1
|
Bian X, Liu W, Yang K, Sun C. Therapeutic targeting of PARP with immunotherapy in acute myeloid leukemia. Front Pharmacol 2024; 15:1421816. [PMID: 39175540 PMCID: PMC11338796 DOI: 10.3389/fphar.2024.1421816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Targeting the poly (ADP-ribose) polymerase (PARP) protein has shown therapeutic efficacy in cancers with homologous recombination (HR) deficiency due to BRCA mutations. Only small fraction of acute myeloid leukemia (AML) cells carry BRCA mutations, hence the antitumor efficacy of PARP inhibitors (PARPi) against this malignancy is predicted to be limited; however, recent preclinical studies have demonstrated that PARPi monotherapy has modest efficacy in AML, while in combination with cytotoxic chemotherapy it has remarkable synergistic antitumor effects. Immunotherapy has revolutionized therapeutics in cancer treatment, and PARPi creates an ideal microenvironment for combination therapy with immunomodulatory agents by promoting tumor mutation burden. In this review, we summarize the role of PARP proteins in DNA damage response (DDR) pathways, and discuss recent preclinical studies using synthetic lethal modalities to treat AML. We also review the immunomodulatory effects of PARPi in AML preclinical models and propose future directions for therapy in AML, including combined targeting of the DDR and tumor immune microenvironment; such combination regimens will likely benefit patients with AML undergoing PARPi-mediated cancer therapy.
Collapse
Affiliation(s)
- Xing Bian
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenli Liu
- Food and Drug Inspection Center, Lu’an, China
| | - Kaijin Yang
- Food and Drug Inspection Center, Huai’nan, China
| | - Chuanbo Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
2
|
De Mel S, Lee AR, Tan JHI, Tan RZY, Poon LM, Chan E, Lee J, Chee YL, Lakshminarasappa SR, Jaynes PW, Jeyasekharan AD. Targeting the DNA damage response in hematological malignancies. Front Oncol 2024; 14:1307839. [PMID: 38347838 PMCID: PMC10859481 DOI: 10.3389/fonc.2024.1307839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Deregulation of the DNA damage response (DDR) plays a critical role in the pathogenesis and progression of many cancers. The dependency of certain cancers on DDR pathways has enabled exploitation of such through synthetically lethal relationships e.g., Poly ADP-Ribose Polymerase (PARP) inhibitors for BRCA deficient ovarian cancers. Though lagging behind that of solid cancers, DDR inhibitors (DDRi) are being clinically developed for haematological cancers. Furthermore, a high proliferative index characterize many such cancers, suggesting a rationale for combinatorial strategies targeting DDR and replicative stress. In this review, we summarize pre-clinical and clinical data on DDR inhibition in haematological malignancies and highlight distinct haematological cancer subtypes with activity of DDR agents as single agents or in combination with chemotherapeutics and targeted agents. We aim to provide a framework to guide the design of future clinical trials involving haematological cancers for this important class of drugs.
Collapse
Affiliation(s)
- Sanjay De Mel
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Ainsley Ryan Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joelle Hwee Inn Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Zi Yi Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li Mei Poon
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Esther Chan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Satish R. Lakshminarasappa
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Anand D. Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol 2022; 15:10. [PMID: 35065680 PMCID: PMC8783444 DOI: 10.1186/s13045-022-01228-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Poly(ADP‐ribose) polymerase (PARP) superfamily are involved in several biological processes and, in particular, in the DNA damage response (DDR). The most studied members, PARP1, PARP2 and PARP3, act as sensors of DNA damages, in order to activate different intracellular repair pathways, including single-strand repair, homologous recombination, conventional and alternative non-homologous end joining. This review recapitulates the functional role of PARPs in the DDR pathways, also in relationship with the cell cycle phases, which drives our knowledge of the mechanisms of action of PARP inhibitors (PARPi), encompassing inhibition of single-strand breaks and base excision repair, PARP trapping and sensitization to antileukemia immune responses. Several studies have demonstrated a preclinical activity of the current available PARPi, olaparib, rucaparib, niraparib, veliparib and talazoparib, as single agent and/or in combination with cytotoxic, hypomethylating or targeted drugs in acute leukemia, thus encouraging the development of clinical trials. We here summarize the most recent preclinical and clinical findings and discuss the synthetic lethal interactions of PARPi in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Despite the low frequency of genomic alterations of PARP and other DDR-related genes in acute leukemia, selective vulnerabilities have been reported in several disease subgroups, along with a “BRCAness phenotype.” AML carrying the RUNX1-RUNX1T1 or PML-RARA fusion genes or mutations in signaling genes (FLT3-ITD in combination with TET2 or TET2 and DNMT3A deficiency), cohesin complex members (STAG2), TP53 and BCOR as co-occurring lesions, IDH1/2 and ALL cases expressing the TCF3-HLF chimera or TET1 was highly sensitive to PARPi in preclinical studies. These data, along with the warning coming from the observation of cases of therapy-related myeloid malignancies among patients receiving PARPi for solid tumors treatment, indicate that PARPi represents a promising strategy in a personalized medicine setting. The characterization of the clonal and subclonal genetic background and of the DDR functionality is crucial to select acute leukemia patients that will likely benefit of PARPi-based therapeutic regimens.
Collapse
|
4
|
PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword. Cancers (Basel) 2021; 13:cancers13246385. [PMID: 34945003 PMCID: PMC8699275 DOI: 10.3390/cancers13246385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Poly(ADP-ribose) polymerase (PARP) inhibitors, which are medications approved to treat various solid tumors, including breast, prostate, ovarian, and prostate cancers, are being examined in hematological malignancies. This review summarizes the potential role of PARP inhibitors in the treatment of myeloid diseases, particularly acute myeloid leukemia (AML). We review ongoing clinical studies investigating the safety and efficacy of PARP inhibitors in the treatment of AML, focusing on specific molecular and genetic AML subgroups that could be particularly sensitive to PARP inhibitor treatment. We also discuss reports describing an increased risk of treatment-related myeloid neoplasms in patients receiving PARP inhibitors for solid tumors. Abstract Despite recent discoveries and therapeutic advances in aggressive myeloid neoplasms, there remains a pressing need for improved therapies. For instance, in acute myeloid leukemia (AML), while most patients achieve a complete remission with conventional chemotherapy or the combination of a hypomethylating agent and venetoclax, de novo or acquired drug resistance often presents an insurmountable challenge, especially in older patients. Poly(ADP-ribose) polymerase (PARP) enzymes, PARP1 and PARP2, are involved in detecting DNA damage and repairing it through multiple pathways, including base excision repair, single-strand break repair, and double-strand break repair. In the context of AML, PARP inhibitors (PARPi) could potentially exploit the frequently dysfunctional DNA repair pathways that, similar to deficiencies in homologous recombination in BRCA-mutant disease, set the stage for cell killing. PARPi appear to be especially effective in AML with certain gene rearrangements and molecular characteristics (RUNX1-RUNX1T1 and PML-RARA fusions, FLT3- and IDH1-mutated). In addition, PARPi can enhance the efficacy of other agents, particularly alkylating agents, TOP1 poisons, and hypomethylating agents, that induce lesions ordinarily repaired via PARP1-dependent mechanisms. Conversely, emerging reports suggest that long-term treatment with PARPi for solid tumors is associated with an increased incidence of myelodysplastic syndrome (MDS) and AML. Here, we (i) review the pre-clinical and clinical data on the role of PARPi, specifically olaparib, talazoparib, and veliparib, in aggressive myeloid neoplasms and (ii) discuss the reported risk of MDS/AML with PARPi, especially as the indications for PARPi use expand to include patients with potentially curable cancer.
Collapse
|
5
|
Targeting the DNA damage response: PARP inhibitors and new perspectives in the landscape of cancer treatment. Crit Rev Oncol Hematol 2021; 168:103539. [PMID: 34800653 DOI: 10.1016/j.critrevonc.2021.103539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/26/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer derives from alterations of pathways responsible for cell survival, differentiation and proliferation. Dysfunctions of mechanisms protecting genome integrity can promote oncogenesis but can also be exploited as therapeutic target. Poly-ADP-Ribose-Polymerase (PARP)-inhibitors, the first approved targeted agents able to tackle DNA damage response (DDR), have demonstrated antitumor activity, particularly when homologous recombination impairment is present. Despite the relevant results achieved, a large proportion of patients fail to obtain durable responses. The development of innovative treatments, able to overcome resistance and ensure long-lasting benefit for a wider population is still an unmet need. Moreover, improvement in biomarker assays is necessary to properly identify patients who can benefit from DDR targeting agents. Here we summarize the main DDR pathways, explain the current role of PARP inhibitors in cancer therapy and illustrate new therapeutic strategies targeting the DDR, focusing on the combinations of PARP inhibitors with other agents and on cell-cycle checkpoint inhibitors.
Collapse
|
6
|
PARP Inhibitors and Haematological Malignancies-Friend or Foe? Cancers (Basel) 2021; 13:cancers13215328. [PMID: 34771492 PMCID: PMC8582507 DOI: 10.3390/cancers13215328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary PARP inhibitors are a class of orally active drugs that kill a range of cancer types by inducing synthetic lethality. The usefulness of PARP inhibitors for the treatment of haematological malignancies has begun to be explored in a variety of both pre-clinical models and human clinical trials. Despite being largely considered safe and well tolerated, secondary haematological malignancies have arisen in patients following treatment with PARP inhibitors, raising concerns about their use. In this review, we discuss the potential benefits and risks for using PARP inhibitors as treatments for haematological malignancies. Abstract Since their introduction several years ago, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have become the standard of care for breast and gynaecological cancers with BRCA gene mutations. Given that PARPi act by exploiting defective DNA repair mechanisms within tumour cells, they should be ideally suited to combatting haematological malignancies where these pathways are notoriously defective, even though BRCA mutations are rare. To date, despite promising results in vitro, few clinical trials in humans for haematological malignancies have been performed, and additional investigation is required. Paradoxically, secondary haematological malignancies have arisen in patients after treatment with PARPi, raising concerns about their potential use as therapies for any blood or bone marrow-related disorders. Here, we provide a comprehensive review of the biological, pre-clinical, and clinical evidence for and against treating individual haematological malignancies with approved and experimental PARPi. We conclude that the promise of effective treatment still exists, but remains limited by the lack of investigation into useful biomarkers unique to these malignancies.
Collapse
|
7
|
Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed Pharmacother 2021; 137:111285. [PMID: 33485118 DOI: 10.1016/j.biopha.2021.111285] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil (5-FU) has been an important anti-cancer drug to date. With an increase in the knowledge of its mechanism of action, various treatment modalities have been developed over the past few decades to increase its anti-cancer activity. But drug resistance has greatly affected the clinical use of 5-FU. Overcoming this chemoresistance is a challenge due to the presence of cancer stem cells like cells, cancer recurrence, metastasis, and angiogenesis. In this review, we have systematically discussed the mechanism of 5-FU resistance and advent strategies to increase the sensitivity of 5-FU therapy including resistance reversal. Special emphasis has been given to the cancer stem cells (CSCs) mediated 5-FU chemoresistance and its reversal process by different approaches including the DNA repair inhibition process.
Collapse
Affiliation(s)
- Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
8
|
Deng X, Hou J, Deng Q, Zhong Z. Predictive value of clinical toxicities of chemotherapy with fluoropyrimidines and oxaliplatin in colorectal cancer by DPYD and GSTP1 gene polymorphisms. World J Surg Oncol 2020; 18:321. [PMID: 33280607 PMCID: PMC7720377 DOI: 10.1186/s12957-020-02103-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Fluoropyrimidines and platinum are still widely used for colorectal cancer (CRC) management. Several studies have reported that mutations of dihydropyrimidine dehydrogenase (DPYD) and glutathione S-transferase pi-1 (GSTP1) polymorphisms are related to chemotherapy-related adverse events. In the present study, we purposed to assess the impact of DPYD and GSTP1 variants on the toxicity of adjuvant chemotherapy risk among the Hakka population, minimize adverse events, and to maximize therapy outcome for individualized treatment. METHODS Genotyping was examined in 104 patients diagnosed with CRC cases and receiving fluoropyrimidine and platinum drug-based chemotherapy regimen by direct sequencing of DPYD and GSTP1 polymorphisms. Three DPYD variants including *2A, *5A, *9A, and GSTP1 c.313A>G were analyzed and clinical outcomes were assessed. RESULTS The data suggest that the incidence of DPYD*5A, DPYD*9A, and GSTP1 c.313A>G variants were 38.4%, 24%, and 32.7%, respectively. DPYD*2A variant was not found. A total of 23 patients (22.1%) suffered severe vomiting and 19 patients (18.3%) suffered severe anemia. DPYD*5A polymorphism was found significantly associated with grade 3/4 ulceration (p = 0.001). GSTP1 was determined to be an independent risk factor for severe vomiting and skin ulceration (p = 0.042 and p = 0.018, respectively). Patients with GSTP1 c. 313A>G mutant type contributed to a higher risk for grade severe toxicity compared with wild genotype (p = 0.027). Nevertheless, no significant difference was found between patients with DPYD*2A, *5A, and *9A for chemotherapeutic toxicity. CONCLUSIONS The results demonstrated that GSTP1 polymorphisms were useful predictors of severe events. Screening of single-nucleotide polymorphisms of GSTP1 in colorectal cancer patients before chemotherapy may help to realize personalized therapy.
Collapse
Affiliation(s)
- Xunwei Deng
- Department of Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, No. 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People's Republic of China
| | - Jingyuan Hou
- Department of Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, No. 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People's Republic of China
| | - Qiaoting Deng
- Department of Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, No. 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People's Republic of China
| | - Zhixiong Zhong
- Department of Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, No. 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China.
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People's Republic of China.
| |
Collapse
|
9
|
PARP goes the weasel! Emerging role of PARP inhibitors in acute leukemias. Blood Rev 2020; 45:100696. [PMID: 32482307 DOI: 10.1016/j.blre.2020.100696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors, which induce synthetic lethality of BRCA mutant breast and ovarian cancers, are now under active exploration for treatment of acute leukemias, specifically acute myeloid leukemia (AML). Experimental data has revealed that DNA repair deficiencies similar to those found in BRCA mutant solid tumors function in malignant hematopoietic cells to enhance cell survival and promote therapy resistance. Preclinical studies have demonstrated that inhibition of PARP with a variety of agents can dramatically enhance the efficacy of other therapeutic approaches including cytotoxic and epigenetic chemotherapy, small molecule inhibitors (IDH and FLT3 inhibitors) and antibody drug conjugates. This has led to early stage clinical trials of multiple PARP inhibitors (PARPi) for AML patients. Despite small patient numbers, evidence of modest clinical efficacy and tolerability in combinatorial regimens support the further development of PARP inhibition as a novel therapeutic strategy for AML, particularly in select molecular subsets (MLL rearranged, FLT3 and IDH1 mutant disease.
Collapse
|
10
|
Abstract
Rucaparib (Rubraca®) is a small molecule poly(ADP-ribose) polymerase (PARP) inhibitor with potent activity against PARP-1, -2 and -3. It is approved in the USA and the EU for the treatment of adult patients with BRCA-mutated ovarian cancer who have been treated with two or more lines of chemotherapy. Rucaparib is also approved in the USA and the EU for use as maintenance therapy in adult patients with recurrent or relapsed ovarian cancer who are in a complete or partial response to platinum-based chemotherapy. Based on an analysis of patients across two phase II clinical trials, rucaparib displayed clinical activity as third- (or later-) line treatment of BRCA-mutated ovarian cancer, with rucaparib-treated patients having a confirmed objective response rate of 54%. Furthermore, as demonstrated in the randomized, placebo-controlled, phase III ARIEL3 trial, rucaparib significantly improved progression-free survival when used as maintenance treatment in patients with platinum-sensitive ovarian cancer. Rucaparib had an acceptable tolerability profile in clinical trials in women with ovarian cancer. Common adverse events were generally manageable with dose modification and/or supportive care. Thus, currently available data indicate that rucaparib is a useful addition to the options available to clinicians for the treatment of advanced ovarian cancer, in both the treatment and maintenance therapy settings.
Collapse
|
11
|
Tan YJ, Lee YT, Petersen SH, Kaur G, Kono K, Tan SC, Majid AMSA, Oon CE. BZD9L1 sirtuin inhibitor as a potential adjuvant for sensitization of colorectal cancer cells to 5-fluorouracil. Ther Adv Med Oncol 2019; 11:1758835919878977. [PMID: 31632470 PMCID: PMC6767736 DOI: 10.1177/1758835919878977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background: This study aims to investigate the combination effect of a novel sirtuin
inhibitor (BZD9L1) with 5-fluorouracil (5-FU) and to determine its molecular
mechanism of action in colorectal cancer (CRC). Methods: BZD9L1 and 5-FU either as single treatment or in combination were tested
against CRC cells to evaluate synergism in cytotoxicity, senescence and
formation of micronucleus, cell cycle and apoptosis, as well as the
regulation of related molecular players. The effects of combined treatments
at different doses on stress and apoptosis, migration, invasion and cell
death mechanism were evaluated through two-dimensional and three-dimensional
cultures. In vivo studies include investigation on the
combination effects of BZD9L1 and 5-FU on colorectal tumour xenograft growth
and an evaluation of tumour proliferation and apoptosis using
immunohistochemistry. Results: Combination treatments exerted synergistic reduction on cell viability on HCT
116 cells but not on HT-29 cells. Combined treatments reduced survival,
induced cell cycle arrest, apoptosis, senescence and micronucleation in HCT
116 cells through modulation of multiple responsible molecular players and
apoptosis pathways, with no effect in epithelial mesenchymal transition
(EMT). Combination treatments regulated SIRT1 and SIRT2 protein expression
levels differently and changed SIRT2 protein localization. Combined
treatment reduced growth, migration, invasion and viability of HCT 116
spheroids through apoptosis, when compared with the single treatment. In
addition, combined treatment was found to reduce tumour growth in
vivo through reduction of tumour proliferation and necrosis
compared with the vehicle control group. This highlights the potential
therapeutic effects of BZD9L1 and 5-FU towards CRC. Conclusion: This study may pave the way for use of BZD9L1 as an adjuvant to 5-FU in
improving the therapeutic efficacy for the treatment of colorectal
cancer.
Collapse
Affiliation(s)
- Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Sven H Petersen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Koji Kono
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Soo Choon Tan
- USains Biomics Laboratory Testing Services Sdn. Bhd., Universiti Sains Malaysia, Penang, Malaysia
| | - Amin M S Abdul Majid
- EMAN Testing and Research Laboratories, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800, Malaysia
| |
Collapse
|
12
|
McQuade RM, Al Thaalibi M, Petersen AC, Abalo R, Bornstein JC, Rybalka E, Nurgali K. Co-treatment With BGP-15 Exacerbates 5-Fluorouracil-Induced Gastrointestinal Dysfunction. Front Neurosci 2019; 13:449. [PMID: 31139044 PMCID: PMC6518025 DOI: 10.3389/fnins.2019.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Gastrointestinal (GI) side-effects of chemotherapy present a constant impediment to efficient and tolerable treatment of cancer. GI symptoms often lead to dose reduction, delays and cessation of treatment. Chemotherapy-induced nausea, bloating, vomiting, constipation, and/or diarrhea can persist up to 10 years post-treatment. We have previously reported that long-term 5-fluorouracil (5-FU) administration results in enteric neuronal loss, acute inflammation and intestinal dysfunction. In this study, we investigated whether the cytoprotectant, BGP-15, has a neuroprotective effect during 5-FU treatment. Balb/c mice received tri-weekly intraperitoneal 5-FU (23 mg/kg/d) administration with and without BGP-15 (15 mg/kg/d) for up to 14 days. GI transit was analyzed via in vivo serial X-ray imaging prior to and following 3, 7, and 14 days of treatment. On day 14, colons were collected for assessment of ex vivo colonic motility, neuronal mitochondrial superoxide, and cytochrome c levels as well as immunohistochemical analysis of myenteric neurons. BGP-15 did not inhibit 5-FU-induced neuronal loss, but significantly increased the number and proportion of choline acetyltransferase (ChAT)-immunoreactive (IR) and neuronal nitric oxide synthase (nNOS)-IR neurons in the myenteric plexus. BGP-15 co-administration significantly increased mitochondrial superoxide production, mitochondrial depolarization and cytochrome c release in myenteric plexus and exacerbated 5-FU-induced colonic inflammation. BGP-15 exacerbated 5-FU-induced colonic dysmotility by reducing the number and proportion of colonic migrating motor complexes and increasing the number and proportion of fragmented contractions and increased fecal water content indicative of diarrhea. Taken together, BGP-15 co-treatment aggravates 5-FU-induced GI side-effects, in contrast with our previous findings that BGP-15 alleviates GI side-effects of oxaliplatin.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Maryam Al Thaalibi
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Aaron C Petersen
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica del Consejo Superior de Investigaciones Científicas, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Emma Rybalka
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia.,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia.,Head of Enteric Neuropathy Lab, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Faraoni I, Giansanti M, Voso MT, Lo-Coco F, Graziani G. Targeting ADP-ribosylation by PARP inhibitors in acute myeloid leukaemia and related disorders. Biochem Pharmacol 2019; 167:133-148. [PMID: 31028744 DOI: 10.1016/j.bcp.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease characterized by uncontrolled proliferation, block in myeloid differentiation and recurrent genetic abnormalities. In the search of new effective therapies, identification of synthetic lethal partners of AML genetic alterations might represent a suitable approach to tailor patient treatment. Genetic mutations directly affecting DNA repair genes are not commonly present in AML. Nevertheless, several studies indicate that AML cells show high levels of DNA lesions and genomic instability. Leukaemia-driving oncogenes (e.g., RUNX1-RUNXT1, PML-RARA, TCF3-HLF, IDH1/2, TET2) or treatment with targeted agents directed against aberrant kinases (e.g., JAK1/2 and FLT3 inhibitors) have been associated with reduced DNA repair gene expression/activity that would render leukaemia blasts selectively sensitive to synthetic lethality induced by poly(ADP-ribose) polymerase inhibitors (PARPi). Thus, specific oncogenic chimeric proteins or gene mutations, rare or typically distinctive of certain leukaemia subtypes, may allow tagging cancer cells for destruction by PARPi. In this review, we will discuss the rationale for using PARPi in AML subtypes characterized by a specific genetic background and summarize the preclinical and clinical evidence reported so far on their activity when used as single agents or in combination with classical cytotoxic chemotherapy or with agents targeting AML-associated mutated proteins.
Collapse
Affiliation(s)
- Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Manuela Giansanti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Unit of Neuro-Oncohematology, Santa Lucia Foundation-I.R.C.C.S., Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
14
|
Wang D, Chen Y, Fang H, Zheng L, Li Y, Yang F, Xu Y, Du L, Zhou BBS, Li H. Increase of PRPP enhances chemosensitivity of PRPS1 mutant acute lymphoblastic leukemia cells to 5-Fluorouracil. J Cell Mol Med 2018; 22:6202-6212. [PMID: 30255549 PMCID: PMC6237573 DOI: 10.1111/jcmm.13907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Relapse‐specific mutations in phosphoribosyl pyrophosphate synthetase 1 (PRPS1), a rate‐limiting purine biosynthesis enzyme, confer significant drug resistances to combination chemotherapy in acute lymphoblastic leukemia (ALL). It is of particular interest to identify drugs to overcome these resistances. In this study, we found that PRPS1 mutant ALL cells specifically showed more chemosensitivity to 5‐Fluorouracil (5‐FU) than control cells, attributed to increased apoptosis of PRPS1 mutant cells by 5‐FU. Mechanistically, PRPS1 mutants increase the level of intracellular phosphoribosyl pyrophosphate (PRPP), which causes the apt conversion of 5‐FU to FUMP and FUTP in Reh cells, to promote 5‐FU‐induced DNA damage and apoptosis. Our study not only provides mechanistic rationale for re‐targeting drug resistant cells in ALL, but also implicates that ALL patients who harbor relapse‐specific mutations of PRPS1 might benefit from 5‐FU‐based chemotherapy in clinical settings.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yao Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Department of Emergency, Qingdao Municipal Hospital, Shandong, China
| | - Fan Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Du
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin-Bing S Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Rare variants in Fanconi anemia genes are enriched in acute myeloid leukemia. Blood Cancer J 2018; 8:50. [PMID: 29891941 PMCID: PMC6002376 DOI: 10.1038/s41408-018-0090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
|
16
|
Abstract
Background Veliparib is a potent poly(ADP-ribose) polymerase inhibitor. This phase 1 study aimed to establish the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of veliparib combined with various FOLFIRI regimens in patients with solid tumours. Methods Patients received veliparib (10–270 mg BID, days 1–5, 15–19) and FOLFIRI (days 1–3, 15–17) in three regimens containing 5-fluorouracil 2,400 mg/m2: irinotecan 150 mg/m2 and folinic acid 400 mg/m2 (part 1); irinotecan 180 mg/m2, folinic acid 400 mg/m2, and 5-fluorouracil 400 mg/m2 bolus (part 2), or irinotecan 180 mg/m2 (part 3). The RP2D was further evaluated in safety expansion cohorts. Preliminary antitumour activity was also assessed. Results Ninety-two patients received ≥1 veliparib dose. MTD was not reached; RP2D was set at 200 mg BID veliparib plus FOLFIRI (without 5-fluorouracil bolus). Most common treatment-emergent adverse events were neutropenia (66.3%), diarrhoea, and nausea (60.9% each). Dose-limiting toxicities (n = 4) were grade 3 gastritis and grade 4 neutropenia and febrile neutropenia. Veliparib exposure was dose-proportional, with no effects on the pharmacokinetics of FOLFIRI components. Fifteen patients had a partial response (objective response rate, 17.6%). Conclusions The acceptable safety profile and preliminary antitumour activity of veliparib plus FOLFIRI support further evaluation of this combination.
Collapse
|
17
|
Mini E, Landini I, Lucarini L, Lapucci A, Napoli C, Perrone G, Tassi R, Masini E, Moroni F, Nobili S. The Inhibitory Effects of HYDAMTIQ, a Novel PARP Inhibitor, on Growth in Human Tumor Cell Lines With Defective DNA Damage Response Pathways. Oncol Res 2017; 25:1441-1451. [PMID: 28429680 PMCID: PMC7841208 DOI: 10.3727/096504017x14926854178616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) enzymes play a key role in the regulation of cellular processes (e.g., DNA damage repair, genomic stability). It has been shown that PARP inhibitors (PARPIs) are selectively cytotoxic against cells having dysfunctions in genes involved in DNA repair mechanisms (synthetic lethality). Drug-induced PARP inhibition potentiates the activity of anticancer drugs such as 5-fluorouracil in enhancing DNA damage, whose repair involves PARP-1 activity. The aim of this study was to evaluate the inhibitory effects of a novel PARPI, HYDAMTIQ, on growth in human tumor cell lines characterized by different features with regard to DNA damage response pathways (BRCA mutational status, microsatellite status, and ATM expression level) and degree of sensitivity/resistance to 5-fluorouracil. HYDAMTIQ showed a more potent inhibitory effect on cell growth in a BRCA2 mutant cell line (CAPAN-1) compared with wild-type cells (C2-6, C2-12, and C2-14 CAPAN-1 clones, and MCF-7). No statistically significant difference was observed after HYDAMTIQ exposure between cells having a different MS status or a different MRE11 mutational status. HYDAMTIQ induced greater antiproliferative effects in SW620 cells expressing a low level of ATM than in H630 cells expressing a high level of ATM. Finally, the combination of HYDAMTIQ and 5-fluorouracil exerted a synergistic effect on the inhibition of SW620 cell growth and an antagonistic effect on that of H630 cell growth. Our results show that the novel PARP inhibitor HYDAMTIQ potently inhibits the growth of human tumor cells with defective DNA damage response pathways and exerts synergistic cytotoxicity in combination with 5-fluorouracil. These data provide relevant examples of synthetic lethality and evidence for further development of this novel PARPI.
Collapse
Affiliation(s)
- Enrico Mini
- *Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ida Landini
- *Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Lucarini
- †Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Andrea Lapucci
- *Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cristina Napoli
- ‡Department of Health Sciences, University of Florence, Florence, Italy
| | - Gabriele Perrone
- *Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Renato Tassi
- *Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Emanuela Masini
- †Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Flavio Moroni
- †Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Stefania Nobili
- ‡Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Zhao L, So CWE. PARPi potentiates with current conventional therapy in MLL leukemia. Cell Cycle 2017; 16:1861-1869. [PMID: 28886273 PMCID: PMC5638355 DOI: 10.1080/15384101.2017.1288325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemias driven by MLL fusion proteins are commonly associated with poor prognosis and refractory treatment. Here, we provide evidence that olaparib can potentiate sensitivity of MLL leukemia cells to conventional chemotherapy and DNMT inhibitors offering new potential therapeutic strategies for MLL rearranged leukemias Using the primary mouse leukemia cells and human MLL-AF9 leukemic cell line, we demonstrate that treatment of MLL-AF9 leukemic cells with DNMT inhibitors or chemotherapies in combination with olaparib results in significant reduction in colony formation or cell growth while the single agent treatments had little impacts. Combining olaparib with DNMT inhibitor induce cell cycle block and apoptosis. Furthermore, we observe a significant increase in proportion of cells with >10 γH2AX DNA damage foci and double stranded breaks when treated with DNMT inhibitors or chemotherapy agents in combination with olaparib, thus providing possible mechanistic insights for the synergism.
Collapse
Affiliation(s)
- Lu Zhao
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Denmark Hill campus, London UK
| | - Chi Wai Eric So
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Denmark Hill campus, London UK
| |
Collapse
|
19
|
|
20
|
Piao J, Takai S, Kamiya T, Inukai T, Sugita K, Ohyashiki K, Delia D, Masutani M, Mizutani S, Takagi M. Poly (ADP-ribose) polymerase inhibitors selectively induce cytotoxicity in TCF3-HLF-positive leukemic cells. Cancer Lett 2016; 386:131-140. [PMID: 27894958 DOI: 10.1016/j.canlet.2016.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) is an indispensable component of the DNA repair machinery. PARP inhibitors are used as cutting-edge treatments for patients with homologous recombination repair (HRR)-defective breast cancers harboring mutations in BRCA1 or BRCA2. Other tumors defective in HRR, including some hematological malignancies, are predicted to be good candidates for treatment with PARP inhibitors. Screening of leukemia-derived cell lines revealed that lymphoid lineage-derived leukemia cell lines, except for those derived from mature B cells and KMT2A (MLL)-rearranged B-cell precursors, were relatively sensitive to PARP inhibitors. By contrast, acute myelogenous leukemia cell lines, except for RUNX1-RUNXT1 (AML1-ETO)-positive lines, were relatively resistant. Intriguingly, TCF3 (E2A)-HLF-positive leukemia was sensitive to PARP inhibitors. TCF3-HLF expression suppressed HRR activity, suggesting that PARP inhibitor treatment induced synthetic lethality. Furthermore, TCF3-HLF expression decreased levels of MCPH1, which regulates the expression of BRCA1, resulting in attenuation of HRR activity. The PARP inhibitor olaparib was also effective in an in vivo xenograft model. Our results suggest a novel therapeutic approach for treating refractory leukemia, particularly the TCF3-HLF-positive subtype.
Collapse
Affiliation(s)
- Jinhua Piao
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shiori Takai
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takahiro Kamiya
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore
| | - Takeshi Inukai
- Department of Pediatrics, Graduate School of Medicine, Yamanashi University, Yamanashi Chuo, 1110 Shimokato, Yamanashi, 409-3898, Japan
| | - Kanji Sugita
- Department of Pediatrics, Graduate School of Medicine, Yamanashi University, Yamanashi Chuo, 1110 Shimokato, Yamanashi, 409-3898, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Nishi-Shinjuku 6-7-1, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Domenico Delia
- Fondazione IRCCS Istituto Nazionale dei Tumori, Department of Experimental Oncology, Via G. Venezian 1, Milan, 20133, Italy
| | - Mitsuko Masutani
- Department of Frontier Life Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Shuki Mizutani
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
21
|
Yuan Z, Chen J, Li W, Li D, Chen C, Gao C, Jiang Y. PARP inhibitors as antitumor agents: a patent update (2013-2015). Expert Opin Ther Pat 2016; 27:363-382. [PMID: 27841036 DOI: 10.1080/13543776.2017.1259413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION PARP inhibitors have been extensively explored as antitumor agents and have shown potent efficacy both in vitro and in vivo. They can be used in monotherapy under the synthetic lethality concept or in combination with radiotherapy or chemotherapy, inducing a synergistic effect. Areas covered: This review covers relevant efforts in the development of PARP inhibitors with a particular focus on recently patented PARP inhibitors, combination therapy involving PARP inhibitors, tumor responsiveness to PARP inhibitors as detailed in reports made from 2013 - 2015, and PARP drugs in clinical trials and other novel inhibitors that emerged in 2013 - 2015. Expert opinion: Clinical studies and applications of PARP inhibitors as antitumor agents have gained considerable recognition in the last few years. In addition to FDA-approved olaparib, an increasing number of new inhibitors have been designed and synthesized, some of which are under preclinical or clinical evaluation. Novel inhibitors are still required, especially new scaffold compounds or drugs with improved properties, such as higher selectivity, higher potency and lower toxicity. The development of combination therapies involving PARP inhibitors and the exploration of biomarkers to predict outcomes with PARP inhibitors would expand the applications of these inhibitors, allowing more patients to benefit from this promising class of drugs in the future.
Collapse
Affiliation(s)
- Zigao Yuan
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Jiwei Chen
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Wenlu Li
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Dan Li
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Changjun Chen
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Chunmei Gao
- b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China.,c National & Local United Engineering Lab for Personalized anti-tumor drugs, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Yuyang Jiang
- b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China.,c National & Local United Engineering Lab for Personalized anti-tumor drugs, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China.,d School of Medicine , Tsinghua University , Beijing , P. R. China
| |
Collapse
|
22
|
Zhao L, So CWE. PARP-inhibitor-induced synthetic lethality for acute myeloid leukemia treatment. Exp Hematol 2016; 44:902-7. [PMID: 27473567 DOI: 10.1016/j.exphem.2016.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
Abstract
Genomic instability is one of the most common and critical characteristics of cancer cells. The combined effect of replication stress and DNA damage repair defects associated with various oncogenic events drives genomic instability and disease progression. However, these DNA repair defects found in cancer cells can also provide unique therapeutic opportunities and form the basis of synthetic lethal targeting of solid tumors carrying BRCA mutations. Although the idea of utilizing synthetic lethality as a therapy strategy has been gaining momentum in various solid tumors, its application in leukemia still largely lags behind. In this article, we review recent advances in understanding the roles of the DNA damage response in acute myeloid leukemia and examine the potential therapeutic avenues of using poly (ADP-ribose) polymerase (PARP) inhibitors in AML treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Clinical Trials as Topic
- DNA Damage
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic/drug effects
- Genomic Instability
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Oxidative Stress/drug effects
- PTEN Phosphohydrolase/metabolism
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Synthetic Lethal Mutations/drug effects
- Transcription, Genetic
Collapse
Affiliation(s)
- Lu Zhao
- Leukaemia and Stem Cell Biology Group. Department of Haematological Medicine, King's College London, London, UK
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group. Department of Haematological Medicine, King's College London, London, UK.
| |
Collapse
|
23
|
Satapathy SR, Siddharth S, Das D, Nayak A, Kundu CN. Enhancement of Cytotoxicity and Inhibition of Angiogenesis in Oral Cancer Stem Cells by a Hybrid Nanoparticle of Bioactive Quinacrine and Silver: Implication of Base Excision Repair Cascade. Mol Pharm 2015; 12:4011-25. [PMID: 26448277 DOI: 10.1021/acs.molpharmaceut.5b00461] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A poly(lactic-co-glycolic acid) (PLGA)-based uniform (50-100 nm) hybrid nanoparticle (QAgNP) with positive zeta potential (0.52 ± 0.09 mV) was prepared by single emulsion solvent evaporation method with bioactive small molecule quinacrine (QC) in organic phase and silver (Ag) in aqueous phase. Physiochemical properties established it as a true hybrid nanoparticle and not a mixture of QC and Ag. Antitumor activity of QAgNP was evaluated by using various cancer cell lines including H-357 oral cancer cells and OSCC-cancer stem cell in an in vitro model system. QAgNP caused more cytotoxicity in cancer cells than normal epithelial cells by increasing BAX/BCL-XL, cleaved product PARP-1, and arresting the cells at S phase along with DNA damage. In addition, QAgNPs offered greater ability to kill the OSCC-CSCs compared to NQC and AgNPs. QAgNP offered anticancer action in OSCC-CSCs by inhibiting the base excision repair (BER) within the cells. Interestingly, alteration of BER components (Fen-1 and DNA polymerases (β, δ, and ε) and unalteration of NHEJ (DNA-PKC) or HR (Rad-51) components was noted in QAgNP treated OSCC-CSC cells. Furthermore, QAgNP significantly reduced angiogenesis in comparison to physical mixture of NQC and AgNP in fertilized eggs. Thus, these hybrid nanoparticles caused apoptosis in OSCC-CSCs by inhibiting the angiogenesis and BER in cells.
Collapse
Affiliation(s)
- Shakti Ranjan Satapathy
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University , Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Sumit Siddharth
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University , Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Dipon Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University , Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Anmada Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University , Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University , Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| |
Collapse
|