1
|
Li J, Wei X, Dong Z, Fu Y, Ma Y, HailongWu. Research progress on anti-tumor mechanism of TAOK kinases. Cell Signal 2024; 124:111385. [PMID: 39265727 DOI: 10.1016/j.cellsig.2024.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Thousand and one amino-acid protein kinases(TAOKs), as a key member of the mitogen-activated protein kinase (MAPK) cascade, has recently attracted widespread attention in the field of anti-cancer research. There are three members of this subfamily: TAOK1, TAOK2, and TAOK3. Studies have shown that members of the TAOK family participate in regulating cell proliferation, apoptosis, migration, and invasion through various pathways, thereby playing an important role in tumorigenesis and progression. This review summarizes the functions of TAOK kinases in tumor cell signal transduction, cell cycle regulation, and the tumor microenvironment, with a particular emphasis on its potential as a target for anti-cancer drugs. Future research will further elucidate the specific mechanisms of action of TAOK kinase in different types of tumors and explore its clinical application prospects.
Collapse
Affiliation(s)
- Jilei Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093 Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - Xindong Wei
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China; Shanghai University of Chinese Traditional Medicine, 201203 Shanghai, China
| | - Zhixin Dong
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China; Shanghai University of Chinese Traditional Medicine, 201203 Shanghai, China
| | - Yi Fu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - Yujie Ma
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - HailongWu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093 Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China.
| |
Collapse
|
2
|
Zheng R, Liu X, Zhang Y, Liu Y, Wang Y, Guo S, Jin X, Zhang J, Guan Y, Liu Y. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol 2024; 15:1383978. [PMID: 38756774 PMCID: PMC11096556 DOI: 10.3389/fimmu.2024.1383978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaobin Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yongxian Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yaping Wang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Shutong Guo
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaoyan Jin
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Jing Zhang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yuehong Guan
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yusi Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| |
Collapse
|
3
|
Alasiri G, Alrfaei B, Alaseem AM, AlKhamees OA, Aldali JA, Aljehani AM, Alfahed A, Aziz MA, Almuhaini G, Alshehri MM. The role of TAOK3 in cancer progression and development as a prognostic marker: A pan-cancer analysis study. Saudi Pharm J 2024; 32:101942. [PMID: 38318319 PMCID: PMC10840358 DOI: 10.1016/j.jsps.2023.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
The protein kinase TAOK3, belongs to the MAP kinase family, is one of three closely related members, namely TAOK1, TAOK2, and TAOK3. We performed a pan-cancer investigation of TAOK3 across different cancer types, including uterine carcinosarcoma, adenocarcinoma of the stomach and pancreas, and endometrial carcinoma of the uterus, to better understand TAOK3's role in cancer. In at least 16 types of cancer, our findings indicate that TAOK3 expression levels differ considerably between normal and tumor tissues. In addition, our study is the first to identify the oncogenic role of TAOK3 locus S331 and S471 in renal clear cell carcinoma, Glioblastoma Multiforme, hepatocellular carcinoma, Lung adenocarcinoma, and Pancreatic adenocarcinoma, indicating their involvement in cancer progression. In addition, our data analysis indicates that copy number variation is the most prevalent form of mutation in the TAOK3 gene, and that there is a negative correlation between TAOK3 mRNA and DNA promoter methylation. Moreover, our analysis suggests that TAOK3 may serve as a prognostic marker for several kinds of cancer, including Colon adenocarcinoma, renal clear cell carcinoma, Lower Grade Glioma, Lung adenocarcinoma, Mesothelioma, and hepatocellular carcinoma. In addition, our research on signature cancer genes has uncovered a positive association between TAOK3 and SMAD2, SMAD4, and RNF168 in most of the malignancies we have examined. TAOK3 is also correlated with the frequency of mutations and microsatellite instability in four types of cancer. Numerous immune-related genes are closely associated with TAOK3 levels in numerous malignancies. TAOK3 expression is positively correlated with immune infiltrates, which include activated CD4 T cells, CD8 T cells, and type 2T helper cells. Our pan-cancer analysis of TAOK3 provides vital insight into its potential role across a variety of cancer types.
Collapse
Affiliation(s)
- Glowi Alasiri
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Bahauddeen Alrfaei
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard - Health Affairs (MNGHA), Saudi Arabia
- King Abullah International Medical Research Center, MNGHA, Saudi Arabia
| | - Ali M. Alaseem
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Osama A. AlKhamees
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Jehad A. Aldali
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Ala M. Aljehani
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Abdulaziz Alfahed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohammad Azhar Aziz
- Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh 202002, India
| | - Ghadir Almuhaini
- King Saud bin Abdulaziz University for Health Sciences, Saudi Arabia
| | - Mana M. Alshehri
- King Abullah International Medical Research Center, MNGHA, Saudi Arabia
- Connell and O'Reilly Families-Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Poirier A, Ormonde JVS, Aubry I, Abidin BM, Feng CH, Martinez-Cordova Z, Hincapie AM, Wu C, Pérez-Quintero LA, Wang CL, Gingras AC, Madrenas J, Tremblay ML. The induction of SHP-1 degradation by TAOK3 ensures the responsiveness of T cells to TCR stimulation. Sci Signal 2024; 17:eadg4422. [PMID: 38166031 DOI: 10.1126/scisignal.adg4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.
Collapse
Affiliation(s)
- Alexandre Poirier
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - João Vitor Silva Ormonde
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials (LNBio - CNPEM), Campinas, São Paulo, Brazil
| | - Isabelle Aubry
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Belma Melda Abidin
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
| | - Chu-Han Feng
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Zuzet Martinez-Cordova
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Ana Maria Hincapie
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Chenyue Wu
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | | | - Chia-Lin Wang
- NYU Langone Medical Center, 660 1st Ave, Fl 5, New York City, NY 10016, USA
| | - Anne Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Joaquín Madrenas
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 40095, USA
| | - Michel L Tremblay
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
5
|
Tayanloo-Beik A, Hamidpour SK, Nikkhah A, Arjmand R, Mafi AR, Rezaei-Tavirani M, Larijani B, Gilany K, Arjmand B. DNA Damage Responses, the Trump Card of Stem Cells in the Survival Game. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:165-188. [PMID: 37923882 DOI: 10.1007/5584_2023_791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A. Computational prognostic evaluation of Alzheimer's drugs from FDA-approved database through structural conformational dynamics and drug repositioning approaches. Sci Rep 2023; 13:18022. [PMID: 37865690 PMCID: PMC10590448 DOI: 10.1038/s41598-023-45347-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Drug designing is high-priced and time taking process with low success rate. To overcome this obligation, computational drug repositioning technique is being promptly used to predict the possible therapeutic effects of FDA approved drugs against multiple diseases. In this computational study, protein modeling, shape-based screening, molecular docking, pharmacogenomics, and molecular dynamic simulation approaches have been utilized to retrieve the FDA approved drugs against AD. The predicted MADD protein structure was designed by homology modeling and characterized through different computational resources. Donepezil and galantamine were implanted as standard drugs and drugs were screened out based on structural similarities. Furthermore, these drugs were evaluated and based on binding energy (Kcal/mol) profiles against MADD through PyRx tool. Moreover, pharmacogenomics analysis showed good possible associations with AD mediated genes and confirmed through detail literature survey. The best 6 drug (darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar) further docked and analyzed their interaction behavior through hydrogen binding. Finally, MD simulation study were carried out on these drugs and evaluated their stability behavior by generating root mean square deviation and fluctuations (RMSD/F), radius of gyration (Rg) and soluble accessible surface area (SASA) graphs. Taken together, darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar displayed good lead like profile as compared with standard and can be used as possible therapeutic agent in the treatment of AD after in-vitro and in-vivo assessment.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA.
| |
Collapse
|
7
|
Xia Y, Andersson E, Caputo M, Cansby E, Sedda F, Font-Gironès F, Ruud J, Kurhe Y, Hallberg B, Marschall HU, Asterholm IW, Romeo S, Blüher M, Mahlapuu M. Knockout of STE20-type kinase TAOK3 does not attenuate diet-induced NAFLD development in mice. Mol Med 2023; 29:138. [PMID: 37864157 PMCID: PMC10589923 DOI: 10.1186/s10020-023-00738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD), the primary hepatic consequence of obesity, is affecting about 25% of the global adult population. The aim of this study was to examine the in vivo role of STE20-type protein kinase TAOK3, which has been previously reported to regulate hepatocellular lipotoxicity in vitro, in the development of NAFLD and systemic insulin resistance in the context of obesity. METHODS Taok3 knockout mice and wild-type littermates were challenged with a high-fat diet. Various in vivo tests were performed to characterize the whole-body metabolism. NAFLD progression in the liver, and lipotoxic damage in adipose tissue, kidney, and skeletal muscle were compared between the genotypes by histological assessment, immunofluorescence microscopy, protein and gene expression profiling, and biochemical assays. Intracellular lipid accumulation and oxidative/ER stress were analyzed in cultured human and mouse hepatocytes where TAOK3 was knocked down by small interfering RNA. The expression of TAOK3-related STE20-type kinases was quantified in different organs from high-fat diet-fed Taok3-/- and wild-type mice. RESULTS TAOK3 deficiency had no impact on body weight or composition, food consumption, locomotor activity, or systemic glucose or insulin homeostasis in obese mice. Consistently, Taok3-/- mice and wild-type littermates developed a similar degree of high-fat diet-induced liver steatosis, inflammation, and fibrosis, and we detected no difference in lipotoxic damage of adipose tissue, kidney, or skeletal muscle when comparing the two genotypes. In contrast, the silencing of TAOK3 in vitro markedly suppressed ectopic lipid accumulation and metabolic stress in mouse and human hepatocytes. Interestingly, the hepatic mRNA abundance of several TAOK3-related kinases, which have been previously implicated to increase the risk of NAFLD susceptibility, was significantly elevated in Taok3-/- vs. wild-type mice. CONCLUSIONS In contrast to the in vitro observations, genetic deficiency of TAOK3 in mice failed to mitigate the detrimental metabolic consequences of chronic exposure to dietary lipids, which may be partly attributable to the activation of liver-specific compensation response for the genetic loss of TAOK3 by related STE20-type kinases.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Francesca Sedda
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ferran Font-Gironès
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Ruud
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
8
|
Sun M, Li Z, Wang X, Zhao M, Chu Y, Zhang Z, Fang K, Zhao Z, Feng A, Leng Z, Shi J, Zhang L, Chen T, Xu M. TAOK3 Facilitates Esophageal Squamous Cell Carcinoma Progression and Cisplatin Resistance Through Augmenting Autophagy Mediated by IRGM. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300864. [PMID: 37705061 PMCID: PMC10582451 DOI: 10.1002/advs.202300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/02/2023] [Indexed: 09/15/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers because of its robust aggressive phenotype and chemoresistance. TAO kinase belongs to mitogen-activated protein kinases, which mediate drug resistance in multiple cancers. However, the role of TAO kinase in ESCC progression and chemoresistance has never been explored. Here, it is reported that TAOK3 augments cell autophagy and further promotes ESCC progression and chemoresistance. Mechanistically, TAOK3 phosphorylates KMT2C at S4588 and strengthens the interaction between KMT2C and ETV5. Consequently, the nuclear translocation of KMT2C is increased, and the transcription of autophagy-relevant gene IRGM is further upregulated. Additionally, the inhibitor SBI-581 can significantly suppress cell autophagy mediated by TAOK3 and synergizes with cisplatin to treat ESCC in vitro and in vivo.
Collapse
Affiliation(s)
- Mingchuang Sun
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Zhaoxing Li
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Xiaoyuan Wang
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Meirong Zhao
- Shanghai East HospitalJinzhou Medical UniversityLiaoning121001China
| | - Yuan Chu
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Zehua Zhang
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Kang Fang
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Ziying Zhao
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Anqi Feng
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Zhuyun Leng
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Jianing Shi
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Li Zhang
- Department of PathologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Tao Chen
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Meidong Xu
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| |
Collapse
|
9
|
Poirier A, Wu C, Hincapie AM, Martinez-Cordova Z, Abidin BM, Tremblay ML. TAOK3 limits age-associated inflammation by negatively modulating macrophage differentiation and their production of TNFα. Immun Ageing 2023; 20:31. [PMID: 37400834 DOI: 10.1186/s12979-023-00350-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Human aging is characterized by a state of chronic inflammation, termed inflammaging, for which the causes are incompletely understood. It is known, however, that macrophages play a driving role in establishing inflammaging by promoting pro-inflammatory rather than anti-inflammatory responses. Numerous genetic and environmental risk factors have been implicated with inflammaging, most of which are directly linked to pro-inflammatory mediators IL-6, IL1Ra, and TNFα. Genes involved in the signaling and production of those molecules have also been highlighted as essential contributors. TAOK3 is a serine/threonine kinase of the STE-20 kinase family that has been associated with an increased risk of developing auto-immune conditions in several genome-wide association studies (GWAS). Yet, the functional role of TAOK3 in inflammation has remained unexplored. RESULTS We found that mice deficient in the serine/Threonine kinase Taok3 developed severe inflammatory disorders with age, which was more pronounced in female animals. Further analyses revealed a drastic shift from lymphoid to myeloid cells in the spleens of those aged mice. This shift was accompanied by hematopoietic progenitor cells skewing in Taok3-/- mice that favored myeloid lineage commitment. Finally, we identified that the kinase activity of the enzyme plays a vital role in limiting the establishment of proinflammatory responses in macrophages. CONCLUSIONS Essentially, Taok3 deficiency promotes the accumulation of monocytes in the periphery and their adoption of a pro-inflammatory phenotype. These findings illustrate the role of Taok3 in age-related inflammation and highlight the importance of genetic risk factors in this condition.
Collapse
Affiliation(s)
- Alexandre Poirier
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Chenyue Wu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Ana Maria Hincapie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Zuzet Martinez-Cordova
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada.
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
- Faculty of Medicine, McGill University, Montréal, Québec, Canada.
- McGill University, Rosalind and Morris Goodman Cancer Institute, 1160 Pine Avenue West, Montréal, Québec, H3A 1A3, Canada.
| |
Collapse
|
10
|
Rudloff U. Emerging kinase inhibitors for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Emerg Drugs 2022; 27:345-368. [PMID: 36250721 PMCID: PMC9793333 DOI: 10.1080/14728214.2022.2134346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pancreatic cancer is one of the deadliest solid organ cancers. In the absence of specific warning symptoms pancreatic cancer is diagnosed notoriously late. Current systemic chemotherapy regimens extend survival by a mere few months. With the advances in genetic, proteomic, and immunological profiling there is strong rationale to test kinase inhibitors to improve outcome. AREAS COVERED This review article provides a comprehensive summary of approved treatments and past, present, and future developments of kinase inhibitors in pancreatic cancer. Emerging roles of protein kinase inhibitors are discussed in the context of the unique stroma, the lack of high-prevalence therapeutic targets and rapid emergence of acquired resistance, novel immuno-oncology kinase targets, and recent medicinal chemistry advances. EXPERT OPINION Due to the to-date frequent failure of protein kinase inhibitors indiscriminately administered to unselected pancreatic cancer patients, there is a shift toward the development of these agents in molecularly defined subgroups which are more likely to respond. The development of accurate biomarkers to select patients who are the best candidates based on a detailed understanding of mechanism of action, pro-survival roles, and mediation of resistance of targeted kinases will be critical for the future development of protein kinase inhibitors in this disease.
Collapse
Affiliation(s)
- Udo Rudloff
- Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
11
|
Islam Khan MZ, Tam SY, Law HKW. Advances in High Throughput Proteomics Profiling in Establishing Potential Biomarkers for Gastrointestinal Cancer. Cells 2022; 11:973. [PMID: 35326424 PMCID: PMC8946849 DOI: 10.3390/cells11060973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal cancers (GICs) remain the most diagnosed cancers and accounted for the highest cancer-related death globally. The prognosis and treatment outcomes of many GICs are poor because most of the cases are diagnosed in advanced metastatic stages. This is primarily attributed to the deficiency of effective and reliable early diagnostic biomarkers. The existing biomarkers for GICs diagnosis exhibited inadequate specificity and sensitivity. To improve the early diagnosis of GICs, biomarkers with higher specificity and sensitivity are warranted. Proteomics study and its functional analysis focus on elucidating physiological and biological functions of unknown or annotated proteins and deciphering cellular mechanisms at molecular levels. In addition, quantitative analysis of translational proteomics is a promising approach in enhancing the early identification and proper management of GICs. In this review, we focus on the advances in mass spectrometry along with the quantitative and functional analysis of proteomics data that contributes to the establishment of biomarkers for GICs including, colorectal, gastric, hepatocellular, pancreatic, and esophageal cancer. We also discuss the future challenges in the validation of proteomics-based biomarkers for their translation into clinics.
Collapse
Affiliation(s)
| | | | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; (M.Z.I.K.); (S.Y.T.)
| |
Collapse
|
12
|
Multi-omics mapping of human papillomavirus integration sites illuminates novel cervical cancer target genes. Br J Cancer 2021; 125:1408-1419. [PMID: 34526665 PMCID: PMC8575955 DOI: 10.1038/s41416-021-01545-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Integration of human papillomavirus (HPV) into the host genome is a dominant feature of invasive cervical cancer (ICC), yet the tumorigenicity of cis genomic changes at integration sites remains largely understudied. METHODS Combining multi-omics data from The Cancer Genome Atlas with patient-matched long-read sequencing of HPV integration sites, we developed a strategy for using HPV integration events to identify and prioritise novel candidate ICC target genes (integration-detected genes (IDGs)). Four IDGs were then chosen for in vitro functional studies employing small interfering RNA-mediated knockdown in cell migration, proliferation and colony formation assays. RESULTS PacBio data revealed 267 unique human-HPV breakpoints comprising 87 total integration events in eight tumours. Candidate IDGs were filtered based on the following criteria: (1) proximity to integration site, (2) clonal representation of integration event, (3) tumour-specific expression (Z-score) and (4) association with ICC survival. Four candidates prioritised based on their unknown function in ICC (BNC1, RSBN1, USP36 and TAOK3) exhibited oncogenic properties in cervical cancer cell lines. Further, annotation of integration events provided clues regarding potential mechanisms underlying altered IDG expression in both integrated and non-integrated ICC tumours. CONCLUSIONS HPV integration events can guide the identification of novel IDGs for further study in cervical carcinogenesis and as putative therapeutic targets.
Collapse
|
13
|
Xia Y, Caputo M, Cansby E, Anand SK, Sütt S, Henricsson M, Porosk R, Marschall HU, Blüher M, Mahlapuu M. STE20-type kinase TAOK3 regulates hepatic lipid partitioning. Mol Metab 2021; 54:101353. [PMID: 34634521 PMCID: PMC8567304 DOI: 10.1016/j.molmet.2021.101353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD), defined by excessive lipid storage in hepatocytes, has recently emerged as a leading global cause of chronic liver disease. The aim of this study was to examine the role of STE20-type protein kinase TAOK3, which has previously been shown to associate with hepatic lipid droplets, in the initiation and aggravation of human NAFLD. METHODS The correlation between TAOK3 mRNA expression and the severity of NAFLD was investigated in liver biopsies from 62 individuals. In immortalized human hepatocytes, intracellular fat deposition, lipid metabolism, and oxidative and endoplasmic reticulum stress were analyzed when TAOK3 was overexpressed or knocked down by small interfering RNA. Subcellular localization of TAOK3 was characterized in human and mouse hepatocytes by immunofluorescence microscopy. RESULTS We found that the TAOK3 transcript levels in human liver biopsies were positively correlated with the key lesions of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Overexpression of TAOK3 in cultured human hepatocytes exacerbated lipid storage by inhibiting β-oxidation and triacylglycerol secretion while enhancing lipid synthesis. Conversely, silencing of TAOK3 attenuated lipid deposition in human hepatocytes by stimulating mitochondrial fatty acid oxidation and triacylglycerol efflux while suppressing lipogenesis. We also found aggravated or decreased oxidative/endoplasmic reticulum stress in human hepatocytes with increased or reduced TAOK3 levels, respectively. The subcellular localization of TAOK3 in human and mouse hepatocytes was confined to intracellular lipid droplets. CONCLUSIONS This study provides the first evidence that hepatic lipid droplet-coating kinase TAOK3 is a critical regulatory node controlling liver lipotoxicity and susceptibility to NAFLD.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sumit Kumar Anand
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Silva Sütt
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Henricsson
- Biomarker Discovery and Development, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
14
|
Abyadeh M, Meyfour A, Gupta V, Zabet Moghaddam M, Fitzhenry MJ, Shahbazian S, Hosseini Salekdeh G, Mirzaei M. Recent Advances of Functional Proteomics in Gastrointestinal Cancers- a Path towards the Identification of Candidate Diagnostic, Prognostic, and Therapeutic Molecular Biomarkers. Int J Mol Sci 2020; 21:ijms21228532. [PMID: 33198323 PMCID: PMC7697099 DOI: 10.3390/ijms21228532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the common causes of morbidity and mortality. A high number of cases are diagnosed at an advanced stage, leading to a poor survival rate. This is primarily attributed to the lack of reliable diagnostic biomarkers and limited treatment options. Therefore, more sensitive, specific biomarkers and curative treatments are desirable. Functional proteomics as a research area in the proteomic field aims to elucidate the biological function of unknown proteins and unravel the cellular mechanisms at the molecular level. Phosphoproteomic and glycoproteomic studies have emerged as two efficient functional proteomics approaches used to identify diagnostic biomarkers, therapeutic targets, the molecular basis of disease and mechanisms underlying drug resistance in GI cancers. In this review, we present an overview on how functional proteomics may contribute to the understanding of GI cancers, namely colorectal, gastric, hepatocellular carcinoma and pancreatic cancers. Moreover, we have summarized recent methodological developments in phosphoproteomics and glycoproteomics for GI cancer studies.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
- Cell Science Research Center, Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
- Correspondence: (A.M.); (M.M.)
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | | | - Matthew J. Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Shila Shahbazian
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Ghasem Hosseini Salekdeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
- Correspondence: (A.M.); (M.M.)
| |
Collapse
|
15
|
Fang CY, Lai TC, Hsiao M, Chang YC. The Diverse Roles of TAO Kinases in Health and Diseases. Int J Mol Sci 2020; 21:E7463. [PMID: 33050415 PMCID: PMC7589832 DOI: 10.3390/ijms21207463] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Thousand and one kinases (TAOKs) are members of the MAP kinase kinase kinase (MAP3K) family. Three members of this subfamily, TAOK1, 2, and 3, have been identified in mammals. It has been shown that TAOK1, 2 and 3 regulate the p38 MAPK and Hippo signaling pathways, while TAOK 1 and 2 modulate the SAPK/JNK cascade. Furthermore, TAOKs are involved in additional interactions with other cellular proteins and all of these pathways modulate vital physiological and pathophysiological responses in cells and tissues. Dysregulation of TAOK-related pathways is implicated in the development of diseases including inflammatory and immune disorders, cancer and drug resistance, and autism and Alzheimer's diseases. This review collates current knowledge concerning the roles of TAOKs in protein-protein interaction, signal transduction, physiological regulation, and pathogenesis and summarizes the recent development of TAOK-specific inhibitors that have the potential to ameliorate TAOKs' effects in pathological situations.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Science, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|