1
|
Liu L, Feng X, Fan C, Kong D, Feng X, Sun C, Xu Y, Li B, Jiang Y, Zheng C. PDCD4 interacting with PIK3CB and CTSZ promotes the apoptosis of multiple myeloma cells. FASEB J 2024; 38:e70024. [PMID: 39190024 DOI: 10.1096/fj.202400687r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
The role of programmed cell death 4 (PDCD4) in multiple myeloma (MM) development remains unknown. Here, we investigated its role and action mechanism in MM. Bioinformatic analysis indicated that patients with MM and high PDCD4 expression had higher overall survival than those with low PDCD4 expression. PDCD4 expression promoted MM cell apoptosis and inhibited their viability in vitro and tumor growth in vivo. RNA-binding protein immunoprecipitation sequencing analysis showed that PDCD4 is bound to the 5' UTR of the apoptosis-related genes PIK3CB, Cathepsin Z (CTSZ), and X-chromosome-linked apoptosis inhibitor (XIAP). PDCD4 knockdown reduced the cell apoptosis rate, which was rescued by adding PIK3CB, CTSZ, or XIAP inhibitors. Dual luciferase reporter assays confirmed the internal ribosome entry site (IRES) activity of the 5' UTRs of PIK3CB and CTSZ. An RNA pull-down assay confirmed binding of the 5' UTR of PIK3CB and CTSZ to PDCD4, identifying the specific binding fragments. PDCD4 is expected to promote MM cell apoptosis by binding to the IRES domain in the 5' UTR of PIK3CB and CTSZ and inhibiting their translation. Our findings suggest that PDCD4 plays an important role in MM development by regulating the expression of PIK3CB, CTSZ, and XIAP, and highlight new potential molecular targets for MM treatment.
Collapse
Affiliation(s)
- Liyuan Liu
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China
- Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Xiumei Feng
- Department of Hematology, The Fourth People's Hospital of Jinan City, Jinan, Shandong, China
| | - Chenliu Fan
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China
- Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Dexiao Kong
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China
- Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Xiaoli Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Chenxi Sun
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China
- Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Yaqi Xu
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China
- Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Binggen Li
- R&D Department, Weihai Zhengsheng Biotechnology Co., Ltd, Weihai, China
| | - Yang Jiang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China
- Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, China
- Institute of Biotherapy for Hematological Malignancy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Khan MT, Almas M, Malik N, Jalota A, Sharma S, Ali SA, Luthra K, Suri V, Suri A, Basak S, Seth P, Chosdol K, Sinha S. STAT1 mediated downregulation of the tumor suppressor gene PDCD4, is driven by the atypical cadherin FAT1, in glioblastoma. Cell Signal 2024; 119:111178. [PMID: 38640981 DOI: 10.1016/j.cellsig.2024.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
STAT1 (Signal Transducer and Activator of Transcription 1), belongs to the STAT protein family, essential for cytokine signaling. It has been reported to have either context dependent oncogenic or tumor suppressor roles in different tumors. Earlier, we demonstrated that Glioblastoma multiforme (GBMs) overexpressing FAT1, an atypical cadherin, had poorer outcomes. Overexpressed FAT1 promotes pro-tumorigenic inflammation, migration/invasion by downregulating tumor suppressor gene, PDCD4. Here, we demonstrate that STAT1 is a novel mediator downstream to FAT1, in downregulating PDCD4 in GBMs. In-silico analysis of GBM databases as well as q-PCR analysis in resected GBM tumors showed positive correlation between STAT1 and FAT1 mRNA levels. Kaplan-Meier analysis showed poorer survival of GBM patients having high FAT1 and STAT1 expression. SiRNA-mediated knockdown of FAT1 decreased STAT1 and increased PDCD4 expression in glioblastoma cells (LN229 and U87MG). Knockdown of STAT1 alone resulted in increased PDCD4 expression. In silico analysis of the PDCD4 promoter revealed four putative STAT1 binding sites (Site1-Site4). ChIP assay confirmed the binding of STAT1 to site1. ChIP-PCR revealed decrease in the binding of STAT1 on the PDCD4 promoter after FAT1 knockdown. Site directed mutagenesis of Site1 resulted in increased PDCD4 luciferase activity, substantiating STAT1 mediated PDCD4 inhibition. EMSA confirmed STAT1 binding to the Site 1 sequence. STAT1 knockdown led to decreased expression of pro-inflammatory cytokines and EMT markers, and reduced migration/invasion of GBM cells. This study therefore identifies STAT1 as a novel downstream mediator of FAT1, promoting pro-tumorigenic activity in GBM, by suppressing PDCD4 expression.
Collapse
Affiliation(s)
- Md Tipu Khan
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India; Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA
| | - Mariyam Almas
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; Centre for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Akansha Jalota
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India; Department of Oncology, Albert Einstein College of Medicine, New York, USA
| | - Shaifali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sk Asif Ali
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Vaishali Suri
- Neuropathalogy Laboratory, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Subrata Sinha
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India; Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
3
|
Chou PH, Luo CK, Wali N, Lin WY, Ng SK, Wang CH, Zhao M, Lin SW, Yang PM, Liu PJ, Shie JJ, Wei TT. A chemical probe inhibitor targeting STAT1 restricts cancer stem cell traits and angiogenesis in colorectal cancer. J Biomed Sci 2022; 29:20. [PMID: 35313878 PMCID: PMC8939146 DOI: 10.1186/s12929-022-00803-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Background Colorectal cancer (CRC) is a worldwide cancer with rising annual incidence. New medications for patients with CRC are still needed. Recently, fluorescent chemical probes have been developed for cancer imaging and therapy. Signal transducer and activator of transcription 1 (STAT1) has complex functions in tumorigenesis and its role in CRC still needs further investigation. Methods RNA sequencing datasets in the NCBI GEO repository were analyzed to investigate the expression of STAT1 in patients with CRC. Xenograft mouse models, tail vein injection mouse models, and azoxymethane/dextran sodium sulfate (AOM/DSS) mouse models were generated to study the roles of STAT1 in CRC. A ligand-based high-throughput virtual screening approach combined with SWEETLEAD chemical database analysis was used to discover new STAT1 inhibitors. A newly designed and synthesized fluorescently labeled 4’,5,7-trihydroxyisoflavone (THIF) probe (BODIPY-THIF) elucidated the mechanistic actions of STAT1 and THIF in vitro and in vivo. Colonosphere formation assay and chick chorioallantoic membrane assay were used to evaluate stemness and angiogenesis, respectively. Results Upregulation of STAT1 was observed in patients with CRC and in mouse models of AOM/DSS-induced CRC and metastatic CRC. Knockout of STAT1 in CRC cells reduced tumor growth in vivo. We then combined a high-throughput virtual screening approach and analysis of the SWEETLEAD chemical database and found that THIF, a flavonoid abundant in soybeans, was a novel STAT1 inhibitor. THIF inhibited STAT1 phosphorylation and might bind to the STAT1 SH2 domain, leading to blockade of STAT1-STAT1 dimerization. The results of in vitro and in vivo binding studies of THIF and STAT1 were validated. The pharmacological treatment with BODIPY-THIF or ablation of STAT1 via a CRISPR/Cas9-based strategy abolished stemness and angiogenesis in CRC. Oral administration of BODIPY-THIF attenuated colitis symptoms and tumor growth in the mouse model of AOM/DSS-induced CRC. Conclusions This study demonstrates that STAT1 plays an oncogenic role in CRC. BODIPY-THIF is a new chemical probe inhibitor of STAT1 that reduces stemness and angiogenesis in CRC. BODIPY-THIF can be a potential tool for CRC therapy as well as cancer cell imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00803-4.
Collapse
Affiliation(s)
- Pei-Hsuan Chou
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan
| | - Cong-Kai Luo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan
| | - Niaz Wali
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Yen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan
| | - Chun-Hao Wang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Mingtao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43210, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, 43210, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pin-Jung Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei, 11529, Taiwan.
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan. .,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
4
|
Bui TM, Sumagin R. Neutrophils and micronuclei: An emerging link between genomic instability and cancer-driven inflammation. Mutat Res 2022; 824:111778. [PMID: 35334355 PMCID: PMC9756381 DOI: 10.1016/j.mrfmmm.2022.111778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Two recent studies by Bui and Butin-Israeli et al. have established the novel contribution of neutrophils to genomic instability induction and aberrant shaping of the DNA repair landscape, particularly observed in patients with inflammatory bowel diseases (IBD) and/or progressive colorectal cancer (CRC). In addition, these back-to-back studies uncovered a sharp increase in the numbers of micronuclei and lagging chromosomes in pre-cancerous and cancerous epithelium in response to prolonged PMN exposure. Given the emerging link between neutrophils and micronuclei as well as the established role of micronuclei in cGAS/STING activation, this special commentary aims to elaborate on the mechanisms by which CRC cells may adapt to neutrophil-driven genomic instability while concurrently sustain an inflamed tumor niche. We postulate that such tumor microenvironment with constant immune cell presence, inflammatory milieu, and cumulative DNA damage can drive tumor adaptation and resistance to therapeutic interventions. Finally, we discuss potential novel therapeutic approaches that can be leveraged to target this emerging neutrophil-micronuclei pathological axis, thereby preventing perpetual CRC inflammation and unwanted tumor adaptation.
Collapse
Affiliation(s)
- Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Zhou X, Zhao J, Zhang JV, Wu Y, Wang L, Chen X, Ji D, Zhou GG. Enhancing Therapeutic Efficacy of Oncolytic Herpes Simplex Virus with MEK Inhibitor Trametinib in Some BRAF or KRAS-Mutated Colorectal or Lung Carcinoma Models. Viruses 2021; 13:1758. [PMID: 34578339 PMCID: PMC8473197 DOI: 10.3390/v13091758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virus (OV) as a promising therapeutic agent can selectively infect and kill tumor cells with naturally inherited or engineered properties. Considering the limitations of OVs monotherapy, combination therapy has been widely explored. MEK inhibitor (MEKi) Trametinib is an FDA-approved kinase inhibitor indicated for the treatment of tumors with BRAF V600E or V600K mutations. In this study, the oncolytic activity in vitro and anti-tumor therapeutic efficacy in vivo when combined with oHSV and MEKi Trametinib were investigated. We found: (1) Treatment with MEKi Trametinib augmented oHSV oncolytic activity in BRAF V600E-mutated tumor cells. (2) Combination treatment with oHSV and MEKi Trametinib enhanced virus replication mediated by down-regulation of STAT1 and PKR expression or phosphorylation in BRAF V600E-mutated tumor cells as well as BRAF wt/KRAS-mutated tumor cells. (3) A remarkably synergistic therapeutic efficacy was shown in vivo for BRAF wt/KRAS-mutated tumor models, when a combination of oHSV including PD-1 blockade and MEK inhibition. Collectively, these data provide some new insights for clinical development of combination therapy with oncolytic virus, MEK inhibition, and checkpoint blockade for BRAF or KRAS-mutated tumors.
Collapse
Affiliation(s)
- XuSha Zhou
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China; (X.Z.); (J.Z.); (X.C.)
| | - Jing Zhao
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China; (X.Z.); (J.Z.); (X.C.)
| | - Jian V. Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yinglin Wu
- Department of Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (Y.W.); (L.W.)
| | - Lei Wang
- Department of Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (Y.W.); (L.W.)
| | - Xiaoqing Chen
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China; (X.Z.); (J.Z.); (X.C.)
| | - Dongmei Ji
- Department of Medical Oncology, Shanghai Cancer Center and Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China; (X.Z.); (J.Z.); (X.C.)
| |
Collapse
|
6
|
STAT1 Is Required for Decreasing Accumulation of Granulocytic Cells via IL-17 during Initial Steps of Colitis-Associated Cancer. Int J Mol Sci 2021; 22:ijms22147695. [PMID: 34299314 PMCID: PMC8306338 DOI: 10.3390/ijms22147695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) acts as a tumor suppressor molecule in colitis-associated colorectal cancer (CAC), particularly during the very early stages, modulating immune responses and controlling mechanisms such as apoptosis and cell proliferation. Previously, using an experimental model of CAC, we reported increased intestinal cell proliferation and faster tumor development, which were consistent with more signs of disease and damage, and reduced survival in STAT1-/- mice, compared with WT counterparts. However, the mechanisms through which STAT1 might prevent colorectal cancer progression preceded by chronic inflammation are still unclear. Here, we demonstrate that increased tumorigenicity related to STAT1 deficiency could be suppressed by IL-17 neutralization. The blockade of IL-17 in STAT1-/- mice reduced the accumulation of CD11b+Ly6ClowLy6G+ cells resembling granulocytic myeloid-derived suppressor cells (MDSCs) in both spleen and circulation. Additionally, IL-17 blockade reduced the recruitment of neutrophils into intestinal tissue, the expression and production of inflammatory cytokines, and the expression of intestinal STAT3. In addition, the anti-IL-17 treatment also reduced the expression of Arginase-1 and inducible nitric oxide synthase (iNOS) in the colon, both associated with the main suppressive activity of MDSCs. Thus, a lack of STAT1 signaling induces a significant change in the colonic microenvironment that supports inflammation and tumor formation. Anti-IL-17 treatment throughout the initial stages of CAC related to STAT1 deficiency abrogates the tumor formation possibly caused by myeloid cells.
Collapse
|
7
|
Minnee E, Faller WJ. Translation initiation and its relevance in colorectal cancer. FEBS J 2021; 288:6635-6651. [PMID: 33382175 PMCID: PMC9291299 DOI: 10.1111/febs.15690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Protein synthesis is one of the most essential processes in every kingdom of life, and its dysregulation is a known driving force in cancer development. Multiple signaling pathways converge on the translation initiation machinery, and this plays a crucial role in regulating differential gene expression. In colorectal cancer, dysregulation of initiation results in translational reprogramming, which promotes the selective translation of mRNAs required for many oncogenic processes. The majority of upstream mutations found in colorectal cancer, including alterations in the WNT, MAPK, and PI3K\AKT pathways, have been demonstrated to play a significant role in translational reprogramming. Many translation initiation factors are also known to be dysregulated, resulting in translational reprogramming during tumor initiation and/or maintenance. In this review, we outline the role of translational reprogramming that occurs during colorectal cancer development and progression and highlight some of the most critical factors affecting the etiology of this disease.
Collapse
Affiliation(s)
- Emma Minnee
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - William James Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Zhao Y, Li T, Tian S, Meng W, Sui Y, Yang J, Wang B, Liang Z, Zhao H, Han Y, Tang Y, Zhang L, Ma J. Effective Inhibition of MYC-Amplified Group 3 Medulloblastoma Through Targeting EIF4A1. Cancer Manag Res 2020; 12:12473-12485. [PMID: 33299354 PMCID: PMC7721120 DOI: 10.2147/cmar.s278844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose In medulloblastoma (MB), group 3 (G3) patients with MYC amplification tend to exhibit worse prognosis, thus creating a need for novel effective therapies. As the driver and crucial dependency for MYC-amplified G3-MB, MYC has been proven to be a prospective therapeutic target. Here, we aimed to identify novel effective therapeutic strategies against MYC-amplified G3-MB via targeting MYC translation. Materials and Methods Major components of translation initiation complex eIF4F were subjected to MB tumor dataset analysis, and EIF4A1 was identified to be a potential therapeutic target of MYC-amplified G3-MB. Validation was performed through genetic or pharmacological approaches with multiple patient-derived tumor models of MYC-amplified G3-MB in vitro and in vivo. Underlying mechanisms were further explored by Western blot, quantitative real-time PCR and mass spectrometry (MS) analyses. Results MB tumor datasets analyses showed that EIF4A1 was significantly up-regulated in G3-MB patients relative to normal cerebella, positively correlated with MYC in G3-MB at transcriptional level and a crucial cancer dependency in MYC-amplified G3-MB cells. Targeting EIF4A1 with a CRISPR/Cas9 approach or small-molecule inhibitor silvestrol effectively attenuated growth in multiple preclinical models of MYC-amplified G3-MB via blocking proliferation and inducing apoptosis. Mechanistically, EIF4A1 inhibition effectively impeded MYC expression at translational level, and its potency was positively associated with MYC level. Whole-proteome MS analysis of silvestrol-treated cells further unveiled other biological functions and pathways influenced by EIF4A1 inhibition. Conclusion Our investigation shows that interrupting MYC translation by EIF4A1 inhibition could be a potential effective therapeutic approach when treating patients with MYC-amplified G3-MB.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tiantian Li
- Key Laboratory of Cell Differentiation and Apoptosis of the National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shuaiwei Tian
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Meng
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Sui
- Key Laboratory of Cell Differentiation and Apoptosis of the National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jian Yang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Baocheng Wang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhuangzhuang Liang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Heng Zhao
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yipeng Han
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yujie Tang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Cell Differentiation and Apoptosis of the National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of the National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Pin G, Huanting L, Chengzhan Z, Xinjuan K, Yugong F, Wei L, Shifang L, Zhaojian L, Kun H, Weicheng Y, Yingying L, Yongming Q, Yanan Y. Down-Regulation of PDCD4 Promotes Proliferation, Angiogenesis and Tumorigenesis in Glioma Cells. Front Cell Dev Biol 2020; 8:593685. [PMID: 33304903 PMCID: PMC7693433 DOI: 10.3389/fcell.2020.593685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
The programmed cell death 4 (PDCD4) tumor-suppressor gene regulates cell apoptosis, protein translation, signal transduction, and induction of mediators of inflammation. However, the mechanism by which PDCD4 is down-regulated and regulates tumor growth remains elusive. In this study, we showed that PDCD4 is down-regulated in glioma cells and acts as a tumor suppressor. Based on the TCGA data, we confirmed that AKT2, but not AKT1 or AKT3, interacts with PDCD4, thus leading to the suppression of PDCD4 in glioma cells. Moreover, the analysis suggested that PDCD4 regulates the expression of IL-5, CCL-5, VEGF, and CXCL10 via the NF-kB pathway. Additionally, depletion of levels of PDCD4 promoted angiogenic activity of glioma cells via the VEGF-STAT3 pathway. When tumor cells over-expressing PDCD4 were injected into nude mice, the increased expression of PDCD4 blocked tumorigenesis and prolonged overall survival. Our study indicates the need to develop drugs that can modulate the expression of PDCD4 and test their efficacy in clinical trials.
Collapse
Affiliation(s)
- Guo Pin
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Cerebral Vascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Huanting
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhu Chengzhan
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kong Xinjuan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feng Yugong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu Wei
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Shifang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Zhaojian
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Kun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yao Weicheng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Yingying
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiu Yongming
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yanan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Zeng H, Luo M, Chen L, Ma X, Ma X. Machine learning analysis of DNA methylation in a hypoxia-immune model of oral squamous cell carcinoma. Int Immunopharmacol 2020; 89:107098. [PMID: 33091815 DOI: 10.1016/j.intimp.2020.107098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hypoxia status and immunity are related with the development and prognosis of oral squamous cell carcinoma (OSCC). Here, we constructed a hypoxia-immune model to explore its upstream mechanism and identify potential CpG sites. METHODS The hypoxia-immune model was developed and validated by the iCluster algorithm. The LASSO, SVM-RFE and GA-ANN were performed to screen CpG sites correlated to the hypoxia-immune microenvironment. RESULTS We found seven hypoxia-immune related CpG sites. Lasso had the best classification performance among three machine learning algorithms. CONCLUSION We explored the clinical significance of the hypoxia-immune model and found seven hypoxia-immune related CpG sites by multiple machine learning algorithms. This model and candidate CpG sites may have clinical applications to predict the hypoxia-immune microenvironment.
Collapse
Affiliation(s)
- Hao Zeng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Meng Luo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Linyan Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xinyu Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
11
|
Zachariadis V, Cheng H, Andrews N, Enge M. A Highly Scalable Method for Joint Whole-Genome Sequencing and Gene-Expression Profiling of Single Cells. Mol Cell 2020; 80:541-553.e5. [PMID: 33068522 DOI: 10.1016/j.molcel.2020.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/17/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
To address how genetic variation alters gene expression in complex cell mixtures, we developed direct nuclear tagmentation and RNA sequencing (DNTR-seq), which enables whole-genome and mRNA sequencing jointly in single cells. DNTR-seq readily identified minor subclones within leukemia patients. In a large-scale DNA damage screen, DNTR-seq was used to detect regions under purifying selection and identified genes where mRNA abundance was resistant to copy-number alteration, suggesting strong genetic compensation. mRNA sequencing (mRNA-seq) quality equals RNA-only methods, and the low positional bias of genomic libraries allowed detection of sub-megabase aberrations at ultra-low coverage. Each cell library is individually addressable and can be re-sequenced at increased depth, allowing multi-tiered study designs. Additionally, the direct tagmentation protocol enables coverage-independent estimation of ploidy, which can be used to identify cell singlets. Thus, DNTR-seq directly links each cell's state to its corresponding genome at scale, enabling routine analysis of heterogeneous tumors and other complex tissues.
Collapse
Affiliation(s)
- Vasilios Zachariadis
- Department of Oncology-Pathology Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Huaitao Cheng
- Department of Oncology-Pathology Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Nathanael Andrews
- Department of Oncology-Pathology Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Martin Enge
- Department of Oncology-Pathology Karolinska Institutet, 171 64 Stockholm, Sweden.
| |
Collapse
|
12
|
Niu M, Yi M, Dong B, Luo S, Wu K. Upregulation of STAT1-CCL5 axis is a biomarker of colon cancer and promotes the proliferation of colon cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:951. [PMID: 32953751 PMCID: PMC7475405 DOI: 10.21037/atm-20-4428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Colorectal cancer (CRC) is the third most commonly diagnosed cancer in men and women globally. Investigating genetic ground differences between normal and CRC tissues would be significant for identifying some key oncogenic pathways and developing anti-cancer agents. Methods Weighted gene co-expression network analysis (WGCNA) method was used to screen out core pathways related to the clinical traits of CRC patients. Then, multiple databases were utilized to further verify the hub genes obtained from data mining. Finally, to explore the role of hub genes in CRC, cell counting and EdU assays were performed. Results The results of the WGCNA analysis showed that a module (turquoise module) was highly related with CRC differentiation grade (R =0.53, P<0.0001). Enrichment analysis indicated that genes of the turquoise module were remarkably enriched in multiple inflammatory processes and pathways. Among all hub genes of the turquoise module, the mRNA levels of STAT1 and CCL5 were significantly higher in CRC than in normal colon tissues. STAT1 expression was highly positively correlated with the level of CCL5. The results of the cell counting, EdU, CCK-8, and CFSE staining assays showed that interfering with STAT1 and CCL5 could inhibit the proliferation of CRC cells. Conclusions Our study indicated that the STAT1-CCL5 axis is an important modulator in the development of CRC through promoting cell proliferation. Moreover, the levels of STAT1 and CCL5 might be valuable biomarkers for CRC screening.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Dong
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12051298. [PMID: 32455578 PMCID: PMC7281195 DOI: 10.3390/cancers12051298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Sarah Denk
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-20138714
| |
Collapse
|
14
|
Isoalantolactone Inhibits Esophageal Squamous Cell Carcinoma Growth Through Downregulation of MicroRNA-21 and Derepression of PDCD4. Dig Dis Sci 2018; 63:2285-2293. [PMID: 29781054 DOI: 10.1007/s10620-018-5119-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND This study was designed to explore the anticancer potential of isoalantolactone, a sesquiterpene lactone, on esophageal squamous cell carcinoma (ESCC) cells and associated molecular mechanisms. METHODS ESCC cell lines were treated with isoalantolactone or vehicle and tested for viability, proliferation, cell cycle distribution, and apoptosis. Xenograft tumor studies in nude mice were done to examine the in vivo anticancer effect of isoalantolactone. RESULTS Isoalantolactone treatment reduced ESCC cell viability and proliferation in vitro, which was coupled with induction of G0/G1 cell cycle arrest and apoptosis. In vivo studies confirmed the growth-suppressive effect of isoalantolactone on ESCC cells. Mechanistically, isoalantolactone reversed microRNA-21-mediated repression of programmed cell death 4 (PDCD4). Overexpression of microRNA-21 and knockdown of PDCD4 blocked the growth suppression and apoptosis induction by isoalantolactone in ESCC cells. CONCLUSIONS Isoalantolactone shows growth-suppressive activity against ESCC cells, which is ascribed to upregulation of PDCD4 via downregulation of microRNA-21.
Collapse
|
15
|
Chouha N, Hammoud H, Brogi S, Campiani G, Welsch C, Robert C, Vagner S, Cresteil T, Bentouhami E, Désaubry L. Discovery of Iminobenzimidazole Derivatives as Novel Cytotoxic Agents. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2018. [DOI: 10.2174/1874104501812010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In our quest to identify inhibitors of the eukaryotic translation initiation factor 4F (eIF4F), we serendipitously discovered a novel cytotoxic agent. Even though this compound did not inhibit translation, we explored the structural requirements for its cytotoxicity due to its structural originality. A series of 1,3-disubstituted iminobenzimidazoles was synthesized and evaluated for their in vitro cytotoxicity. The structure-activity relationship studies demonstrate that hydrophobic substituent is essential for activity. The most active compounds displayed a cytotoxicity in KB, HL60 and HCT116 human cancer cells with an IC50 of about 1μM. These first-in-class series of low molecular weight synthetic molecules may provide the basis for the development of new anticancer drugs.
Collapse
|
16
|
Mediator Kinase Phosphorylation of STAT1 S727 Promotes Growth of Neoplasms With JAK-STAT Activation. EBioMedicine 2017; 26:112-125. [PMID: 29239838 PMCID: PMC5832629 DOI: 10.1016/j.ebiom.2017.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Constitutive JAK-STAT signaling drives the proliferation of most myeloproliferative neoplasms (MPN) and a subset of acute myeloid leukemia (AML), but persistence emerges with chronic exposure to JAK inhibitors. MPN and post-MPN AML are dependent on tyrosine phosphorylation of STATs, but the role of serine STAT1 phosphorylation remains unclear. We previously demonstrated that Mediator kinase inhibitor cortistatin A (CA) reduced proliferation of JAK2-mutant AML in vitro and in vivo and also suppressed CDK8-dependent phosphorylation of STAT1 at serine 727. Here we report that phosphorylation of STAT1 S727 promotes the proliferation of AML cells with JAK-STAT pathway activation. Inhibition of serine phosphorylation by CA promotes growth arrest and differentiation, inhibits colony formation in MPN patient samples and reduces allele burden in MPN mouse models. These results reveal that STAT1 pS727 regulates growth and differentiation in JAK-STAT activated neoplasms and suggest that Mediator kinase inhibition represents a therapeutic strategy to regulate JAK-STAT signaling. CDK8/19 inhibitor cortistatin A synergizes with FDA-approved JAK1/2 ruxolitinib and inhibits ruxolitinib-persistent cells. CDK8/19 phosphorylation of STAT1 S727 promotes growth and suppresses differentiation. Cortistatin A upregulates expression of STAT1 pS727- and SE-associated genes.
Previously, it was known that cancer cells with activated JAK-STAT signaling are driven by oncogenic actions of JAK2 and tyrosine-phosphorylated STAT3 and STAT5. The FDA-approved JAK inhibitor ruxolitinib targets these dependencies, but significant challenges remain in the clinic, especially for leukemia patients. We show here that JAK2-mutant leukemia cells that become resistant to ruxolitinib are sensitive to CDK8/19 inhibitor CA and that CA synergizes with ruxolitinib, indicating that CDK8/19 inhibitors may be an effective therapeutic strategy for these cancers. Further, our studies provide insights into the mechanistic role of STAT1 serine phosphorylation by CDK8/19 in JAK2-activated leukemia.
Collapse
|