1
|
Guler A, Yilmaz A, Oncer N, Sever NI, Cengiz Sahin S, Kavakcıoglu Yardimci B, Yilmaz M. Machine learning-assisted SERS approach enables the biochemical discrimination in Bcl-2 and Mcl-1 expressing yeast cells treated with ketoconazole and fluconazole antifungals. Talanta 2024; 276:126248. [PMID: 38776770 DOI: 10.1016/j.talanta.2024.126248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Antifungal medications are important due to their potential application in cancer treatment either on their own or with traditional treatments. The mechanisms that prevent the effects of these medications and restrict their usage in cancer treatment are not completely understood. The evaluation and discrimination of the possible protective effects of the anti-apoptotic members of the Bcl-2 family of proteins, critical regulators of mitochondrial apoptosis, against antifungal drug-induced cell death has still scientific uncertainties that must be considered. Novel, simple, and reliable strategies are highly demanded to identify the biochemical signature of this phenomenon. However, the complex nature of cells poses challenges for the analysis of cellular biochemical changes or classification. In this study, for the first time, we investigated the probable protective activities of Bcl-2 and Mcl-1 proteins against cell damage induced by ketoconazole (KET) and fluconazole (FLU) antifungal drugs in a yeast model through surface-enhanced Raman spectroscopy (SERS) approach. The proposed SERS platform created robust Raman spectra with a high signal-to-noise ratio. The analysis of SERS spectral data via advanced unsupervised and supervised machine learning methods enabled unquestionable differentiation (100 %) in samples and biomolecular identification. Various SERS bands related to lipids and proteins observed in the analyses suggest that the expression of these anti-apoptotic proteins reduces oxidative biomolecule damage induced by the antifungals. Also, cell viability assay, Annexin V-FITC/PI double staining, and total oxidant and antioxidant status analyses were performed to support Raman measurements. We strongly believe that the proposed approach paves the way for the evaluation of various biochemical structures/changes in various cells.
Collapse
Affiliation(s)
- Ayşenur Guler
- Chemistry Department, Graduate School of Natural and Applied Sciences, Pamukkale University, Denizli, Turkey
| | - Asli Yilmaz
- Department of Molecular Biology & Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Nazli Oncer
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum, Turkey
| | - Nurettin Ilter Sever
- Department of Molecular Biology & Genetics, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - Sevilay Cengiz Sahin
- Department of Molecular Biology & Genetics, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - Berna Kavakcıoglu Yardimci
- Department of Chemistry, Faculty of Science, Pamukkale University, Denizli, Turkey; Advanced Technology Application and Research Center, Pamukkale University, Denizli, Turkey.
| | - Mehmet Yilmaz
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum, Turkey; Department of Chemical Engineering, Faculty of Engineering, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
2
|
Samaddar S, Buckles D, Saha S, Zhang Q, Bansal A. Translating Molecular Biology Discoveries to Develop Targeted Cancer Interception in Barrett's Esophagus. Int J Mol Sci 2023; 24:11318. [PMID: 37511077 PMCID: PMC10379200 DOI: 10.3390/ijms241411318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a rapidly increasing lethal tumor. It commonly arises from a metaplastic segment known as Barrett's esophagus (BE), which delineates the at-risk population. Ample research has elucidated the pathogenesis of BE and its progression from metaplasia to invasive carcinoma; and multiple molecular pathways have been implicated in this process, presenting several points of cancer interception. Here, we explore the mechanisms of action of various agents, including proton pump inhibitors, non-steroidal anti-inflammatory drugs, metformin, and statins, and explain their roles in cancer interception. Data from the recent AspECT trial are discussed to determine how viable a multipronged approach to cancer chemoprevention would be. Further, novel concepts, such as the repurposing of chemotherapeutic drugs like dasatinib and the prevention of post-ablation BE recurrence using itraconazole, are discussed.
Collapse
Affiliation(s)
- Sohini Samaddar
- Department of Internal Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Daniel Buckles
- Department of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Souvik Saha
- Department of Internal Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Qiuyang Zhang
- Center for Esophageal Diseases, Department of Medicine, Baylor University Medical Center, Dallas, TX 75246, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX 75246, USA
| | - Ajay Bansal
- Department of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Peng SQ, Zhu XR, Zhao MZ, Zhang YF, Wang AR, Chen MB, Ye ZY. Identification of matrix-remodeling associated 5 as a possible molecular oncotarget of pancreatic cancer. Cell Death Dis 2023; 14:157. [PMID: 36828810 PMCID: PMC9958022 DOI: 10.1038/s41419-023-05684-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
Pancreatic cancer has an extremely poor prognosis. Here we examined expression, potential functions and underlying mechanisms of MXRA5 (matrix remodeling associated 5) in pancreatic cancer. Bioinformatics studies revealed that MXRA5 transcripts are significantly elevated in pancreatic cancer tissues, correlating with the poor overall survival, high T-stage, N1 and pathologic stage of the patients. MXRA5 mRNA and protein expression is significantly elevated in microarray pancreatic cancer tissues and different pancreatic cancer cells. In primary and immortalized (BxPC-3 and PANC-1 lines) pancreatic cancer cells, shRNA-induced MXRA5 silencing or CRISPR/Cas9-mediated MXRA5 knockout suppressed cell survival, proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), while provoking cell apoptosis. Conversely, forced overexpression of MXRA5 further promoted pancreatic cancer cell progression and EMT. Bioinformatics studies and the protein chip analyses revealed that differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in MXRA5-overexpressed primary pancreatic cancer cells were enriched in the PI3K-Akt-mTOR cascade. Indeed, Akt-mTOR activation in primary human pancreatic cancer cells was inhibited by MXRA5 shRNA or knockout, but was augmented following MXRA5 overexpression. In vivo, the growth of MXRA5 KO PANC-1 xenografts was largely inhibited in nude mice. Moreover, intratumoral injection of adeno-associated virus-packed MXRA5 shRNA potently inhibited primary pancreatic cancer cell growth in nude mice. Akt-mTOR activation was also largely inhibited in the MXRA5-depleted pancreatic cancer xenografts. Contrarily MXRA5 overexpression promoted primary pancreatic cancer cell growth in nude mice. Together, overexpressed MXRA5 is important for pancreatic cancer cell growth possibly through promoting EMT and Akt-mTOR activation. MXRA5 could be a potential therapeutic oncotarget for pancreatic cancer.
Collapse
Affiliation(s)
- Shi-Qing Peng
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ming-Zhi Zhao
- Clinical Research Center of Neurological Disease and Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Fan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - An-Ran Wang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Zhen-Yu Ye
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Li SP, Ou L, Zhang Y, Shen FR, Chen YG. A first-in-class POLRMT specific inhibitor IMT1 suppresses endometrial carcinoma cell growth. Cell Death Dis 2023; 14:152. [PMID: 36823110 PMCID: PMC9950144 DOI: 10.1038/s41419-023-05682-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Exploring novel molecularly-targeted therapies for endometrial carcinoma is important. The current study explored the potential anti-endometrial carcinoma activity by a first-in-class POLRMT (RNA polymerase mitochondrial) inhibitor IMT1. In patient-derived primary human endometrial carcinoma cells and established lines, treatment with IMT1 potently inhibited cell viability, proliferation, cell-cycle progression and motility, while inducing robust caspase-apoptosis activation. Treatment with the PLORMT inhibitor impaired mitochondrial functions, leading to mtDNA (mitochondrial DNA) transcription inhibition, mitochondrial membrane potential decline, reactive oxygen species formation, oxidative stress and ATP loss in the endometrial carcinoma cells. Similarly, POLRMT depletion, through shRNA-induced silencing or CRISPR/Cas9-caused knockout (KO), inhibited primary endometrial carcinoma cell proliferation and motility, and induced mitochondrial dysfunction and apoptosis. Importantly, IMT1 failed to induce further cytotoxicity in POLRMT-KO endometrial carcinoma cells. Contrarily, ectopic overexpression of POLRMT further augmented proliferation and motility of primary endometrial carcinoma cells. In vivo, oral administration of a single dose of IMT1 substantially inhibited endometrial carcinoma xenograft growth in the nude mice. mtDNA transcription inhibition, oxidative stress, ATP loss and apoptosis were detected in IMT1-treated endometrial carcinoma xenograft tissues. Together, targeting PLORMT by IMT1 inhibited endometrial carcinoma cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Shu-ping Li
- grid.429222.d0000 0004 1798 0228Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China ,grid.89957.3a0000 0000 9255 8984Obstetrics Department, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Li Ou
- grid.452666.50000 0004 1762 8363Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Fang-rong Shen
- grid.429222.d0000 0004 1798 0228Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - You-guo Chen
- grid.429222.d0000 0004 1798 0228Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Chen M, Li Z, Gu C, Zheng H, Chen Y, Cheng L. Identification of G protein subunit alpha i2 as a promising therapeutic target of hepatocellular carcinoma. Cell Death Dis 2023; 14:143. [PMID: 36805440 PMCID: PMC9941495 DOI: 10.1038/s41419-023-05675-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is a global health problem. Its incidence and mortality are increasing. Exploring novel therapeutic targets against HCC is important and urgent. We here explored the expression and potential function of Gαi2 (G protein subunit alpha i2) in HCC. The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) database shows that the number of Gαi2 transcripts in HCC tissues is significantly higher than that in the normal liver tissues. Moreover, Gαi2 overexpression in HCC correlates with poor prognosis of the patients. Gαi2 mRNA and protein expression are also elevated in local HCC tissues and different human HCC cells. In patient-derived primary HCC cells and immortalized HepG2 cells, Gαi2 silencing (by targeted shRNA) or knockout (KO, by the dCas9-sgRNA method) largely suppressed cell proliferation and motility, while inducing cell cycle arrest and caspase-apoptosis activation. Moreover, Gαi2 silencing or KO-induced reactive oxygen species (ROS) production and oxidative injury in primary and HepG2 HCC cells. Whereas different antioxidants ameliorated Gαi2-shRNA-induced anti-HCC cell activity. Using a lentiviral construct, Gαi2 overexpression further augmented proliferation and motility of primary and immortalized HCC cells. Further studies revealed that the binding between the transcription factor early growth response zinc finger transcription factor 1 (EGR1) and Gαi2 DNA promoter was significantly increased in HCC tissues and cells. In vivo, intratumoral injection of Gαi2 shRNA adeno-associated virus significantly hindered HCC xenograft growth in nude mice. Moreover, the growth of Gαi2-KO HCC xenografts in the nude mice was remarkably slow. Gαi2 depletion, oxidative injury, and apoptosis induction were detected in Gαi2-silenced or Gαi2-KO HCC xenografts. Together, overexpressed Gαi2 is required for HCC cell growth in vitro and in vivo, representing as a novel and promising diagnosis marker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Zhifei Li
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
| | - Chengtao Gu
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
| | - Hao Zheng
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
| | - Yan Chen
- General Surgery Department, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Long Cheng
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Zhou LN, Peng SQ, Chen XL, Zhu XR, Jin AQ, Liu YY, Zhu LX, Zhu YQ. Triptonide Inhibits the Cervical Cancer Cell Growth via Downregulating the RTKs and Inactivating the Akt-mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8550817. [PMID: 39282148 PMCID: PMC11401660 DOI: 10.1155/2022/8550817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/22/2022] [Indexed: 09/18/2024]
Abstract
The high incidence and mortality of cervical cancer (CC) require an urgent need for exploring novel valuable therapeutics. Triptonide (TN) is a small molecule monomer extracted from the Chinese herb Tripterygium wilfordii Hook. Our results showed that TN, at only nanomolar concentrations, strongly inhibited growth, colony formation, proliferation, migration, and invasion of established and primary human cervical cancer cells. TN induced apoptosis and cell cycle arrest in cervical cancer cells. Moreover, cervical cancer cell in vitro migration and invasion were suppressed by TN. It was however noncytotoxic and proapoptotic to normal cervical epithelial cells and human skin fibroblast cells. Gene set enrichment analysis (GSEA) of RNA sequencing data of differentially expressed genes (DEGs) in TN-treated cervical cancer cells implied that DEGs were enriched in the receptor tyrosine kinase (RTK) signaling and PI3K-Akt-mTOR cascade. In cervical cancer cells, RTKs, including EGFR and PDGFRα, were significantly downregulated and Akt-mTOR activation was largely inhibited after TN treatment. In vivo, oral administration of TN significantly inhibited subcutaneous cervical cancer xenograft growth in nude mice. EGFR and PDGFRα downregulation as well as Akt-mTOR inactivation was detected in TN-treated HeLa xenograft tumor tissues. Thus, TN inhibits human cervical cancer cell growth in vitro and in vivo. Its anticervical cancer activity was associated with RTK downregulation and Akt-mTOR inactivation.
Collapse
Affiliation(s)
- Li-Na Zhou
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiation Oncology, Soochow University, 215004 Suzhou, China
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Shi-Qing Peng
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Xue-Lian Chen
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - An-Qi Jin
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Yuan-Yuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Li-Xia Zhu
- Department of Gynaecology and Obstetrics, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Ya-Qun Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiation Oncology, Soochow University, 215004 Suzhou, China
| |
Collapse
|
7
|
Li CL, Fang ZX, Wu Z, Hou YY, Wu HT, Liu J. Repurposed itraconazole for use in the treatment of malignancies as a promising therapeutic strategy. Biomed Pharmacother 2022; 154:113616. [PMID: 36055112 DOI: 10.1016/j.biopha.2022.113616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 02/05/2023] Open
Abstract
Understanding cancer biology and the development of novel agents for cancer treatment has always been the goal of cancer researchers. However, the research and development of new drugs is hindered by its long development time, exorbitant cost, high regulatory hurdles, and staggering failure rates. Given the challenges involved drug development for cancer therapies, alternative strategies, in particular the repurposing of 'old' drugs that have been approved for other indications, are attractive. Itraconazole is an FDA-approved anti-fungal drug of the triazole class, and has been used clinically for more than 30 years. Recent drug repurposing screens revealed itraconazole exerts anti-cancer activity via inhibiting angiogenesis and multiple oncogenic signaling pathways. To explore the potential utilization of itraconazole in different types of malignancies, we retrieved the published literature relating to itraconazole in cancer and reviewed the mechanisms of itraconazole in preclinical and clinical cancer studies. Current research predicts the hedgehog signaling pathway as the main target by which itraconazole inhibits a variety of solid and hematological cancers. As clinical trial results become available, itraconazole could emerge as a new antitumor drug that can be used in combination with first-line antitumor drugs.
Collapse
Affiliation(s)
- Chun-Lan Li
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
8
|
Diversifying the skin cancer-fighting worthwhile frontiers: How relevant are the itraconazole/ascorbyl palmitate nanovectors? NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102561. [PMID: 35417773 DOI: 10.1016/j.nano.2022.102561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022]
Abstract
Fighting malignant neoplasms via repurposing existing drugs could be a welcome move for prosperous cancer remediations. In the current work, nanovehiculation and optimization of the repositioned itraconazole (ITZ) utilizing ascorbyl palmitate (AP) aspasomes would be an auspicious approach. Further, the optimized aspasomes were incorporated in a cream and tracked for skin deposition. The in vivo efficacy of aspasomal cream on mice subcutaneous Ehrlich carcinoma model was also assessed. The optimized aspasomes revealed nano size (67.83 ± 6.16 nm), negative charge (-79.40 ± 2.23 mV), > 95% ITZ entrapment and high colloidal stability. AP yielded substantial antioxidant capacity and pushed the ITZ cytotoxicity forward against A431 cells (IC50 = 5.3±0.27 μg/mL). An appealing privilege was the aspasomal cream that corroborated spreadability, contemplated skin permeation and potentiated in vivo anticancer competence, reflected in 62.68% reduction in the tumor weight. Such synergistic tumor probes set the foundation for futuristic clinical translation and commercialization.
Collapse
|
9
|
Fan N, Sun Y, Yan L, Chen W, Wang Y, Wang S, Song Y. Itraconazole-Induced the Activation of Adenosine 5'-Monophosphate (Amp)-Activated Protein Kinase Inhibits Tumor Growth of Melanoma via Inhibiting ERK Signaling. Cell Biochem Biophys 2022; 80:331-340. [PMID: 35094205 DOI: 10.1007/s12013-021-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
Itraconazole, an effective broad-spectrum antifungal drug, has been well established for its anticancer activity in cancers including melanoma. However, details concerning its underlying mechanism in melanoma are unclear. This work investigated the function of itraconazole-induced 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα) in melanoma progression through ERK signaling. The AMPKα level in melanoma tissues and cells was assessed by RT-qPCR and western blot. Survival analysis of patients with melanoma based on the AMPKα expression level was performed according to TCGA database. Melanoma cell proliferation, migration, and invasion were examined using CCK-8, colony formation, wound healing, and Transwell assays. A xenograft tumor model was established to examine the effect of itraconazole on tumor growth in vivo. The AMPKα mRNA and protein levels were reduced in melanoma tissues and cells. A low expression of AMPKα indicated a poor prognosis. Functionally, itraconazole restrained melanoma cell proliferation, migration, and invasion by upregulating AMPKα. Itraconazole activated AMPK signaling and inhibited ERK signaling in melanoma cells. Activation of ERK signaling reversed the effect of itraconazole on cellular process in melanoma. Moreover, itraconazole-induced AMPKα inhibited melanoma tumor growth in vivo by inhibiting ERK signaling. Itraconazole-induced AMPKα inhibits the progression of melanoma by inhibition of ERK signaling.
Collapse
Affiliation(s)
- Ni Fan
- Department of Dermatology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China
| | - Yueping Sun
- Department of Gynaecology and Obstetrics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China
| | - Lv Yan
- Center of Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China
| | - Weining Chen
- Department of Dermatology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China
| | - Yueping Wang
- Department of Dermatology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China
| | - Shusheng Wang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China.
| | - Yu Song
- Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China.
| |
Collapse
|
10
|
Xu C, Zhuo Y, Liu Y, Chen H. Itraconazole Inhibits the Growth of Cutaneous Squamous Cell Carcinoma by Targeting HMGCS1/ACSL4 Axis. Front Pharmacol 2022; 13:828983. [PMID: 35242038 PMCID: PMC8886144 DOI: 10.3389/fphar.2022.828983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Cutaneous squamous cell carcinoma (cSCC) is a common cutaneous cancer with increasing incidence. Itraconazole has been identified as a potential anticancer drug candidate. However, the role of itraconazole in cSCC was still unclear. Our objective is exploring the therapeutic potential of itraconazole in cSCC and investigate its molecular mechanism. Methods: The anti-proliferation effect of itraconazole was tested with CCK-8 assay and clone formation assay. Cell cycle distribution and apoptosis rate were detected using flow cytometry and TUNEL assay, respectively. Transcriptomic and proteomic analyses were used to explore the underlying anti-cancer mechanism. Luciferase reporter assay was used for promoter activity. Reactive oxygen species (ROS), lipid peroxidation and iron accumulation were examined. The in vivo efficacy of itraconazole was assessed in a xenograft model. Results: Itraconazole inhibited the cell proliferation, induced apoptosis and blocked cell cycle of cSCC cells. An integrated analysis of transcriptomic and proteomic analyses identified that 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) and acyl-CoA synthetase long-chain family member 4 (ACSL4) were significantly upregulated in A431 cells treated with itraconazole. HMGCS1 silencing reversed the antiproliferative activity of itraconazole in A431 cells. Dual-luciferase assay showed that itraconazole could promote HMGCS1 transcription. HMGCS1 silencing abated the expression of ACSL4 in A431 cells. The level of ROS, lipid peroxidation, as well as iron accumulation were increased by itraconazole. Moreover, treatment with itraconazole impeded tumor growth in A431-bearing mice. Conclusion: We proved itraconazole inhibits the growth of cSCC by regulating HMGCS1/ACSL4 axis.
Collapse
Affiliation(s)
- Congcong Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yating Zhuo
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
11
|
Zhang W, Bhagwath AS, Ramzan Z, Williams TA, Subramaniyan I, Edpuganti V, Kallem RR, Dunbar KB, Ding P, Gong K, Geurkink SA, Beg MS, Kim J, Zhang Q, Habib AA, Choi SH, Lapsiwala R, Bhagwath G, Dowell JE, Melton SD, Jie C, Putnam WC, Pham TH, Wang DH. Itraconazole Exerts Its Antitumor Effect in Esophageal Cancer By Suppressing the HER2/AKT Signaling Pathway. Mol Cancer Ther 2021; 20:1904-1915. [PMID: 34376577 PMCID: PMC8492513 DOI: 10.1158/1535-7163.mct-20-0638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/11/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
Itraconazole, an FDA-approved antifungal, has antitumor activity against a variety of cancers. We sought to determine the effects of itraconazole on esophageal cancer and elucidate its mechanism of action. Itraconazole inhibited cell proliferation and induced G1-phase cell-cycle arrest in esophageal squamous cell carcinoma and adenocarcinoma cell lines. Using an unbiased kinase array, we found that itraconazole downregulated protein kinase AKT phosphorylation in OE33 esophageal adenocarcinoma cells. Itraconazole also decreased phosphorylation of downstream ribosomal protein S6, transcriptional expression of the upstream receptor tyrosine kinase HER2, and phosphorylation of upstream PI3K in esophageal cancer cells. Lapatinib, a tyrosine kinase inhibitor that targets HER2, and siRNA-mediated knockdown of HER2 similarly suppressed cancer cell growth in vitro Itraconazole significantly inhibited growth of OE33-derived flank xenografts in mice with detectable levels of itraconazole and its primary metabolite, hydroxyitraconazole, in esophagi and tumors. HER2 total protein and phosphorylation of AKT and S6 proteins were decreased in xenografts from itraconazole-treated mice compared to xenografts from placebo-treated mice. In an early phase I clinical trial (NCT02749513) in patients with esophageal cancer, itraconazole decreased HER2 total protein expression and phosphorylation of AKT and S6 proteins in tumors. These data demonstrate that itraconazole has potent antitumor properties in esophageal cancer, partially through blockade of HER2/AKT signaling.
Collapse
Affiliation(s)
- Wei Zhang
- Esophageal Diseases Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ankur S Bhagwath
- Esophageal Diseases Center, University of Texas Southwestern Medical Center, Dallas, Texas
- VA North Texas Health Care System, Dallas, Texas
| | - Zeeshan Ramzan
- Esophageal Diseases Center, University of Texas Southwestern Medical Center, Dallas, Texas
- VA North Texas Health Care System, Dallas, Texas
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, TCU and University of North Texas Health Science Center School of Medicine and Texas Health Harris Methodist Hospital, Fort Worth, Texas
| | - Taylor A Williams
- Esophageal Diseases Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Indhumathy Subramaniyan
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, Texas
- Clinical Pharmacology and Experimental Therapeutics Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
| | - Vindhya Edpuganti
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, Texas
- Clinical Pharmacology and Experimental Therapeutics Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
| | - Raja Reddy Kallem
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, Texas
- Clinical Pharmacology and Experimental Therapeutics Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
| | - Kerry B Dunbar
- Esophageal Diseases Center, University of Texas Southwestern Medical Center, Dallas, Texas
- VA North Texas Health Care System, Dallas, Texas
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peiguo Ding
- Esophageal Diseases Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ke Gong
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Samuel A Geurkink
- Department of Internal Medicine, Methodist Dallas Medical Center, Dallas, Texas
| | - Muhammad S Beg
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Kim
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qiuyang Zhang
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center, Dallas, Texas
| | - Amyn A Habib
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- VA North Texas Health Care System, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sung-Hee Choi
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- VA North Texas Health Care System, Dallas, Texas
| | - Ritu Lapsiwala
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- VA North Texas Health Care System, Dallas, Texas
| | - Gayathri Bhagwath
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- VA North Texas Health Care System, Dallas, Texas
| | - Jonathan E Dowell
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- VA North Texas Health Care System, Dallas, Texas
| | - Shelby D Melton
- Esophageal Diseases Center, University of Texas Southwestern Medical Center, Dallas, Texas
- VA North Texas Health Care System, Dallas, Texas
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, Iowa
| | - William C Putnam
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, Texas
- Clinical Pharmacology and Experimental Therapeutics Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
- Department of Pharmaceutical Science, Texas Tech University Health Sciences Center, Dallas, Texas
| | - Thai H Pham
- Esophageal Diseases Center, University of Texas Southwestern Medical Center, Dallas, Texas
- VA North Texas Health Care System, Dallas, Texas
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David H Wang
- Esophageal Diseases Center, University of Texas Southwestern Medical Center, Dallas, Texas.
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- VA North Texas Health Care System, Dallas, Texas
| |
Collapse
|
12
|
Zhu YR, Zhang XY, Wu QP, Yu CJ, Liu YY, Zhang YQ. PF-06409577 Activates AMPK Signaling and Inhibits Osteosarcoma Cell Growth. Front Oncol 2021; 11:659181. [PMID: 34336655 PMCID: PMC8316637 DOI: 10.3389/fonc.2021.659181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is a common primary bone malignancy. We here investigated the potential activity of PF-06409577, a novel, potent, and direct activator of AMP-activated protein kinase (AMPK), against human OS cells. In established (U2OS, MG-63, and SaOs-2 lines) and primary human OS cells, PF-06409577 inhibited cell viability and proliferation, while inducing cell apoptosis and cell cycle arrest. PF-06409577 induced AMPK activation, mTORC1 inhibition, autophagy induction, and downregulation of multiple receptor tyrosine kinase inOS cells. AMPK inactivation by AMPKα1 shRNA, CRISPR/Cas9 knockout, or dominant negative mutation (T172A) was able to abolish PF-06409577-induced activity in OS cells. In vivo, PF-06409577 oral administration at well-tolerated doses potently inhibited growth of U2OS cells and primary human OS cells in severe combined immunodeficient mice. AMPK activation, mTORC1 inhibition, autophagy induction, as well as RTK degradation and apoptosis activation were detected in PF-06409577-treated xenografts. In conclusion, activation of AMPK by PF-06409577 inhibits OS cell growth.
Collapse
Affiliation(s)
- Yun-Rong Zhu
- Department of Orthopedics, Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin, China
| | - Xiang-Yang Zhang
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiu-Ping Wu
- Department of Orthopedics, Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin, China
| | - Cheng-Jian Yu
- Department of Emergency, 900 Hospital of The Joint Logistics Team, Dongfang Hospital, Xiamen University, Fuzong Clinical College of Fujian Medical University, Fuzhou, China
| | - Yuan-Yuan Liu
- Clinical Research & Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yun-Qing Zhang
- Department of Orthopedics, Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin, China
| |
Collapse
|
13
|
Yang Y, Bai L, Liao W, Feng M, Zhang M, Wu Q, Zhou K, Wen F, Lei W, Zhang N, Huang J, Li Q. The role of non-apoptotic cell death in the treatment and drug-resistance of digestive tumors. Exp Cell Res 2021; 405:112678. [PMID: 34171351 DOI: 10.1016/j.yexcr.2021.112678] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
Tumor cell apoptosis evasion is one of the main reasons for easy metastasis occurrence, chemotherapy resistance, and the low five-year survival rate of digestive system tumors. Current research has shown that non-apoptotic cell death plays an important role in tumors of the digestive system. Therefore, increasing the proportion of non-apoptotic tumor cells is one of the effective methods of improving therapeutic efficacies for digestive system tumors. Non-apoptotic cell death modes mainly include autophagic cell death, pyroptosis, ferroptosis, in addition to other cell death modes. This review covers a systematic review relating to the research progress made into autophagic cell death, pyroptosis, ferroptosis, and other cell death modes in the treatment of digestive system tumors. It also highlights how treatment is a reasonable prospect based on clinical experience and provides reliable guidance for the further development of digestive system tumor treatments.
Collapse
Affiliation(s)
- Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - LiangLiang Bai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Weiting Liao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Mingyang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Mengxi Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiuji Wu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Nan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Jiaxing Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Zhang Z, Ji J, Liu H. Drug Repurposing in Oncology: Current Evidence and Future Direction. Curr Med Chem 2021; 28:2175-2194. [PMID: 33109032 DOI: 10.2174/0929867327999200820124111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug repurposing, the application of known drugs and compounds with a primary non-oncology purpose, might be an attractive strategy to offer more effective treatment options to cancer patients at a low cost and reduced time. METHODS This review described a total of 10 kinds of non-oncological drugs from more than 100 mechanical studies as well as evidence from population-based studies. The future direction of repurposed drug screening is discussed by using patient-derived tumor organoids. RESULTS Many old drugs showed previously unknown effects or off-target effects and can be intelligently applied for cancer chemoprevention and therapy. The identification of repurposed drugs needs to combine evidence from mechanical studies and population-based studies. Due to the heterogeneity of cancer, patient-derived tumor organoids can be used to screen the non-oncological drugs in vitro. CONCLUSION These identified old drugs could be repurposed in oncology and might be added as adjuvants and finally benefit patients with cancers.
Collapse
Affiliation(s)
- Zhenzhan Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
AMPK activation by ASP4132 inhibits non-small cell lung cancer cell growth. Cell Death Dis 2021; 12:365. [PMID: 33824293 PMCID: PMC8024326 DOI: 10.1038/s41419-021-03655-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022]
Abstract
Activation of adenosine monophosphate-activated protein kinase (AMPK) is able to produce significant anti-non-small cell lung cancer (NSCLC) cell activity. ASP4132 is an orally active and highly effective AMPK activator. The current study tested its activity against NSCLC cells. In primary NSCLC cells and established cell lines (A549 and NCI-H1944) ASP4132 potently inhibited cell growth, proliferation and cell cycle progression as well as cell migration and invasion. Robust apoptosis activation was detected in ASP4132-treated NSCLC cells. Furthermore, ASP4132 treatment in NSCLC cells induced programmed necrosis, causing mitochondrial p53-cyclophilin D (CyPD)-adenine nucleotide translocase 1 (ANT1) association, mitochondrial depolarization and medium lactate dehydrogenase release. In NSCLC cells ASP4132 activated AMPK signaling, induced AMPKα1-ACC phosphorylation and increased AMPK activity. Furthermore, AMPK downstream events, including mTORC1 inhibition, receptor tyrosine kinases (PDGFRα and EGFR) degradation, Akt inhibition and autophagy induction, were detected in ASP4132-treated NSCLC cells. Importantly, AMPK inactivation by AMPKα1 shRNA, knockout (using CRISPR/Cas9 strategy) or dominant negative mutation (T172A) almost reversed ASP4132-induced anti-NSCLC cell activity. Conversely, a constitutively active AMPKα1 (T172D) mimicked and abolished ASP4132-induced actions in NSCLC cells. In vivo, oral administration of a single dose of ASP4132 largely inhibited NSCLC xenograft growth in SCID mice. AMPK activation, mTORC1 inhibition and EGFR-PDGFRα degradation as well as Akt inhibition and autophagy induction were detected in ASP4132-treated NSCLC xenograft tumor tissues. Together, activation of AMPK by ASP4132 potently inhibits NSCLC cell growth in vitro and in vivo.
Collapse
|
16
|
Gupta S, Kumar A, Tejavath KK. Unfolding antifungals: as a new foe to pancreatic ductal adenocarcinoma-a mini-review. Mol Biol Rep 2021; 48:2945-2956. [PMID: 33796989 DOI: 10.1007/s11033-021-06318-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/24/2021] [Indexed: 01/27/2023]
Abstract
Increased deaths caused due to pancreatic cancer (PC) is drawing much attention towards an immediate need for therapeutics that could possibly control this disease and increase the patients' survival rate. Despite the long list of well-established chemotherapeutic drugs in several cancers none have proved to be efficient against PC, and the increasing chemoresistance to the gold standard drug gemcitabine calls a need to search for solutions in other categories of drug. To the rescue, antifungals have shown themselves to be effective against PC and can increase gemcitabine sensitivity against PC. In this mini-review, we reported how antifungals have targeted PC and helped to reduce its lethality. Additionally, it is emphasized that how the antifungals show new mechanisms that could be triggered by using either monotherapy or combination therapy of these antifungals with chemotherapeutic drugs in PC. Moreover it shows an approach of using other drugs with possible same or other mechanism to know their effect on PC.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, 305817, Rajasthan, India
| | - Atul Kumar
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, 305817, Rajasthan, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
17
|
Xu Y, Wang Q, Li X, Chen Y, Xu G. Itraconazole attenuates the stemness of nasopharyngeal carcinoma cells via triggering ferroptosis. ENVIRONMENTAL TOXICOLOGY 2021; 36:257-266. [PMID: 32951314 DOI: 10.1002/tox.23031] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/15/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Radiotherapy is a common therapy method for nasopharyngeal carcinoma (NPC) treatment; however, radioresistance greatly limits the clinical efficiency and prognosis of NPC patients. Therefore, it is extremely urgent to reveal the underlying mechanism contributing to radioresistance and find possible diagnostic biomarkers. Here, we collected the spheroids formed by NPC cells, which had been confirmed to hold the stem cell-like traits, and found that these spheroids exhibited a certain degree of radioresistance. Additionally, NPC spheroids displayed a certain degree of ferroptosis resistance, as evident by the decrease of iron concentration in lysosomes and lipid peroxides oxygen, and increase of glutathione (GSH) level. Furthermore, we revealed that itraconazole triggered the ferroptosis of NPC spheroids, which is characterized as the increase of iron concentration and lipid peroxides oxygen, and decrease of GSH level, and decreased the cell viability of NPC spheroids. Notably, itraconazole partially reversed the radioresistance of NPC spheroids. Mechanistically, we found that itraconazole can sequester iron in lysosome and thus trigger ferroptosis; this is essential for itraconazole-mediated attenuation on NPC spheroid stemness. Therefore, this study provides evidences showing that itraconazole might be used for killing NPC stem cells and thus attenuate radioresistance.
Collapse
Affiliation(s)
- Ying Xu
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Wang
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaozhen Li
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingyan Chen
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Xu
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Nunes M, Henriques Abreu M, Bartosch C, Ricardo S. Recycling the Purpose of Old Drugs to Treat Ovarian Cancer. Int J Mol Sci 2020; 21:ijms21207768. [PMID: 33092251 PMCID: PMC7656306 DOI: 10.3390/ijms21207768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
The main challenge in ovarian cancer treatment is the management of recurrences. Facing this scenario, therapy selection is based on multiple factors to define the best treatment sequence. Target therapies, such as bevacizumab and polymerase (PARP) inhibitors, improved patient survival. However, despite their achievements, ovarian cancer survival remains poor; these therapeutic options are highly costly and can be associated with potential side effects. Recently, it has been shown that the combination of repurposed, conventional, chemotherapeutic drugs could be an alternative, presenting good patient outcomes with few side effects and low costs for healthcare institutions. The main aim of this review is to strengthen the importance of repurposed drugs as therapeutic alternatives, and to propose an in vitro model to assess the therapeutic value. Herein, we compiled the current knowledge on the most promising non-oncological drugs for ovarian cancer treatment, focusing on statins, metformin, bisphosphonates, ivermectin, itraconazole, and ritonavir. We discuss the primary drug use, anticancer mechanisms, and applicability in ovarian cancer. Finally, we propose the use of these therapies to perform drug efficacy tests in ovarian cancer ex vivo cultures. This personalized testing approach could be crucial to validate the existing evidences supporting the use of repurposed drugs for ovarian cancer treatment.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center—Portuguese Oncology Institute of Porto (CI-IPOP), 4200-162 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
- Correspondence: ; Tel.: +351-225-570-700
| |
Collapse
|
19
|
The therapeutic effect of the BRD4-degrading PROTAC A1874 in human colon cancer cells. Cell Death Dis 2020; 11:805. [PMID: 32978368 PMCID: PMC7519683 DOI: 10.1038/s41419-020-03015-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
A1874 is a novel BRD4-degrading proteolysis targeting chimera (PROTAC). In primary colon cancer cells and established HCT116 cells, A1874 potently inhibited cell viability, proliferation, cell cycle progression, as well as cell migration and invasion. The BRD4-degrading PROTAC was able to induce caspase and apoptosis activation in colon cancer cells. Furthermore, A1874-induced degradation of BRD4 protein and downregulated BRD-dependent genes (c-Myc, Bcl-2, and cyclin D1) in colon cancer cells. Significantly, A1874-induced anti-colon cancer cell activity was more potent than the known BRD4 inhibitors (JQ1, CPI203, and I-BET151). In BRD4-knockout colon cancer cells A1874 remained cytotoxic, indicating the existence of BRD4-independent mechanisms. In addition to BRD4 degradation, A1874 cytotoxicity in colon cancer cells was also associated with p53 protein stabilization and reactive oxygen species production. Importantly, the antioxidant N-acetyl-cysteine and the p53 inhibitor pifithrin-α attenuated A1874-induced cell death and apoptosis in colon cancer cells. In vivo, A1874 oral administration potently inhibited colon cancer xenograft growth in severe combined immuno-deficient mice. BRD4 degradation and p53 protein elevation, as well as apoptosis induction and oxidative stress were detected in A1874-treated colon cancer tissues. Together, A1874 inhibits colon cancer cell growth through both BRD4-dependent and -independent mechanisms.
Collapse
|
20
|
Itraconazole inhibits the Hedgehog signaling pathway thereby inducing autophagy-mediated apoptosis of colon cancer cells. Cell Death Dis 2020; 11:539. [PMID: 32681018 PMCID: PMC7367825 DOI: 10.1038/s41419-020-02742-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Itraconazole is as an antifungal medication used to treat systemic fungal infections. Recently, it has been reported to be effective in suppressing tumor growth by inhibiting the Hedgehog signaling pathway and angiogenesis. In the present study, we investigated whether itraconazole induces autophagy-mediated cell death of colon cancer cells through the Hedgehog signaling pathway. Cell apoptosis and cell cycle distribution of the colon cancer cell lines SW-480 and HCT-116 were detected by flow cytometry and terminal TUNEL assay. Autophagy and signal proteins were detected by western blotting and cell proliferation-associated antigen Ki-67 was measured using immunohistochemistry. The images of autophagy flux and formation of autophagosomes were observed by laser scanning confocal and/or transmission electron microscopy. Colon cancer cell xenograft mouse models were also established. Itraconazole treatment inhibited cell proliferation via G1 cell cycle arrest as well as autophagy-mediated apoptosis of SW-480 and HCT-116 colon cancer cells. In addition, the Hedgehog pathway was found to be involved in activation of itraconazole-mediated autophagy. After using the Hedgehog agonist recombinant human Sonic Hedgehog (rhshh), itraconazole could counteract the activation of rhshh. Moreover, treatment with itraconazole produced significant cancer inhibition in HCT-116-bearing mice. Thus, itraconazole may be a potential and effective therapy for the treatment of colon cancer.
Collapse
|
21
|
Sun J, Liu J, Zhu Q, Xu F, Kang L, Shi X. Hsa_circ_0001806 Acts as a ceRNA to Facilitate the Stemness of Colorectal Cancer Cells by Increasing COL1A1. Onco Targets Ther 2020; 13:6315-6327. [PMID: 32636650 PMCID: PMC7335295 DOI: 10.2147/ott.s255485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background The aberrant expression of circular RNAs (circRNAs) has been identified as a novel trait of cancers. However, the role of circRNAs in colorectal cancer (CRC) remains to be elucidated. Methods Informatic analysis was performed to identify circRNAs in CRC tissues and adjacent tissues. Gain- and loss-of-function experiments were constructed to analyze hsa_circ_001806 roles in CRC cell stemness by sphere-formation, ALDH activity, stemness marker expression and tumor-initiating ability assays. CCK8 cell viability was carried out to evaluate hsa_circ_0001806 roles in CRC cell viability. Luciferase reporter and pull-down assays were used to reveal the underlying mechanisms. Results Hsa_circ_0001806 was significantly upregulated in CRC tissues and correlated with TNM stage, depth of invasion, lymphatic metastasis and distant metastasis. Hsa_circ_0001806 promoted the stemness of CRC cells, as evident by increasing sphere-formation ability, ALDH1 activity and stemness marker expression while had no effect on cell viability. Mechanistically, the same miR-193-5p-binding sites are shared between hsa_circ_0001806 and COL1A1. Hsa_circ_0001806 upregulates COL1A1 expression in a miR-193-5p-dependent manner, which is essential for hsa_circ_0001806-mediated regulation on CRC cell stemness. Conclusion CircRNA hsa_circ_0001806 may act as a promising therapeutic target by facilitating the stemness of CRC cells via activating the hsa_circ_0001806/miR-193a-5p/COL1A1 axis.
Collapse
Affiliation(s)
- Jie Sun
- Department of Gastroenterology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, People's Republic of China
| | - Jie Liu
- Department of Gastroenterology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, People's Republic of China
| | - Qilin Zhu
- Department of Gastroenterology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, People's Republic of China
| | - Feng Xu
- Department of Gastroenterology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, People's Republic of China
| | - Liumin Kang
- Department of Gastroenterology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, People's Republic of China
| | - Xiaohua Shi
- Department of Gastroenterology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, People's Republic of China
| |
Collapse
|
22
|
KAVAKCIOĞLU YARDIMCI B. Imidazole Antifungals: A Review of Their Action Mechanisms on Cancerous Cells. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2020. [DOI: 10.21448/ijsm.714310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
I-BET726 suppresses human skin squamous cell carcinoma cell growth in vitro and in vivo. Cell Death Dis 2020; 11:318. [PMID: 32371868 PMCID: PMC7200671 DOI: 10.1038/s41419-020-2515-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) is a potential therapeutic target of skin squamous cell carcinoma (SCC). I-BET726 is a novel BRD4 inhibitor. Its potential effect in skin SCC cells was tested in the present study. We show that I-BET726 potently inhibited survival, proliferation, cell cycle progression, and migration in established (A431/SCC-9/SCC-12/SCC-13 lines) and primary human skin SCC cells. I-BET726 induced significant apoptosis activation in skin SCC cells. It was more efficient in inhibiting skin SCC cells than known BRD4 inhibitors (JQ1, CPI203, and AZD5153). I-BET726 not only downregulated BRD4-regulated proteins (c-Myc, Bcl-2, and cyclin D1), but also inhibited sphingosine kinase 1 (SphK1) and Akt signalings in SCC cells. Restoring Akt activation, by a constitutively active S473D mutant Akt1 (“caAkt1”), partially inhibited I-BET726-induced cytotoxicity in A431 cells. In vivo, I-BET726 oral administration potently inhibited A431 xenograft growth in severe combined immunodeficient mice. Downregulation of BRD4-regulated proteins and inhibition of the SphK1-Akt signaling were detected in I-BET726-treated A431 xenograft tumor tissues. Together, I-BET726 inhibits skin SCC cell growth in vitro and in vivo.
Collapse
|
24
|
Chen C, Zhang W. Itraconazole Alters the Stem Cell Characteristics of A549 and NCI-H460 Human Lung Cancer Cells by Suppressing Wnt Signaling. Med Sci Monit 2019; 25:9509-9516. [PMID: 31833479 PMCID: PMC6929554 DOI: 10.12659/msm.919347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Cancer stem cells (CSCs) behave as their malignant counterparts, but persist after treatment, and possess properties that allow them to interact with their environment. Itraconazole, an antifungal agent, also has a role in suppressing tumor progression, but its effects in regulating tumor cell stemness remain unclear. This study aimed to evaluate the effects of itraconazole on A549 and NCI-H460 human lung cancer cell stemness in vitro. Material/Methods A549 and NCI-H460 human lung cancer cells and BEAS-2B normal bronchial epithelial cells were cultured with and without itraconazole. Cell viability was evaluated. The expression of stem cell markers, CD133, ATP binding cassette subfamily G member 2 (ABCG2), and aldehyde dehydrogenase 1 (ALDH1), were measured by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Sphere-forming cells were evaluated in vitro. Results Itraconazole reduced the expression of stemness molecules CD133, ABCG2, and ALDH1 in A549 and NCI-H460 human lung cancer cells, and the numbers of sphere-forming cells were reduced. However, itraconazole had little effect on cell viability but enhanced the chemosensitivity of A549 and NCI-H460 cells. Itraconazole inhibited Wnt signaling. Re-activation of Wnt signaling restored itraconazole-mediated inhibition on A549 and NCI-H460 cell stemness. Conclusions Itraconazole altered the stemness characteristics of A549 and NCI-H460 human lung cancer cells by suppressing Wnt signaling but did not affect cell viability.
Collapse
Affiliation(s)
- Chuanhui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
25
|
Zhang X, Li J, Li F, Zhao Z, Feng L. LINC00682 inhibits gastric cancer cell progression via targeting microRNA-9-LMX1A signaling axis. Aging (Albany NY) 2019; 11:11358-11368. [PMID: 31822638 PMCID: PMC6932933 DOI: 10.18632/aging.102533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/18/2019] [Indexed: 01/25/2023]
Abstract
microRNA-9 (“miR-9”), upregulated in human gastric cancer (GC) tissues, targets LMX1A (LIM homeobox transcription factor 1α) to promote GC cell progression. The underlying mechanism of miR-9 upregulation in GC is still unknown. Through searching multiple long non-coding RNA (LncRNA) databases, we here discovered that the long non-coding RNALINC00682 (long intergenic non-protein coding RNA 682) putatively targets miR-9. We show that ectopic overexpression of LINC00682 induced miR-9 downregulation but LMX1A upregulation, inhibiting AGS cell survival, proliferation, migration and invasion. Significant apoptosis activation was detected in LINC00682-overexpressed AGS cells. Contrarily, LINC00682 knockdown induced miR-9 upregulation but LMX1A downregulation, promoting AGS cell survival, proliferation, migration and invasion. In the primary human GC cells, forced LINC00682 overexpression similarly induced miR-9 downregulation and LMX1A upregulation, causing proliferation inhibition and apoptosis activation. Significantly, restoring miR-9 expression by a lentiviral construct reversed LINC00682-induced actions in GC cells. Furthermore, LINC00682 was ineffective in LMX1A KO AGS cells. Importantly, LINC00682 expression levels are significantly downregulated in human GC tissues. We conclude that LINC00682 inhibits GC cell progression via targeting miR-9-LMX1A signaling axis.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Jian Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhen Zhao
- Department of Clinical Laboratory, Minhang Hospital, Fudan University, Shanghai, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Lnc-THOR silencing inhibits human glioma cell survival by activating MAGEA6-AMPK signaling. Cell Death Dis 2019; 10:866. [PMID: 31727877 PMCID: PMC6856358 DOI: 10.1038/s41419-019-2093-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Long non-coding RNA THOR (Lnc-THOR) binds to IGF2BP1, essential for its function. We here show that Lnc-THOR is expressed in human glioma tissues and cells. Its expression is extremely low or even undetected in normal brain tissues, as well as in human neuronal cells and astrocytes. We show that Lnc-THOR directly binds to IGF2BP1 in established and primary human glioma cells. shRNA-mediated Lnc-THOR knockdown or CRISPR/Cas9-induced Lnc-THOR knockout potently inhibited cell survival and proliferation, while provoking glioma cell apoptosis. Contrarily, forced overexpression of Lnc-THOR promoted glioma cell growth and migration. Importantly, Lnc-THOR shRNA or knockout activated MAGEA6-AMPK signaling in glioma cells. AMPK inactivation, by AMPKα1 shRNA, knockout, or dominant-negative mutation (T172A), attenuated Lnc-THOR shRNA-induced A172 glioma cell apoptosis. Moreover, CRISPR/Cas9-induced IGF2BP1 knockout activated MAGEA6-AMPK signaling as well, causing A172 glioma cell apoptosis. Significantly, Lnc-THOR shRNA was ineffective in IGF2BP1 KO A172 cells. In vivo, Lnc-THOR silencing or knockout potently inhibited subcutaneous A172 xenograft tumor growth in mice. MAGEA6 downregulation and AMPK activation were detected in Lnc-THOR-silenced/-KO A172 tumor tissues. Taken together, Lnc-THOR depletion inhibits human glioma cell survival possibly by activating MAGEA6-AMPK signaling.
Collapse
|
27
|
Wang SS, Lv Y, Xu XC, Zuo Y, Song Y, Wu GP, Lu PH, Zhang ZQ, Chen MB. Triptonide inhibits human nasopharyngeal carcinoma cell growth via disrupting Lnc-RNA THOR-IGF2BP1 signaling. Cancer Lett 2019; 443:13-24. [DOI: 10.1016/j.canlet.2018.11.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 01/20/2023]
|
28
|
miR-1273g silences MAGEA3/6 to inhibit human colorectal cancer cell growth via activation of AMPK signaling. Cancer Lett 2018; 435:1-9. [DOI: 10.1016/j.canlet.2018.07.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/23/2022]
|
29
|
Sun J, Huang W, Yang SF, Zhang XP, Yu Q, Zhang ZQ, Yao J, Li KR, Jiang Q, Cao C. Gαi1 and Gαi3mediate VEGF-induced VEGFR2 endocytosis, signaling and angiogenesis. Theranostics 2018; 8:4695-4709. [PMID: 30279732 PMCID: PMC6160771 DOI: 10.7150/thno.26203] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
VEGF binding to VEGFR2 leads to VEGFR2 endocytosis and downstream signaling activation to promote angiogenesis. Methods: Using genetic strategies, we tested the requirement of α subunits of heterotrimeric G proteins (Gαi1/3) in the process. Results: Gαi1/3 are located in the VEGFR2 endocytosis complex (VEGFR2-Ephrin-B2-Dab2-PAR-3), where they are required for VEGFR2 endocytosis and downstream signaling transduction. Gαi1/3 knockdown, knockout or dominant negative mutation inhibited VEGF-induced VEGFR2 endocytosis, and downstream Akt-mTOR and Erk-MAPK activation. Functional studies show that Gαi1/3 shRNA inhibited VEGF-induced proliferation, invasion, migration and vessel-like tube formation of HUVECs. In vivo, Gαi1/3 shRNA lentivirus inhibited alkali burn-induced neovascularization in mouse cornea. Further, oxygen-induced retinopathy (OIR)-induced retinal neovascularization was inhibited by intravitreal injection of Gαi1/3 shRNA lentivirus. Moreover, in vivo angiogenesis by alkali burn and OIR was significantly attenuated in Gαi1/3 double knockout mice. Significantly, Gαi1/3 proteins are upregulated in proliferative retinal tissues of proliferative diabetic retinopathy (PDR) patients. Conclusion: These results provide mechanistic insights into the critical role played by Gαi1/3 proteins in VEGF-induced VEGFR2 endocytosis, signaling and angiogenesis.
Collapse
|