1
|
Chandrasekaran S, Funk CR, Kleber T, Paulos CM, Shanmugam M, Waller EK. Strategies to Overcome Failures in T-Cell Immunotherapies by Targeting PI3K-δ and -γ. Front Immunol 2021; 12:718621. [PMID: 34512641 PMCID: PMC8427697 DOI: 10.3389/fimmu.2021.718621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
PI3K-δ and PI3K-γ are critical regulators of T-cell differentiation, senescence, and metabolism. PI3K-δ and PI3K-γ signaling can contribute to T-cell inhibition via intrinsic mechanisms and regulation of suppressor cell populations, including regulatory T-cells and myeloid derived suppressor cells in the tumor. We examine an exciting new role for using selective inhibitors of the PI3K δ- and γ-isoforms as modulators of T-cell phenotype and function in immunotherapy. Herein we review the current literature on the implications of PI3K-δ and -γ inhibition in T-cell biology, discuss existing challenges in adoptive T-cell therapies and checkpoint blockade inhibitors, and highlight ongoing efforts and future directions to incorporate PI3K-δ and PI3K-γ as synergistic T-cell modulators in immunotherapy.
Collapse
Affiliation(s)
- Sanjay Chandrasekaran
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Christopher Ronald Funk
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Troy Kleber
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Chrystal M. Paulos
- Department of Surgery/Microbiology & Immunology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
Tran KB, Kolekar S, Jabed A, Jaynes P, Shih JH, Wang Q, Flanagan JU, Rewcastle GW, Baguley BC, Shepherd PR. Diverse mechanisms activate the PI 3-kinase/mTOR pathway in melanomas: implications for the use of PI 3-kinase inhibitors to overcome resistance to inhibitors of BRAF and MEK. BMC Cancer 2021; 21:136. [PMID: 33549048 PMCID: PMC7866738 DOI: 10.1186/s12885-021-07826-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background The PI 3-kinase (PI3K) pathway has been implicated as a target for melanoma therapy. Methods Given the high degree of genetic heterogeneity in melanoma, we sought to understand the breadth of variation in PI3K signalling in the large NZM panel of early passage cell lines developed from metastatic melanomas. Results We find the vast majority of lines show upregulation of this pathway, and this upregulation is achieved by a wide range of mechanisms. Expression of all class-IA PI3K isoforms was readily detected in these cell lines. A range of genetic changes in different components of the PI3K pathway was seen in different lines. Coding variants or amplification were identified in the PIK3CA gene, and amplification of the PK3CG gene was common. Deletions in the PIK3R1 and PIK3R2 regulatory subunits were also relatively common. Notably, no genetic variants were seen in the PIK3CD gene despite p110δ being expressed in many of the lines. Genetic variants were detected in a number of genes that encode phosphatases regulating the PI3K signalling, with reductions in copy number common in PTEN, INPP4B, INPP5J, PHLLP1 and PHLLP2 genes. While the pan-PI3K inhibitor ZSTK474 attenuated cell growth in all the lines tested, isoform-selective inhibition of p110α and p110δ inhibited cell growth in only a subset of the lines and the inhibition was only partial. This suggests that functional redundancy exists between PI3K isoforms. Furthermore, while ZSTK474 was initially effective in melanoma cells with induced resistance to vemurafenib, a subset of these cell lines concurrently developed partial resistance to PI3K inhibition. Importantly, mTOR-selective or mTOR/PI3K dual inhibitors effectively inhibited cell growth in all the lines, including those already resistant to BRAF inhibitors and ZSTK474. Conclusions Overall, this indicates a high degree of diversity in the way the PI3K pathway is activated in different melanoma cell lines and that mTOR is the most effective point for targeting the growth via the PI3K pathway across all of these cell lines. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07826-4.
Collapse
Affiliation(s)
- Khanh B Tran
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sharada Kolekar
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anower Jabed
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Patrick Jaynes
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Jen-Hsing Shih
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Qian Wang
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Jack U Flanagan
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Gordon W Rewcastle
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Bruce C Baguley
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand. .,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
3
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
4
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
5
|
Bheemanaboina RR. Isoform-Selective PI3K Inhibitors for Various Diseases. Curr Top Med Chem 2020; 20:1074-1092. [DOI: 10.2174/1568026620666200106141717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of ubiquitously distributed lipid kinases that
control a wide variety of intracellular signaling pathways. Over the years, PI3K has emerged as an attractive
target for the development of novel pharmaceuticals to treat cancer and various other diseases.
In the last five years, four of the PI3K inhibitors viz. Idelalisib, Copanlisib, Duvelisib, and Alpelisib
were approved by the FDA for the treatment of different types of cancer and several other PI3K inhibitors
are currently under active clinical development. So far clinical candidates are non-selective kinase
inhibitors with various off-target liabilities due to cross-reactivities. Hence, there is a need for the discovery
of isoform-selective inhibitors with improved efficacy and fewer side-effects. The development
of isoform-selective inhibitors is essential to reveal the unique functions of each isoform and its corresponding
therapeutic potential. Although the clinical effect and relative benefit of pan and isoformselective
inhibition will ultimately be determined, with the development of drug resistance and the demand
for next-generation inhibitors, it will continue to be of great significance to understand the potential
mechanism of isoform-selectivity. Because of the important role of type I PI3K family members in
various pathophysiological processes, isoform-selective PI3K inhibitors may ultimately have considerable
efficacy in a wide range of human diseases. This review summarizes the progress of isoformselective
PI3K inhibitors in preclinical and early clinical studies for anticancer and other various diseases.
Collapse
Affiliation(s)
- Rammohan R.Y. Bheemanaboina
- Department of Chemistry and Biochemistry, Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ 07043, United States
| |
Collapse
|
6
|
Marqués M, Tranchant R, Risa-Ebrí B, Suárez-Solís ML, Fernández LC, Carrillo-de-Santa-Pau E, Del Pozo N, Martínez de Villarreal J, Meiller C, Allory Y, Blum Y, Pirker C, Hegedus B, Barry ST, Carnero A, Berger W, Jean D, Real FX. Combined MEK and PI3K/p110β Inhibition as a Novel Targeted Therapy for Malignant Mesothelioma Displaying Sarcomatoid Features. Cancer Res 2020; 80:843-856. [PMID: 31911549 DOI: 10.1158/0008-5472.can-19-1633] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/01/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022]
Abstract
Among malignant mesotheliomas (MM), the sarcomatoid subtype is associated with higher chemoresistance and worst survival. Due to its low incidence, there has been little progress in the knowledge of the molecular mechanisms associated with sarcomatoid MM, which might help to define novel therapeutic targets. In this work, we show that loss of PTEN expression is frequent in human sarcomatoid MM and PTEN expression levels are lower in sarcomatoid MM than in the biphasic and epithelioid subtypes. Combined Pten and Trp53 deletion in mouse mesothelium led to nonepithelioid MM development. In Pten;Trp53-null mice developing MM, the Gαi2-coupled receptor subunit activated MEK/ERK and PI3K, resulting in aggressive, immune-suppressed tumors. Combined inhibition of MEK and p110β/PI3K reduced mouse tumor cell growth in vitro. Therapeutic inhibition of MEK and p110β/PI3K using selumetinib (AZD6244, ARRY-142886) and AZD8186, two drugs that are currently in clinical trials, increased the survival of Pten;Trp53-null mice without major toxicity. This drug combination effectively reduced the proliferation of primary cultures of human pleural (Pl) MM, implicating nonepithelioid histology and high vimentin, AKT1/2, and Gαi2 expression levels as predictive markers of response to combined MEK and p110β/PI3K inhibition. Our findings provide a rationale for the use of selumetinib and AZD8186 in patients with MM with sarcomatoid features. This constitutes a novel targeted therapy for a poor prognosis and frequently chemoresistant group of patients with MM, for whom therapeutic options are currently lacking. SIGNIFICANCE: Mesothelioma is highly aggressive; its sarcomatoid variants have worse prognosis. Building on a genetic mouse model, a novel combination therapy is uncovered that is relevant to human tumors.
Collapse
Affiliation(s)
- Miriam Marqués
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain. .,CIBERONC, Madrid, Spain
| | - Robin Tranchant
- Centre de Recherche des Cordeliers, INSERM, Université Paris Descartes, Université Paris Diderot, Sorbonne Université, USPC, Functional Genomics of Solid Tumors Team, Paris, France
| | - Blanca Risa-Ebrí
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
| | - María L Suárez-Solís
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain.,Department of Surgical Pathology, Hospital Clínico San Carlos, Madrid, Spain
| | - Luis C Fernández
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain.,Faculty of Biomedical Sciences and Health, Universidad Europea de Madrid, Madrid, Spain
| | - Enrique Carrillo-de-Santa-Pau
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain.,Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, Madrid, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain.,CIBERONC, Madrid, Spain
| | | | - Clément Meiller
- Centre de Recherche des Cordeliers, INSERM, Université Paris Descartes, Université Paris Diderot, Sorbonne Université, USPC, Functional Genomics of Solid Tumors Team, Paris, France
| | - Yves Allory
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain.,Université Paris-Est Créteil, France INSERM, U955, Institut Mondor de Recherche Biomédicales AP-HP, Hôpital Henri Mondor, Department of Pathology, Créteil, France
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedus
- Department of Thoracic Surgery, Medical of University Vienna, Vienna, Austria
| | - Simon T Barry
- IMED Oncology, AstraZeneca, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Amancio Carnero
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain.,CIBERONC, Madrid, Spain.,Instituto de Biomedicina de Sevilla, IBIS/HUVR/Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Didier Jean
- Centre de Recherche des Cordeliers, INSERM, Université Paris Descartes, Université Paris Diderot, Sorbonne Université, USPC, Functional Genomics of Solid Tumors Team, Paris, France
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain. .,CIBERONC, Madrid, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
7
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Potes Y, Shabeeb D, Musa AE. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci 2019; 228:228-241. [DOI: 10.1016/j.lfs.2019.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
|
8
|
Bresnick AR, Backer JM. PI3Kβ-A Versatile Transducer for GPCR, RTK, and Small GTPase Signaling. Endocrinology 2019; 160:536-555. [PMID: 30601996 PMCID: PMC6375709 DOI: 10.1210/en.2018-00843] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) family includes eight distinct catalytic subunits and seven regulatory subunits. Only two PI3Ks are directly regulated downstream from G protein-coupled receptors (GPCRs): the class I enzymes PI3Kβ and PI3Kγ. Both enzymes produce phosphatidylinositol 3,4,5-trisposphate in vivo and are regulated by both heterotrimeric G proteins and small GTPases from the Ras or Rho families. However, PI3Kβ is also regulated by direct interactions with receptor tyrosine kinases (RTKs) and their tyrosine phosphorylated substrates, and similar to the class II and III PI3Ks, it binds activated Rab5. The unusually complex regulation of PI3Kβ by small and trimeric G proteins and RTKs leads to a rich landscape of signaling responses at the cellular and organismic levels. This review focuses first on the regulation of PI3Kβ activity in vitro and in cells, and then summarizes the biology of PI3Kβ signaling in distinct tissues and in human disease.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
9
|
Subbiah V, Sen S, Hess KR, Janku F, Hong DS, Khatua S, Karp DD, Munoz J, Falchook GS, Groisberg R, Tsimberidou AM, Sherman SI, Hwu P, Meric-Bernstam F. Phase I Study of the BRAF Inhibitor Vemurafenib in Combination With the Mammalian Target of Rapamycin Inhibitor Everolimus in Patients With BRAF-Mutated Malignancies. JCO Precis Oncol 2018; 2:1800189. [PMID: 32913986 DOI: 10.1200/po.18.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Parallel activation of the phosphatidylinositol 3-kinase-mammalian target of rapamycin pathway represents a mechanism of primary and acquired resistance to BRAF-targeted therapy, but the two pathways have yet to be cotargeted in humans. We performed a phase I study to evaluate the safety and activity of the BRAF inhibitor vemurafenib in combination with the mammalian target of rapamycin inhibitor everolimus in BRAF-mutated advanced solid tumors. Patients and Methods We performed a 3+3 dose-escalation study with escalating doses of both oral (PO) vemurafenib administered twice a day and PO everolimus administered daily. Results Twenty patients with advanced cancers were enrolled. The median adult age was 64 years (range, 17 to 85 years); two pediatric patients were 10 and 13 years old. Patients were heavily pretreated with prior BRAF or MEK inhibitors (n = 11), phase I clinical trial therapy (n = 10), surgery (n = 18), radiation therapy (n = 11), and chemotherapy (n=13). One of the two pediatric patients initially experienced grade 3 rash, but after dermatologic intervention, the patient remains on trial with partial response and no dose reduction at time of analysis. Four dose-limiting toxicities (rash, n = 1; fatigue, n = 3) were observed at dose level 2. Therefore, dose level 1 (vemurafenib 720 mg PO twice a day and everolimus 5 mg PO daily) was the maximum-tolerated dose. Overall, four patients (22%) had a partial response and nine patients (50%) had stable disease as best response. One pediatric patient with pleomorphic xanthroastrocytoma remains on protocol with continued clinical response after 38 cycles. Conclusion The combination of vemurafenib 720 mg PO twice a day and everolimus 5 mg PO daily is safe and well tolerated and has activity across histologies, with partial responses noted in advanced non-small-cell lung cancer, melanoma, optic nerve glioma, and xanthroastrocytoma, including patients who previously experienced progression on BRAF and/or MEK inhibitor therapy. Further investigation in a larger cohort of molecularly matched patients is warranted.
Collapse
Affiliation(s)
- Vivek Subbiah
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Shiraj Sen
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Kenneth R Hess
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Filip Janku
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - David S Hong
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Soumen Khatua
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Daniel D Karp
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Javier Munoz
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Gerald S Falchook
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Roman Groisberg
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Apostolia M Tsimberidou
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Steven I Sherman
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Patrick Hwu
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Funda Meric-Bernstam
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| |
Collapse
|
10
|
Cross Talk Networks of Mammalian Target of Rapamycin Signaling With the Ubiquitin Proteasome System and Their Clinical Implications in Multiple Myeloma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:219-297. [PMID: 30712673 DOI: 10.1016/bs.ircmb.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy and results from the clonal amplification of plasma cells. Despite recent advances in treatment, MM remains incurable with a median survival time of only 5-6years, thus necessitating further insights into MM biology and exploitation of novel therapeutic approaches. Both the ubiquitin proteasome system (UPS) and the PI3K/Akt/mTOR signaling pathways have been implicated in the pathogenesis, and treatment of MM and different lines of evidence suggest a close cross talk between these central cell-regulatory signaling networks. In this review, we outline the interplay between the UPS and mTOR pathways and discuss their implications for the pathophysiology and therapy of MM.
Collapse
|
11
|
Lynch JT, Polanska UM, Hancox U, Delpuech O, Maynard J, Trigwell C, Eberlein C, Lenaghan C, Polanski R, Avivar-Valderas A, Cumberbatch M, Klinowska T, Critchlow SE, Cruzalegui F, Barry ST. Combined Inhibition of PI3Kβ and mTOR Inhibits Growth of PTEN-null Tumors. Mol Cancer Ther 2018; 17:2309-2319. [PMID: 30097489 DOI: 10.1158/1535-7163.mct-18-0183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/12/2018] [Accepted: 08/02/2018] [Indexed: 11/16/2022]
Abstract
Loss of the tumor suppressor PTEN confers a tumor cell dependency on the PI3Kβ isoform. Achieving maximal inhibition of tumor growth through PI3K pathway inhibition requires sustained inhibition of PI3K signaling; however, efficacy is often limited by suboptimal inhibition or reactivation of the pathway. To select combinations that deliver comprehensive suppression of PI3K signaling in PTEN-null tumors, the PI3Kβ inhibitor AZD8186 was combined with inhibitors of kinases implicated in pathway reactivation in an extended cell proliferation assay. Inhibiting PI3Kβ and mTOR gave the most effective antiproliferative effects across a panel of PTEN-null tumor cell lines. The combination of AZD8186 and the mTOR inhibitor vistusertib was also effective in vivo controlling growth of PTEN-null tumor models of TNBC, prostate, and renal cancers. In vitro, the combination resulted in increased suppression of pNDRG1, p4EBP1, as well as HMGCS1 with reduced pNDRG1 and p4EBP1 more closely associated with effective suppression of proliferation. In vivo biomarker analysis revealed that the monotherapy and combination treatment consistently reduced similar biomarkers, while combination increased nuclear translocation of the transcription factor FOXO3 and reduction in glucose uptake. These data suggest that combining the PI3Kβ inhibitor AZD8186 and vistusertib has potential to be an effective combination treatment for PTEN-null tumors. Mol Cancer Ther; 17(11); 2309-19. ©2018 AACR.
Collapse
Affiliation(s)
- James T Lynch
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Urszula M Polanska
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Ursula Hancox
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Alderley Park, United Kingdom
| | - Oona Delpuech
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Juliana Maynard
- Alderley Imaging, Alderley Park Ltd, Alderley Park, United Kingdom
| | - Catherine Trigwell
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Catherine Eberlein
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Carol Lenaghan
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Radoslaw Polanski
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Alvaro Avivar-Valderas
- Translational Sciences, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Marie Cumberbatch
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Teresa Klinowska
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Susan E Critchlow
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Francisco Cruzalegui
- Translational Sciences, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
12
|
Ma SC, Zhang HP, Jiao Y, Wang YH, Zhang H, Yang XL, Yang AN, Jiang YD. Homocysteine-induced proliferation of vascular smooth muscle cells occurs via PTEN hypermethylation and is mitigated by Resveratrol. Mol Med Rep 2018; 17:5312-5319. [PMID: 29393420 DOI: 10.3892/mmr.2018.8471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is a primary pathological event in the development of atherosclerosis (AS), and the presence of homocysteine (Hcy) acts as an independent risk factor for AS. However, the underlying mechanisms remain to be elucidated. Phosphatase and tensin homologue on chromosome 10 (PTEN), is endogenously expressed in VSMCs and induces multiple signaling networks involved in cell proliferation, survival and inflammation, however, the specific role of PTEN is still unknown. The present study detected the proliferation ratio of VSMCs following treatment with Hcy and Resveratrol (RSV). In the 100 µM Hcy group, the proliferation ratio increased, and treatment with RSV decreased the proliferation ratio induced by Hcy. Reverse transcription‑quantitative polymerase chain reaction and western blotting were used to analyze PTEN expression, RSV treatment was associated with decreased PTEN expression levels in VSMCs. PTEN levels were decreased in Hcy treated cells, and the proliferation ratio of VSMCs were increased following treated with Hcy. To study the mechanism of regulation of PTEN by Hcy, the present study detected PTEN methylation levels in VSMCs, and PTEN DNA methylation levels were demonstrated to be increased in the 100 µM Hcy group, whereas treatment with RSV decreased the methylation status. DNA methyltransferase 1 is important role in the regulation of PTEN methylation. Overall, Hcy impacts the methylation status of PTEN, which is involved in cell proliferation, and induces the proliferation of VSMCs. This effect is alleviated by treatment with RSV, which exhibits an antagonistic mechanism against Hcy.
Collapse
Affiliation(s)
- Sheng-Chao Ma
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hui-Ping Zhang
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yun Jiao
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yan-Hua Wang
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hui Zhang
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiao-Ling Yang
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - An-Ning Yang
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yi-Deng Jiang
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
13
|
Bédard PL, Davies MA, Kopetz S, Juric D, Shapiro GI, Luke JJ, Spreafico A, Wu B, Castell C, Gomez C, Cartot-Cotton S, Mazuir F, Dubar M, Micallef S, Demers B, Flaherty KT. First-in-human trial of the PI3Kβ-selective inhibitor SAR260301 in patients with advanced solid tumors. Cancer 2017; 124:315-324. [PMID: 28976556 DOI: 10.1002/cncr.31044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Phosphoinositide 3-kinase (PI3K) β is the dominant isoform for PI3K activity in many phosphatase and tensin homolog (PTEN)-deficient tumor models. This was a first-in-human study to determine the maximum tolerated dose, safety, pharmacokinetics (PK), pharmacodynamics, and preliminary activity of SAR260301, a potent PI3Kβ-selective inhibitor (clinicaltrials.gov identifier NCT01673737). METHODS Successive cohorts of patients with advanced solid tumors received increasing doses of oral SAR260301 according to a Bayesian escalation with an overdose-control process based on the occurrence of dose-limiting toxicity in the first 28-day cycle. Adverse events, tumor response, PK, and the effect of food on PK were evaluated. Target engagement was assessed in platelets. Physiologically-based PK modeling was used for exposure predictions. RESULTS Twenty-one patients received treatment at doses ranging from 100 mg once daily to 440 mg/m2 twice daily. Dose-limiting toxicities included 1 episode of grade 3 pneumonitis (400 mg twice daily) and 1 grade 3 γ-glutamyltransferase increase (600 mg twice daily). The maximum tolerated dose was not reached. The most frequently occurring treatment-related adverse events were nausea, vomiting, and diarrhea (14% each). Pharmacologically active concentrations were reached, but SAR260301 was rapidly cleared, and exposures associated with antitumor activity in preclinical models were not maintained at the highest dose tested. Food further decreased SAR260301 exposure. CONCLUSIONS SAR260301 had an acceptable safety profile, but exposure sufficient to inhibit the PI3K pathway was unachievable because of rapid clearance, and clinical development was terminated. These results demonstrate the importance of PK and pharmacodynamic assessments in early drug development. Cancer 2018;124:315-24. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Philippe L Bédard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael A Davies
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason J Luke
- Department of Medicine, University of Chicago Cancer Center, Chicago, Illinois
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bin Wu
- Department of Oncology, Sanofi, Cambridge, Massachusetts
| | | | - Corinne Gomez
- Department of Drug Disposition, Sanofi, Alfortville, France
| | | | - Florent Mazuir
- Department of Drug Disposition, Sanofi, Alfortville, France
| | - Michel Dubar
- Department of Translational Informatics, Sanofi, Chilly-Mazarin, France
| | - Sandrine Micallef
- Department of Biostatistics Oncology, Sanofi R&D, Vitry sur Seine, France
| | - Brigitte Demers
- Department of Oncology - Early Development, Sanofi, Vitry sur Seine, France
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
14
|
Arozarena I, Wellbrock C. Overcoming resistance to BRAF inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:387. [PMID: 29114545 PMCID: PMC5653517 DOI: 10.21037/atm.2017.06.09] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
The discovery of activating mutations in the serine/threonine (S/T) kinase BRAF followed by a wave of follow-up research manifested that the MAPK-pathway plays a critical role in melanoma initiation and progression. BRAF and MEK inhibitors produce an unparalleled response rate in melanoma, but it is now clear that most responses are transient, and while some patients show long lasting responses the majority progress within 1 year. In accordance with the key role played by the MAPK-pathway in BRAF mutant melanomas, disease progression is mostly due to the appearance of drug-resistance mechanisms leading to restoration of MAPK-pathway activity. In the present article we will review the development, application and clinical effects of BRAF and MEK inhibitors both, as single agent and in combination in the context of targeted therapy in melanoma. We will then describe the most prominent mechanisms of resistance found in patients progressed on these targeted therapies. Finally we will discuss strategies for further optimizing the use of MAPK inhibitors and will describe the potential of alternative combination therapies to either delay the onset of resistance to MAPK inhibitors or directly target specific mechanisms of resistance to BRAF/MEK inhibitors.
Collapse
Affiliation(s)
- Imanol Arozarena
- Navarrabiomed-Fundación Miguel Servet-Idisna, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
He C, Duan S, Dong L, Wang Y, Hu Q, Liu C, Forrest ML, Holzbeierlein JM, Han S, Li B. Characterization of a novel p110β-specific inhibitor BL140 that overcomes MDV3100-resistance in castration-resistant prostate cancer cells. Prostate 2017; 77:1187-1198. [PMID: 28631436 PMCID: PMC5527967 DOI: 10.1002/pros.23377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Our previous studies demonstrated that the class IA PI3K/p110β is critical in castration-resistant progression of prostate cancer (CRPC) and that targeting prostate cancer with nanomicelle-loaded p110β-specific inhibitor TGX221 blocked xenograft tumor growth in nude mice, confirming the feasibility of p110β-targeted therapy for CRPCs. To improve TGX221's aqueous solubility, in this study, we characterized four recently synthesized TGX221 analogs. METHODS TGX221 analog efficacy were examined in multiple prostate cancer cell lines with the SRB cell growth assay, Western blot assay for AKT phosphorylation and cell cycle protein levels. Target engagement with PI3K isoforms was evaluated with cellular thermal shift assay. PI3K activity was determined with the Kinase-Glo Plus luminescent kinase assay. Cell cycle distribution was evaluated with flow cytometry after propidium iodide staining. RESULTS As expected, replacing either one of two major functional groups in TGX221 by more hydrophilic groups dramatically improved the aqueous solubility (about 40-fold) compared to TGX221. In the CETSA assay, all the analogs dramatically shifted the melting curve of p110β protein while none of them largely affected the melting curves of p110α, p110γ, or Akt proteins, indicating target-specific engagement of these analogs with p110β protein. However, functional evaluation showed that only one of the analogs BL140 ubiquitously inhibited AKT phosphorylation in all CRPC cell lines tested with diverse genetic abnormalities including AR, PTEN, and p53 status. BL140 was superior than GSK2636771 (IC50 5.74 vs 20.49 nM), the only p110β-selective inhibitor currently in clinical trials, as revealed in an in vitro Kinase-Glo assay. Furthermore, BL140 exhibited a stronger inhibitory effect than GSK2636771 on multiple CRPC cell lines including a MDV3100-resistant C4-2B cell subline, indicating BL140 elimination of MDV3100 resistance. Mechanistic studies revealed that BL140 blocked G1 phase cell cycle entry by reducing cyclin D1 but increasing p27kip1 protein levels. CONCLUSION These studies suggested that BL140 is a promising p110β-specific inhibitor with multiple superb properties than GSK2636771 worthy for further clinical development.
Collapse
Affiliation(s)
- Chenchen He
- Department of Medical Oncology, The First Affiliated Hospital, Xi’An Jiaotong University School of Medicine, Xi’An 710061, China
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Shaofeng Duan
- Pharmaceutical College, Henan University, Kaifeng 475004, China
| | - Liang Dong
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Yifen Wang
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Qingting Hu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Chunjing Liu
- Department of Pharmaceutical Chemistry, The University of Kansas School of Pharmacy, Lawrence, KS 66045
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas School of Pharmacy, Lawrence, KS 66045
| | | | - Suxia Han
- Department of Medical Oncology, The First Affiliated Hospital, Xi’An Jiaotong University School of Medicine, Xi’An 710061, China
| | - Benyi Li
- Department of Medical Oncology, The First Affiliated Hospital, Xi’An Jiaotong University School of Medicine, Xi’An 710061, China
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
- Pharmaceutical College, Henan University, Kaifeng 475004, China
| |
Collapse
|
16
|
Targeting PI3K Signaling in Combination Cancer Therapy. Trends Cancer 2017; 3:454-469. [DOI: 10.1016/j.trecan.2017.04.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
|