1
|
Jurcau A, Simion A, Jurcau MC. Emerging antibody-based therapies for Huntington's disease: current status and perspectives for future development. Expert Rev Neurother 2024; 24:299-312. [PMID: 38324338 DOI: 10.1080/14737175.2024.2314183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Being an inherited neurodegenerative disease with an identifiable genetic defect, Huntington's disease (HD) is a suitable candidate for early intervention, possibly even in the pre-symptomatic stage. Our recent advances in elucidating the pathogenesis of HD have revealed a series of novel potential therapeutic targets, among which immunotherapies are actively pursued in preclinical experiments. AREAS COVERED This review focuses on the potential of antibody-based treatments targeting various epitopes (of mutant huntingtin as well as phosphorylated tau) that are currently evaluated in vitro and in animal experiments. The references used in this review were retrieved from the PubMed database, searching for immunotherapies in HD, and clinical trial registries were reviewed for molecules already evaluated in clinical trials. EXPERT OPINION Antibody-based therapies have raised considerable interest in a series of neurodegenerative diseases characterized by deposition of aggregated of aberrantly folded proteins, HD included. Intrabodies and nanobodies can interact with mutant huntingtin inside the nervous cells. However, the conflicting results obtained with some of these intrabodies highlight the need for proper choice of epitopes and for developing animal models more closely mimicking human disease. Approval of these strategies will require a considerable financial and logistic effort on behalf of healthcare systems.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, Oradea, Romania
| | | |
Collapse
|
2
|
Matrone C, Ferretti G. Semaphorin 3A influences neuronal processes that are altered in patients with autism spectrum disorder: Potential diagnostic and therapeutic implications. Neurosci Biobehav Rev 2023; 153:105338. [PMID: 37524141 DOI: 10.1016/j.neubiorev.2023.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Autism spectrum disorder (ASD) is a pervasive disorder that most frequently manifests in early childhood and lasts for their entire lifespan. Several behavioural traits characterise the phenotype of patients with ASD, including difficulties in reciprocal social communication as well as compulsive/repetitive stereotyped verbal and non-verbal behaviours. Although multiple hypotheses have been proposed to explain the aetiology of ASD and many resources have been used to improve our understanding of ASD, several aspects remain largely unexplored. Class 3 semaphorins (SEMA3) are secreted proteins involved in the organisation of structural and functional connectivity in the brain that regulate synaptic and dendritic development. Alterations in brain connectivity and aberrant neuronal development have been described in some patients with ASD. Mutations and polymorphisms in SEMA3A and alterations in its receptors and signalling have been associated with some neurological disorders such as schizophrenia and epilepsy, which are comorbidities in ASD, but also with ASD itself. In addition, SEMA3A is a key regulator of the immune response and neuroinflammatory processes, which have been found to be dysregulated in mothers of children who develop ASD and in affected patients. In this review, we highlight neurodevelopmental-related processes in which SEMA3A is involved, which are altered in ASD, and provide a viewpoint emphasising the development of strategies targeting changes in the SEMA3A signal to identify patterns of anomalies distinctive of ASD or to predict the prognosis of affected patients.
Collapse
Affiliation(s)
- Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| | - Gabriella Ferretti
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
3
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
4
|
Feigin A, Evans EE, Fisher TL, Leonard JE, Smith ES, Reader A, Mishra V, Manber R, Walters KA, Kowarski L, Oakes D, Siemers E, Kieburtz KD, Zauderer M. Pepinemab antibody blockade of SEMA4D in early Huntington's disease: a randomized, placebo-controlled, phase 2 trial. Nat Med 2022; 28:2183-2193. [PMID: 35941373 PMCID: PMC9361919 DOI: 10.1038/s41591-022-01919-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 12/18/2022]
Abstract
SIGNAL is a multicenter, randomized, double-blind, placebo-controlled phase 2 study (no. NCT02481674) established to evaluate pepinemab, a semaphorin 4D (SEMA4D)-blocking antibody, for treatment of Huntington's disease (HD). The trial enrolled a total of 265 HD gene expansion carriers with either early manifest (EM, n = 179) or late prodromal (LP, n = 86) HD, randomized (1:1) to receive 18 monthly infusions of pepinemab (n = 91 EM, 41 LP) or placebo (n = 88 EM, 45 LP). Pepinemab was generally well tolerated, with a relatively low frequency of serious treatment-emergent adverse events of 5% with pepinemab compared to 9% with placebo, including both EM and LP participants. Coprimary efficacy outcome measures consisted of assessments within the EM cohort of (1) a two-item HD cognitive assessment family comprising one-touch stockings of Cambridge (OTS) and paced tapping (PTAP) and (2) clinical global impression of change (CGIC). The differences between pepinemab and placebo in mean change (95% confidence interval) from baseline at month 17 for OTS were -1.98 (-4.00, 0.05) (one-sided P = 0.028), and for PTAP 1.43 (-0.37, 3.23) (one-sided P = 0.06). Similarly, because a significant treatment effect was not observed for CGIC, the coprimary endpoint, the study did not meet its prespecified primary outcomes. Nevertheless, a number of other positive outcomes and post hoc subgroup analyses-including additional cognitive measures and volumetric magnetic resonance imaging and fluorodeoxyglucose-positron-emission tomography imaging assessments-provide rationale and direction for the design of a phase 3 study and encourage the continued development of pepinemab in patients diagnosed with EM HD.
Collapse
Affiliation(s)
- Andrew Feigin
- New York University Langone Health and The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York, NY, USA
| | | | | | | | | | | | | | | | | | - Lisa Kowarski
- WCG Statistics Collaborative, Inc., Washington, DC, USA
| | - David Oakes
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|
5
|
Nojima S. Class IV semaphorins in disease pathogenesis. Pathol Int 2022; 72:471-487. [PMID: 36066011 DOI: 10.1111/pin.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Semaphorins are a large family of secreted and/or transmembrane proteins, originally identified as proteins that function in axon guidance during neuronal development. However, semaphorins play crucial roles in other physiological and pathological processes, including immune responses, angiogenesis, maintenance of tissue homeostasis, and cancer progression. Class IV semaphorins may be present as transmembrane and soluble forms and are implicated in the pathogenesis of various diseases. This review discusses recent progress on the roles of class IV semaphorins determined by clinical and experimental pathology studies.
Collapse
Affiliation(s)
- Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Therapeutic Strategies in Huntington’s Disease: From Genetic Defect to Gene Therapy. Biomedicines 2022; 10:biomedicines10081895. [PMID: 36009443 PMCID: PMC9405755 DOI: 10.3390/biomedicines10081895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the age of onset or disease progression rate. Research has identified various intricate pathogenic cascades which lead to neuronal degeneration, but therapies interfering with these mechanisms have been marked by many failures and remain to be validated. Exciting new opportunities are opened by the emerging techniques which target the mutant protein DNA and RNA, allowing for “gene editing”. Although some issues relating to “off-target” effects or immune-mediated side effects need to be solved, these strategies, combined with stem cell therapies and more traditional approaches targeting specific pathogenic cascades, such as excitotoxicity and bioavailability of neurotrophic factors, could lead to significant improvement of the outcomes of treated Huntington’s disease patients.
Collapse
|
7
|
Liu L, Yang L, Liu X, Liu M, Liu J, Feng X, Nie Z, Luo J. SEMA4D/PlexinB1 promotes AML progression via activation of PI3K/Akt signaling. Lab Invest 2022; 20:304. [PMID: 35794581 PMCID: PMC9258142 DOI: 10.1186/s12967-022-03500-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. SEMA4D is a 150 kDa transmembrane protein that belongs to the IV class of the subfamily of semaphorin family. Previous studies have reported that SEMA4D is a multifunctional target in many solid tumors, involving multiple physiological systems, and there are emerging therapies to target these pathways. The role of SEMA4D in AML has not yet been explored.
Methods
The SEMA4D expression prolile, clinical data and potential prognostic analysis were acquired via the cBioPortal and GEPIA databases. SEMA4D expression was measured using real-time quantitative PCR and western blot. Cell counting kit-8 (CCK8) and flow cytometry were used to evaluate the malignant biological characteristics.
Results
We observed that SEMA4D was increased in AML patients and correlated with risk stratification and prognosis. Moreover, SEMA4D promotes the proliferation and inhibits apoptosis of AML cells by binding to its receptor, PlexinB1, and reduces the sensitivity of AML cells to daunorubicin. In addition, SEMA4D/PlexinB1 promotes the proliferation and survival of AML cells by activating the PI3K/Akt signaling pathway. VX15/2503, an anti-SEMA4D antibody, can inhibit the proliferation of AML cells in xenograft mouse models, thereby inhibiting the development of AML.
Conclusion
SEMA4D will serve as a unique predictive biomarker and a possible therapeutic target in AML.
Collapse
|
8
|
Affolter A, Kern J, Bieback K, Scherl C, Rotter N, Lammert A. Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review). Int J Oncol 2022; 61:88. [PMID: 35642667 PMCID: PMC9183766 DOI: 10.3892/ijo.2022.5378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
Immunotherapy has evolved into a powerful tool in the fight against a number of types of cancer, including head and neck squamous cell carcinomas (HNSCC). Although checkpoint inhibition (CPI) has definitely enriched the treatment options for advanced stage HNSCC during the past decade, the percentage of patients responding to treatment is widely varying between 14-32% in second-line setting in recurrent or metastatic HNSCC with a sporadic durability. Clinical response and, consecutively, treatment success remain unpredictable in most of the cases. One potential factor is the expression of target molecules of the tumor allowing cancer cells to acquire therapy resistance mechanisms. Accordingly, analyzing and modeling the complexity of the tumor microenvironment (TME) is key to i) stratify subgroups of patients most likely to respond to CPI and ii) to define new combinatorial treatment regimens. Particularly in a heterogeneous disease such as HNSCC, thoroughly studying the interactions and crosstalking between tumor and TME cells is one of the biggest challenges. Sophisticated 3D models are therefore urgently needed to be able to validate such basic science hypotheses and to test novel immuno-oncologic treatment regimens in consideration of the individual biology of each tumor. The present review will first summarize recent findings on immunotherapy, predictive biomarkers, the role of the TME and signaling cascades eliciting during CPI. Second, it will highlight the significance of current promising approaches to establish HNSCC 3D models for new immunotherapies. The results are encouraging and indicate that data obtained from patient-specific tumors in a dish might be finally translated into personalized immuno-oncology.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Johann Kern
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden‑Württemberg‑Hessen, D‑68167 Mannheim, Germany
| | - Claudia Scherl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Anne Lammert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| |
Collapse
|
9
|
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. Current and Possible Future Therapeutic Options for Huntington's Disease. J Cent Nerv Syst Dis 2022; 14:11795735221092517. [PMID: 35615642 PMCID: PMC9125092 DOI: 10.1177/11795735221092517] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene (HTT). HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat. These categories include chorea medication, antipsychotic medication, antidepressants, mood stabilizing medication as well as non-drug therapies. Fortunately, there are also many new HD therapeutics currently undergoing clinical trials that target the disease at its origin; lowering the levels of mutant huntingtin protein (mHTT). Currently, much attention is being directed to antisense oligonucleotide (ASO) therapies, which bind to pre-RNA or mRNA and can alter protein expression via RNA degradation, blocking translation or splice modulation. Other potential therapies in clinical development include RNA interference (RNAi) therapies, RNA targeting small molecule therapies, stem cell therapies, antibody therapies, non-RNA targeting small molecule therapies and neuroinflammation targeted therapies. Potential therapies in pre-clinical development include Zinc-Finger Protein (ZFP) therapies, transcription activator-like effector nuclease (TALEN) therapies and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) therapies. This comprehensive review aims to discuss the efficacy of current HD treatments and explore the clinical trial progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Mackenzie W. Ferguson
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor J. Kennedy
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
10
|
Devadiga SJ, Bharate SS. Recent developments in the management of Huntington's disease. Bioorg Chem 2022; 120:105642. [PMID: 35121553 DOI: 10.1016/j.bioorg.2022.105642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is a rare, incurable, inheritedneurodegenerative disorder manifested by chorea, hyperkinetic, and hypokinetic movements. The FDA has approved only two drugs, viz. tetrabenazine, and deutetrabenazine, to manage the chorea associated with HD. However, several other drugs are used as an off-label to manage chorea and other symptoms such as depression, anxiety, muscle tremors, and cognitive dysfunction associated with HD. So far, there is no disease-modifying treatment available. Drug repurposing has been a primary drive to search for new anti-HD drugs. Numerous molecular targets along with a wide range of small molecules and gene therapies are currently under clinical investigation. More than 200 clinical studies are underway for HD, 75% are interventional, and 25% are observational studies. The present review discusses the small molecule clinical pipeline and molecular targets for HD. Furthermore, the biomarkers, diagnostic tests, gene therapies, behavioral and observational studies for HD were also deliberated.
Collapse
Affiliation(s)
- Shanaika J Devadiga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
11
|
Valentini E, Di Martile M, Del Bufalo D, D'Aguanno S. SEMAPHORINS and their receptors: focus on the crosstalk between melanoma and hypoxia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:131. [PMID: 33858502 PMCID: PMC8050914 DOI: 10.1186/s13046-021-01929-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Hypoxia, a condition of oxygen deprivation, is considered a hallmark of tumor microenvironment regulating several pathways and promoting cancer progression and resistance to therapy. Semaphorins, a family of about 20 secreted, transmembrane and GPI-linked glycoproteins, and their cognate receptors (plexins and neuropilins) play a pivotal role in the crosstalk between cancer and stromal cells present in the tumor microenvironment. Many studies reported that some semaphorins are involved in the development of a permissive tumor niche, guiding cell-cell communication and, consequently, the development and progression, as well as the response to therapy, of different cancer histotypes, including melanoma. In this review we will summarize the state of art of semaphorins regulation by hypoxic condition in cancer with different origin. We will also describe evidence about the ability of semaphorins to affect the expression and activity of transcription factors activated by hypoxia, such as hypoxia-inducible factor-1. Finally, we will focus our attention on findings reporting the role of semaphorins in melanocytes transformation, melanoma progression and response to therapy. Further studies are necessary to understand the mechanisms through which semaphorins induce their effect and to shed light on the possibility to use semaphorins or their cognate receptors as prognostic markers and/or therapeutic targets in melanoma or other malignancies.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy.
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| |
Collapse
|
12
|
Younis RH, Ghita I, Elnaggar M, Chaisuparat R, Theofilou VI, Dyalram D, Ord RA, Davila E, Tallon LJ, Papadimitriou JC, Webb TJ, Bentzen SM, Lubek JE. Soluble Sema4D in Plasma of Head and Neck Squamous Cell Carcinoma Patients Is Associated With Underlying Non-Inflamed Tumor Profile. Front Immunol 2021; 12:596646. [PMID: 33776991 PMCID: PMC7991916 DOI: 10.3389/fimmu.2021.596646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
Semaphorin 4D (Sema4D) is a glycoprotein that is expressed by several tumors and immune cells. It can function as a membrane bound protein or as a cleaved soluble protein (sSema4D). We sought to investigate the translational potential of plasma sSema4D as an immune marker in plasma of patients with head and neck squamous cell carcinoma (HNSCC). Paired peripheral blood and tumor tissue samples of 104 patients with HNSCC were collected at the same time point to allow for real time analysis. Scoring of the histological inflammatory subtype (HIS) was carried out using Sema4D immunohistochemistry on the tumor tissue. sSema4D was detected in plasma using direct ELISA assay. Defining elevated sSema4D as values above the 95th percentile in healthy controls, our data showed that sSema4D levels in plasma were elevated in 25.0% (95% CI, 16.7–34.9%) of the patients with HNSCC and showed significant association with HIS immune excluded (HIS-IE) (p = 0.007), Sema4D+ve tumor cells (TCs) (p = 0.018) and PD-L1+ve immune cells (ICs) (p = 0.038). A multi-variable logistic regression analysis showed that HIS was significantly (P = 0.004) associated with elevated sSema4D, an association not explained by available patient-level factors. Using the IO-360 nanoString platform, differential gene expression (DGE) analysis of 10 HNSCC tumor tissues showed that patients with high sSema4D in plasma (HsS4D) clustered as IFN-γ negative tumor immune signature and were mostly HIS-IE. The IC type in the HsS4D paired tumor tissue was predominantly myeloid, while the lymphoid compartment was higher in the low sSema4D (LsS4D). The Wnt signaling pathway was upregulated in the HsS4D group. Further analysis using the IO-360, 770 gene set, showed significant non-inflamed profile of the HsS4D tumors compared to the LsS4D. In conclusion, our data reveals an association between sSema4D and the histological inflammatory subtype.
Collapse
Affiliation(s)
- Rania H Younis
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Department of Oral Pathology, Faculty of Dentistry, University of Alexandria, Alexandria, Egypt
| | - Ioana Ghita
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Manar Elnaggar
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Department of Oral Pathology, Faculty of Dentistry, University of Alexandria, Alexandria, Egypt
| | - Risa Chaisuparat
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vasileios Ionas Theofilou
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Donita Dyalram
- Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Robert A Ord
- Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Eduardo Davila
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Luke J Tallon
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - John C Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonya J Webb
- Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Søren M Bentzen
- Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joshua E Lubek
- Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
| |
Collapse
|
13
|
Wang Y, Ding Y, Deng Y, Zheng Y, Wang S. Role of myeloid-derived suppressor cells in the promotion and immunotherapy of colitis-associated cancer. J Immunother Cancer 2020; 8:jitc-2020-000609. [PMID: 33051339 PMCID: PMC7555106 DOI: 10.1136/jitc-2020-000609] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Colitis-associated cancer (CAC) is a specific type of colorectal cancer that develops from inflammatory bowel disease (IBD). Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are essential for the pathological processes of inflammation and cancer. Accumulating evidence indicates that MDSCs play different but vital roles during IBD and CAC development and impede CAC immunotherapy. New insights into the regulatory network of MDSCs in the CAC pathogenesis are opening new avenues for developing strategies to enhance the effectiveness of CAC treatment. In this review, we explore the role of MDSCs in chronic inflammation, dysplasia and CAC and summarize the potential CAC therapeutic strategies based on MDSC blockade.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yanxia Ding
- Department of Dermatology, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yijun Deng
- Department of Critical Care Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yu Zheng
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Abstract
In the third edition of the Huntington’s Disease Clinical Trials Corner we list all currently registered and ongoing clinical trials, expand on the SIGNAL trial (NCT02481674), and cover the recently finished CREST-E trial (NCT00712426).
Collapse
Affiliation(s)
- Filipe B Rodrigues
- Huntington's Disease Centre, University College London, UK.,Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Portugal.,Clinical Pharmacology Unit, Instituto de Medicina Molecular, Lisbon, Portugal
| | - Edward J Wild
- Huntington's Disease Centre, University College London, UK
| |
Collapse
|
15
|
Abstract
Introduction: Huntington's disease (HD) is an inherited neurodegenerative condition for which there are no disease-modifying treatments. The availability of early genetic diagnosis makes HD an ideal candidate for early intervention. Growing understanding of pathogenesis has led to the identification of new therapeutic targets for which some compounds are now in clinical trials. Areas covered: A detailed review of medical databases and clinical trial registries was performed. Recent clinical trials aimed to establish disease-modification were included. Focus was assigned to RNA and DNA-based therapies aimed at lowering mutant huntingtin (mHTT) including antisense oligonucleotides (ASOs), RNA interference (RNAi), zinc finger proteins (ZFPs) and the CRISPR-Cas9 system. Modulation of mHTT and immunotherapies is also covered. Expert opinion: Targeting HD pathogenesis at its most proximal level is under intense investigation. ASOs are the only HTT-lowering strategy in clinical trials of manifest HD. Safety and efficacy of an allele specific vs. allele non-specific approach has yet to be established. Success will extend to premanifest carriers for which development of clinical and imaging biomarkers will be necessary. Scientific and technological advancement will bolster new methods of treatment delivery. Cumulative experience, collaborative research, and platforms such as ENROLL-HD will facilitate efficient and effective clinical trials.
Collapse
Affiliation(s)
- Hassaan Bashir
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
16
|
A high-sensitivity enzyme immunoassay for the quantification of soluble human semaphorin 4D in plasma. Anal Biochem 2019; 574:15-22. [DOI: 10.1016/j.ab.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022]
|
17
|
Garcia S. Role of Semaphorins in Immunopathologies and Rheumatic Diseases. Int J Mol Sci 2019; 20:ijms20020374. [PMID: 30654587 PMCID: PMC6359241 DOI: 10.3390/ijms20020374] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
Rheumatic diseases are disorders characterized by joint inflammation, in which other organs are also affected. There are more than two hundred rheumatic diseases, the most studied so far are rheumatoid arthritis, osteoarthritis, spondyloarthritis, systemic lupus erythematosus, and systemic sclerosis. The semaphorin family is a large group of proteins initially described as axon guidance molecules involved in nervous system development. Studies have demonstrated that semaphorins play a role in other processes such as the regulation of immunity, angiogenesis, bone remodeling, apoptosis, and cell migration and invasion. Moreover, semaphorins have been related to the pathogenesis of multiple sclerosis, asthma, Alzheimer, myocarditis, atherosclerosis, fibrotic diseases, osteopetrosis, and cancer. The aim of this review is to summarize current knowledge regarding the role of semaphorins in rheumatic diseases, and discuss their potential applications as therapeutic targets to treat these disorders.
Collapse
Affiliation(s)
- Samuel Garcia
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
18
|
Xia Y, Cai XY, Fan JQ, Zhang LL, Ren JH, Li ZY, Zhang RG, Zhu F, Wu G. The role of sema4D in vasculogenic mimicry formation in non-small cell lung cancer and the underlying mechanisms. Int J Cancer 2018; 144:2227-2238. [PMID: 30374974 DOI: 10.1002/ijc.31958] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Vasculogenic mimicry (VM) is a special vascular pattern in malignant tumors, which is composed of highly aggressive tumor cells. This tumor cell-mediated blood supply pattern is closely associated with a poor prognosis in cancer patients. The interaction of axon guidance factor Sema4D and its high affinity receptor plexinB1 could activate small GTPase RhoA and its downstream ROCKs; this process has an active role in the migration of endothelial cells and tumor angiogenesis. Here, we have begun to uncover the role of this pathway in VM formation in non-small cell lung cancer (NSCLC). First, we confirmed this special form of vasculature in NSCLC tissues and found the existence of VM channels in tumor tissues was correlated with Sema4D expression. Further, we found that inhibition of Sema4D in the human NSCLC cells H1299 and HCC827 reduces VM formation both in vitro and in vivo. Moreover, we demonstrated that downregulating the expression of plexinB1 by siRNA expressing vectors and inhibiting the RhoA/ROCK signaling pathway using fasudil can reduce VM formation of H1299 and HCC827 cells. Finally, we found that suppression of Sema4D leads to less stress fibers and depleted the motility of H1299 and HCC827 cells. Collectively, our study implicates Sema4D plays an important role in the process of VM formation in NSCLC through activating the RhoA/ROCK pathway and regulating tumor cell plasticity and migration. Modulation of the Sema4D/plexinB1 and downstream RhoA/ROCK pathway may prevent the tumor blood supply through the VM pattern, which may eventually halt growth and metastasis of NSCLC.
Collapse
Affiliation(s)
- Yun Xia
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Yi Cai
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Quan Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Hua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Yu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui-Guang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Abstract
The 25 years since the identification of the gene responsible for Huntington disease (HD) have stood witness to profound discoveries about the nature of the disease and its pathogenesis. Despite this progress, however, the development of disease-modifying therapies has thus far been slow. Preclinical validation of the therapeutic potential of disrupted pathways in HD has led to the advancement of pharmacological agents, both novel and repurposed, for clinical evaluation. The most promising therapeutic approaches include huntingtin (HTT) lowering and modification as well as modulation of neuroinflammation and synaptic transmission. With clinical trials for many of these approaches imminent or currently ongoing, the coming years are promising not only for HD but also for more prevalent neurodegenerative disorders, such as Alzheimer and Parkinson disease, in which many of these pathways have been similarly implicated.
Collapse
|
20
|
Ke Y, Dang E, Shen S, Zhang T, Qiao H, Chang Y, Liu Q, Wang G. Semaphorin4D Drives CD8 + T-Cell Lesional Trafficking in Oral Lichen Planus via CXCL9/CXCL10 Upregulations in Oral Keratinocytes. J Invest Dermatol 2017; 137:2396-2406. [PMID: 28760660 DOI: 10.1016/j.jid.2017.07.818] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
Chemokine-mediated CD8+ T-cell recruitment is an essential but not well-established event for the persistence of oral lichen planus (OLP). Semaphorin 4D (Sema4D)/CD100 is implicated in immune dysfunction, chemokine modulation, and cell migration, which are critical aspects for OLP progression, but its implication in OLP pathogenesis has not been determined. In this study, we sought to explicate the effect of Sema4D on human oral keratinocytes and its capacity to drive CD8+ T-cell lesional trafficking via chemokine modulation. We found that upregulations of sSema4D in OLP tissues and blood were positively correlated with disease severity and activity. In vitro observation revealed that Sema4D induced C-X-C motif chemokine ligand 9/C-X-C motif chemokine ligand 10 production by binding to plexin-B1 via protein kinase B-NF-κB cascade in human oral keratinocytes, which elicited OLP CD8+ T-cell migration. We also confirmed using clinical samples that elevated C-X-C motif chemokine ligand 9/C-X-C motif chemokine ligand 10 levels were positively correlated with sSema4D levels in OLP lesions and serum. Notably, we determined matrix metalloproteinase-9 as a new proteolytic enzyme for the cleavage of sSema4D from the T-cell surface, which may contribute to the high levels of sSema4D in OLP lesions and serum. Our findings conclusively revealed an amplification feedback loop involving T cells, chemokines, and Sema4D-dependent signal that promotes OLP progression.
Collapse
Affiliation(s)
- Yao Ke
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shengxian Shen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tongmei Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qing Liu
- Department of Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
21
|
LaGanke C, Samkoff L, Edwards K, Jung Henson L, Repovic P, Lynch S, Stone L, Mattson D, Galluzzi A, Fisher TL, Reilly C, Winter LA, Leonard JE, Zauderer M. Safety/tolerability of the anti-semaphorin 4D Antibody VX15/2503 in a randomized phase 1 trial. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017. [PMID: 28642891 PMCID: PMC5473956 DOI: 10.1212/nxi.0000000000000367] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: To evaluate the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of VX15/2503 in a randomized, single-dose, dose-escalation, double-blind, placebo-controlled study enrolling adult patients with MS. Methods: Single IV doses of VX15/2503 or placebo were administered. Ten patients each were randomized (4:1 randomization ratio) into 5 ascending dose cohorts of 1, 3, 6, 10, or 20 mg/kg. Safety, immunogenicity, PK/PD, MRI, ECG, and lymphocyte subset levels were evaluated. A Dose Escalation Safety Committee (DESC) approved each dose escalation. Results: VX15/2503 was well tolerated, and all participants completed the study. Antibody treatment–related adverse events were primarily grade 1 or 2 and included urinary tract infection (12.5%) and muscle weakness, contusion, and insomnia (each 7.5%). No dose-limiting toxicities were observed, and no maximum tolerated dose was determined. One subject (20 mg/kg) experienced disease relapse 3 months before study entry and exhibited a grade 3 (nonserious) increase in brain lesions by day 29, possibly related to VX15/2503. Twenty-nine patients exhibited human anti-humanized antibody responses; 5 with titer ≥100. No anti-VX15/2503 antibody responses were fully neutralizing. VX15/2503 Cmax, area under the time-concentration curve, and mean half-life increased with dose level; at 20 mg/kg, the T1/2 was 20 days. Cellular SEMA4D saturation occurred at serum antibody concentrations ≤0.3 μg/mL, resulting in decreased cSEMA4D expression. At 20 mg/kg, cSEMA4D saturation persisted for ≥155 days. Total sSEMA4D levels increased with dose level and declined with antibody clearance. Conclusions: These results support the continued investigation of VX15/2503 in neurodegenerative diseases. ClinicalTrials.gov identifier: NCT01764737. Classification of evidence: This study provides Class III evidence that anti-semaphorin 4D antibody VX15/2503 at various doses was safe and well tolerated vs placebo, although an increase in treatment-emergent adverse events in the treatment group could not be excluded (risk difference −0.7%, 95% CI −28.0% to 32.7%).
Collapse
Affiliation(s)
| | | | - Keith Edwards
- Author affiliations are provided at the end of the article
| | | | - Pavle Repovic
- Author affiliations are provided at the end of the article
| | - Sharon Lynch
- Author affiliations are provided at the end of the article
| | - Lael Stone
- Author affiliations are provided at the end of the article
| | - David Mattson
- Author affiliations are provided at the end of the article
| | - Aaron Galluzzi
- Author affiliations are provided at the end of the article
| | | | | | | | - John E Leonard
- Author affiliations are provided at the end of the article
| | | |
Collapse
|
22
|
Matías-Guiu J, Gomez-Pinedo U, Matias-Guiu JA. News in multiple sclerosis: Remyelination as a therapeutic target. Med Clin (Barc) 2016; 148:377-380. [PMID: 27923464 DOI: 10.1016/j.medcli.2016.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Jorge Matías-Guiu
- Servicio de Neurología, Instituto de Neurociencias, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos (idiSSC), Madrid, España.
| | - Ulises Gomez-Pinedo
- Servicio de Neurología, Instituto de Neurociencias, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos (idiSSC), Madrid, España
| | - Jordi A Matias-Guiu
- Servicio de Neurología, Instituto de Neurociencias, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos (idiSSC), Madrid, España
| |
Collapse
|
23
|
Gurrapu S, Tamagnone L. Transmembrane semaphorins: Multimodal signaling cues in development and cancer. Cell Adh Migr 2016; 10:675-691. [PMID: 27295627 DOI: 10.1080/19336918.2016.1197479] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Semaphorins constitute a large family of membrane-bound and secreted proteins that provide guidance cues for axon pathfinding and cell migration. Although initially discovered as repelling cues for axons in nervous system, they have been found to regulate cell adhesion and motility, angiogenesis, immune function and tumor progression. Notably, semaphorins are bifunctional cues and for instance can mediate both repulsive and attractive functions in different contexts. While many studies focused so far on the function of secreted family members, class 1 semaphorins in invertebrates and class 4, 5 and 6 in vertebrate species comprise around 14 transmembrane semaphorin molecules with emerging functional relevance. These can signal in juxtacrine, paracrine and autocrine fashion, hence mediating long and short range repulsive and attractive guidance cues which have a profound impact on cellular morphology and functions. Importantly, transmembrane semaphorins are capable of bidirectional signaling, acting both in "forward" mode via plexins (sometimes in association with receptor tyrosine kinases), and in "reverse" manner through their cytoplasmic domains. In this review, we will survey known molecular mechanisms underlying the functions of transmembrane semaphorins in development and cancer.
Collapse
Affiliation(s)
- Sreeharsha Gurrapu
- a Department of Oncology , University of Torino c/o IRCCS , Candiolo ( TO ), Italy.,b Candiolo Cancer Institute, IRCCS-FPO , Candiolo ( TO ), Italy
| | - Luca Tamagnone
- a Department of Oncology , University of Torino c/o IRCCS , Candiolo ( TO ), Italy.,b Candiolo Cancer Institute, IRCCS-FPO , Candiolo ( TO ), Italy
| |
Collapse
|
24
|
Maleki KT, Cornillet M, Björkström NK. Soluble SEMA4D/CD100: A novel immunoregulator in infectious and inflammatory diseases. Clin Immunol 2015; 163:52-9. [PMID: 26732857 DOI: 10.1016/j.clim.2015.12.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
SEMA4D/CD100 is a homodimeric protein belonging to the semaphorin family of axonal guidance proteins. Semaphorin family members have received increased attention lately due to their diverse functions in the immune system. SEMA4D was the first semaphorin described to have immune functions and serves important roles in T cell priming, antibody production, and cell-to-cell adhesion. Proteolytic cleavage of SEMA4D from the cell surface gives rise to a soluble fragment of SEMA4D (sSEMA4D). Similar to the transmembranal form, sSEMA4D is thought to have immunoregulatory properties. While the exact mechanisms responsible for SEMA4D shedding remain to be elucidated, emerging data have revealed associations between elevated systemic sSEMA4D levels and severity of infectious and inflammatory diseases. This review summarizes the literature concerning sSEMA4D and discusses its potential as a novel prognostic immune-biomarker and potential target for immunotherapy.
Collapse
Affiliation(s)
- Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| |
Collapse
|
25
|
Fisher TL, Seils J, Reilly C, Litwin V, Green L, Salkowitz-Bokal J, Walsh R, Harville S, Leonard JE, Smith E, Zauderer M. Saturation monitoring of VX15/2503, a novel semaphorin 4D-specific antibody, in clinical trials. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:199-208. [PMID: 26566052 PMCID: PMC5064733 DOI: 10.1002/cyto.b.21338] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/06/2015] [Accepted: 11/04/2015] [Indexed: 11/11/2022]
Abstract
Background Receptor occupancy, or saturation, assays are often utilized in preclinical and clinical development programs to evaluate the binding of a biologic to a cellular target. These assays provide critical information regarding the dose of drug required to “saturate” the target as well as important pharmacodymamic (PD) data. A flow cytometric method was developed to measure the degree of Semaphorin 4D (SEMA4D; CD100) saturation by VX15/2303, an investigational monoclonal antibody specific for SEMA4D. Methods The assay detects VX15/2503, a human IgG4 specific for SEMA4D, with an IgG4‐specific monoclonal antibody. Results Data generated allowed assessment of two related SEMA4D‐specific pharmacodynamic (PD) markers: (1) The measurement of cellular SEMA4D (cSEMA4D) saturation by VX15/2503, and (2) the cell membrane expression levels of cSEMA4D. Conclusions This assay specifically and reproducibly measured cSEMA4D saturation and expression levels. Evaluation of the SEMA4D‐specific PD markers were critical in determining the clinical saturation threshold of cSEMA4D by VX15/2503. © 2015 he Authors Cytometry Part B: Clinical Cytometry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | | | - Lisa Green
- Covance Central Laboratory Services, Indianapolis, Indiana
| | | | - Robin Walsh
- Covance Central Laboratory Services, Indianapolis, Indiana
| | - Sarah Harville
- Covance Central Laboratory Services, Indianapolis, Indiana
| | | | | | | |
Collapse
|
26
|
Patnaik A, Weiss GJ, Leonard JE, Rasco DW, Sachdev JC, Fisher TL, Winter LA, Reilly C, Parker RB, Mutz D, Blaydorn L, Tolcher AW, Zauderer M, Ramanathan RK. Safety, Pharmacokinetics, and Pharmacodynamics of a Humanized Anti-Semaphorin 4D Antibody, in a First-In-Human Study of Patients with Advanced Solid Tumors. Clin Cancer Res 2015; 22:827-36. [DOI: 10.1158/1078-0432.ccr-15-0431] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 09/22/2015] [Indexed: 11/16/2022]
|
27
|
Fisher TL, Reilly CA, Winter LA, Pandina T, Jonason A, Scrivens M, Balch L, Bussler H, Torno S, Seils J, Mueller L, Huang H, Klimatcheva E, Howell A, Kirk R, Evans E, Paris M, Leonard JE, Smith ES, Zauderer M. Generation and preclinical characterization of an antibody specific for SEMA4D. MAbs 2015; 8:150-62. [PMID: 26431358 PMCID: PMC4966508 DOI: 10.1080/19420862.2015.1102813] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Semaphorin 4D (SEMA4D or CD100) is a member of the semaphorin family of proteins and an important mediator of the movement and differentiation of multiple cell types, including those of the immune, vascular, and nervous systems. Blocking the binding of SEMA4D to its receptors can result in physiologic changes that may have implications in cancer, autoimmune, and neurological disease. To study the effects of blocking SEMA4D, we generated, in SEMA4D-deficient mice, a panel of SEMA4D-specific hybridomas that react with murine, primate, and human SEMA4D. Utilizing the complementarity-determining regions from one of these hybridomas (mAb 67-2), we generated VX15/2503, a humanized IgG4 monoclonal antibody that is currently in clinical development for the potential treatment of various malignancies and neurodegenerative disorders, including multiple sclerosis and Huntington's disease. This work describes the generation and characterization of VX15/2503, including in vitro functional testing, epitope mapping, and an in vivo demonstration of efficacy in an animal model of rheumatoid arthritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - He Huang
- a Vaccinex; Inc. ; Rochester , NY 14620
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Evans EE, Paris M, Smith ES, Zauderer M. Immunomodulation of the tumor microenvironment by neutralization of Semaphorin 4D. Oncoimmunology 2015; 4:e1054599. [PMID: 26587332 PMCID: PMC4635900 DOI: 10.1080/2162402x.2015.1054599] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 11/25/2022] Open
Abstract
Semaphorin 4D is highly expressed at the invasive tumor margin and acts as a guidance molecule, restricting movement of tumoricidal immune cells into the tumor microenvironment. We recently showed that antibody neutralization of SEMA4D augmented activated monocyte and anticancer T-cell tumor penetration and that anti-SEMA4D antibody potentiated other immunomodulatory therapies in murine tumor models.
Collapse
|
29
|
Evans EE, Jonason AS, Bussler H, Torno S, Veeraraghavan J, Reilly C, Doherty MA, Seils J, Winter LA, Mallow C, Kirk R, Howell A, Giralico S, Scrivens M, Klimatcheva K, Fisher TL, Bowers WJ, Paris M, Smith ES, Zauderer M. Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies. Cancer Immunol Res 2015; 3:689-701. [PMID: 25614511 DOI: 10.1158/2326-6066.cir-14-0171] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/12/2015] [Indexed: 11/16/2022]
Abstract
Semaphorin 4D (SEMA4D, CD100) and its receptor plexin-B1 (PLXNB1) are broadly expressed in murine and human tumors, and their expression has been shown to correlate with invasive disease in several human tumors. SEMA4D normally functions to regulate the motility and differentiation of multiple cell types, including those of the immune, vascular, and nervous systems. In the setting of cancer, SEMA4D-PLXNB1 interactions have been reported to affect vascular stabilization and transactivation of ERBB2, but effects on immune-cell trafficking in the tumor microenvironment (TME) have not been investigated. We describe a novel immunomodulatory function of SEMA4D, whereby strong expression of SEMA4D at the invasive margins of actively growing tumors influences the infiltration and distribution of leukocytes in the TME. Antibody neutralization of SEMA4D disrupts this gradient of expression, enhances recruitment of activated monocytes and lymphocytes into the tumor, and shifts the balance of cells and cytokines toward a proinflammatory and antitumor milieu within the TME. This orchestrated change in the tumor architecture was associated with durable tumor rejection in murine Colon26 and ERBB2(+) mammary carcinoma models. The immunomodulatory activity of anti-SEMA4D antibody can be enhanced by combination with other immunotherapies, including immune checkpoint inhibition and chemotherapy. Strikingly, the combination of anti-SEMA4D antibody with antibody to CTLA-4 acts synergistically to promote complete tumor rejection and survival. Inhibition of SEMA4D represents a novel mechanism and therapeutic strategy to promote functional immune infiltration into the TME and inhibit tumor progression.
Collapse
|