting model allows the decomposition of the relative contributions of FLT3(ITD) and CDK4/6 inhibition on downstream signaling and tumor burden. In addition, the action of AMG925 on cellular signaling and tumor burden was further studied in an orthotopic tumor mouse model more closely representing the physiologically relevant environment for AML.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fiskus W, Sharma S, Qi J, Shah B, Devaraj SGT, Leveque C, Portier BP, Iyer S, Bradner JE, Bhalla KN. BET protein antagonist JQ1 is synergistically lethal with FLT3 tyrosine kinase inhibitor (TKI) and overcomes resistance to FLT3-TKI in AML cells expressing FLT-ITD. Mol Cancer Ther 2014; 13:2315-27. [PMID: 25053825 DOI: 10.1158/1535-7163.mct-14-0258] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, treatment with bromodomain and extraterminal protein antagonist (BA) such as JQ1 has been shown to inhibit growth and induce apoptosis of human acute myelogenous leukemia (AML) cells, including those expressing FLT3-ITD. Here, we demonstrate that cotreatment with JQ1 and the FLT3 tyrosine kinase inhibitor (TKI) ponatinib or AC220 synergistically induce apoptosis of cultured and primary CD34(+) human AML blast progenitor cells (BPC) expressing FLT3-ITD. Concomitantly, as compared with each agent alone, cotreatment with JQ1 and the FLT3-TKI caused greater attenuation of c-MYC, BCL2, and CDK4/6. Simultaneously, cotreatment with JQ1 and the FLT3-TKI increased the levels of p21, BIM, and cleaved PARP, as well as mediated marked attenuation of p-STAT5, p-AKT, and p-ERK1/2 levels in AML BPCs. Conversely, cotreatment with JQ1 and FLT3-TKI was significantly less active against CD34(+) normal bone marrow progenitor cells. Knockdown of BRD4 by short hairpin RNA also sensitized AML cells to FLT3-TKI. JQ1 treatment induced apoptosis of mouse Ba/F3 cells ectopically expressing FLT3-ITD with or without FLT3-TKI-resistant mutations F691L and D835V. Compared with the parental human AML FLT3-ITD-expressing MOLM13, MOLM13-TKIR cells resistant to AC220 were markedly more sensitive to JQ1-induced apoptosis. Furthermore, cotreatment with JQ1 and the pan-histone deacetylase inhibitor (HDI) panobinostat synergistically induced apoptosis of FLT3-TKI-resistant MOLM13-TKIR and MV4-11-TKIR cells. Collectively, these findings support the rationale for determining the in vivo activity of combined therapy with BA and FLT3-TKI against human AML cells expressing FLT3-ITD or with BA and HDI against AML cells resistant to FLT3-TKI.
Collapse
Affiliation(s)
| | - Sunil Sharma
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Jun Qi
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bhavin Shah
- Houston Methodist Research Institute, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
30
|
Pemmaraju N, Kantarjian H, Andreeff M, Cortes J, Ravandi F. Investigational FMS-like tyrosine kinase 3 inhibitors in treatment of acute myeloid leukemia. Expert Opin Investig Drugs 2014; 23:943-54. [PMID: 24749672 DOI: 10.1517/13543784.2014.911839] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Outcomes for the majority of patients with acute myeloid leukemia (AML) remain poor. Over the past decade, significant progress has been made in the understanding of the cytogenetic and molecular determinants of AML pathogenesis. One such advance is the identification of recurring mutations in the FMS-like tyrosine kinase 3 gene (FLT3). Currently, this marker, which appears in approximately one-third of all AML patients, not only signifies a poorer prognosis but also identifies an important target for therapy. FLT3 inhibitors have now undergone clinical evaluation in Phase I, II and III clinical trials, as both single agents and in combination with chemotherapeutics. Unfortunately, to date, none of the FLT3 inhibitors have gained FDA approval for the treatment of patients with AML. Yet, several promising FLT3 inhibitors are being evaluated in all phases of drug development. AREAS COVERED This review aims to highlight the agents furthest along in their development. It also focuses on those FLT3 inhibitors that are being evaluated in combination with other anti-leukemia agents. EXPERT OPINION The authors believe that the field of research for FLT3 inhibitors remains promising, despite the historically poor prognosis of this subgroup of patients with AML. The most promising areas of research will likely be the elucidation of the mechanisms of resistance to FLT3 inhibitors, and development of potent FLT3 inhibitors alone or in combination with hypomethylating agents, cytotoxic chemotherapy or with other targeted agents.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- MD Anderson Cancer Center, Department of Leukemia , 1515 Holcombe Blvd Houston, TX 77030 , USA
| | | | | | | | | |
Collapse
|