1
|
Jabbarzadeh Kaboli P, Roozitalab G, Farghadani R, Eskandarian Z, Zerrouqi A. c-MET and the immunological landscape of cancer: novel therapeutic strategies for enhanced anti-tumor immunity. Front Immunol 2024; 15:1498391. [PMID: 39664377 PMCID: PMC11632105 DOI: 10.3389/fimmu.2024.1498391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Cellular mesenchymal-epithelial transition factor (c-MET), also known as hepatocyte growth factor receptor (HGFR), is a crucial receptor tyrosine kinase implicated in various solid tumors, including lung, breast, and liver cancers. The concomitant expression of c-MET and PD-L1 in tumors, such as hepatocellular carcinoma, highlights their prognostic significance and connection to therapeutic resistance. Cancer-associated fibroblasts and mesenchymal stromal cells produce hepatocyte growth factor (HGF), activating c-MET signaling in tumor cells and myeloid-derived suppressor cells (MDSC). This activation leads to metabolic reprogramming and increased activity of enzymes like glutaminase (GLS), indoleamine 2,3-dioxygenase (IDO), and arginase 1 (ARG1), depleting essential amino acids in the tumor microenvironment that are vital for effector immune cell function. This review highlights the interplay between tumor cells and myeloid-derived suppressor cells (MDSCs) that create an immunosuppressive environment while providing targets for c-MET-focused immunotherapy. It emphasizes the clinical implications of c-MET inhibition on the behavior of immune cells such as neutrophils, macrophages, T cells, and NK cells. It explores the potential of c-MET antagonism combined with immunotherapeutic strategies to enhance cancer treatment paradigms. This review also discusses the innovative cancer immunotherapies targeting c-MET, including chimeric antigen receptor (CAR) therapies, monoclonal antibodies, and antibody-drug conjugates, while encouraging the development of a comprehensive strategy that simultaneously tackles immune evasion and enhances anti-tumor efficacy further to improve the clinical prognoses for patients with c-MET-positive malignancies. Despite the challenges and variability in efficacy across different cancer subtypes, continued research into the molecular mechanisms and the development of innovative therapeutic strategies will be crucial.
Collapse
Affiliation(s)
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Zoya Eskandarian
- Research Institute Children’s Cancer Center, and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Abdessamad Zerrouqi
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Alzain AA, Elbadwi FA, Mohamed SGA, Kushk KSA, Bafarhan RI, Alswiri SA, Khushaim SN, Hussein HGA, Abuhajras MYA, Mohamed GA, Ibrahim SRM. Exploring marine-derived compounds for MET signalling pathway inhibition in cancer: integrating virtual screening, ADME profiling and molecular dynamics investigations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:1003-1021. [PMID: 38014514 DOI: 10.1080/1062936x.2023.2284917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
The MET signalling pathway regulates fundamental cellular processes such as growth, division, and survival. While essential for normal cell function, dysregulation of this pathway can contribute to cancer by triggering uncontrolled proliferation and metastasis. Targeting MET activity holds promise as an effective strategy for cancer therapy. Among potential sources of anti-cancer agents, marine organisms have gained attention. In this study, we screened 47,450 natural compounds derived from marine sources within the CMNPD database against the Met crystal structure. By employing HTVS, SP, and XP docking modes, we identified three compounds (CMNPD17595, CMNPD14026, and CMNPD19696) that outperformed a reference molecule in binding affinity to the Met structure. These compounds demonstrated desirable ADME properties. Molecular Dynamics (MD) simulations for 200 ns confirmed the stability of their interactions with Met. Our findings highlight CMNPD17595, CMNPD14026, and CMNPD19696 as potential inhibitors against Met-dependent cancers. Additionally, these compounds offer new avenues for drug development, leveraging their inhibitory effects on Met to combat carcinogenesis.
Collapse
Affiliation(s)
- A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - F A Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - S G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Egypt
| | - K S A Kushk
- Operations Sales Department, United Pharmaceuticals & Medical Supply Co. Ltd, Al Madinah Al-Munawwarah, Saudi Arabia
| | - R I Bafarhan
- Pharmaceutical Care Services, Medical Department, Private Sector, Tabuk, Saudi Arabia
| | - S A Alswiri
- Pharmaceutical Company, Medical Department, Private Sector, Al Madinah Al-Munawwarah, Saudi Arabia
| | - S N Khushaim
- College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - H G A Hussein
- Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - M Y A Abuhajras
- Medical Claims Department, Bupa Arabia, Prince Saud AlFaisal, Jeddah, Saudi Arabia
| | - G A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Zhang X, Wang Y, Meng L. Comparative genomic analysis of esophageal squamous cell carcinoma and adenocarcinoma: New opportunities towards molecularly targeted therapy. Acta Pharm Sin B 2022; 12:1054-1067. [PMID: 35530133 PMCID: PMC9069403 DOI: 10.1016/j.apsb.2021.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is one of the most lethal cancers worldwide because of its rapid progression and poor prognosis. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are two major subtypes of esophageal cancer. ESCC predominantly affects African and Asian populations, which is closely related to chronic smoking and alcohol consumption. EAC typically arises in Barrett's esophagus with a predilection for Western countries. While surgical operation and chemoradiotherapy have been applied to combat this deadly cancer, molecularly targeted therapy is still at the early stages. With the development of large-scale next-generation sequencing, various genomic alterations in ESCC and EAC have been revealed and their potential roles in the initiation and progression of esophageal cancer have been studied. Potential therapeutic targets have been identified and novel approaches have been developed to combat esophageal cancer. In this review, we comprehensively analyze the genomic alterations in EAC and ESCC and summarize the potential role of the genetic alterations in the development of esophageal cancer. Progresses in the therapeutics based on the different tissue types and molecular signatures have also been reviewed and discussed.
Collapse
|
4
|
Dong Y, Xu J, Sun B, Wang J, Wang Z. MET-Targeted Therapies and Clinical Outcomes: A Systematic Literature Review. Mol Diagn Ther 2022; 26:203-227. [PMID: 35266116 PMCID: PMC8942886 DOI: 10.1007/s40291-021-00568-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 12/17/2022]
Abstract
Introduction Numerous therapeutic agents specifically targeting the mesenchymal-epithelial transition (MET) oncogene are being developed. Objective The aim of the current review was to systematically identify and analyze clinical trials that have evaluated MET inhibitors in various cancer types and to provide an overview of their clinical outcomes. Methods An electronic literature search was carried out in the PubMed and Embase databases to identify published clinical trials related to MET inhibitors. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement was followed for the systematic appraisal of the literature. Data related to clinical outcomes, including progression-free survival, overall survival, objective response rate, and overall tumor response, were extracted. Results In total, 49 publications were included. Among these, 51.02% were phase II studies, 14.28% were randomized controlled trials, three were phase III studies, two were prospective observational studies, and the remainder were either phase I or Ib studies. The majority (44.89%) of articles reported the clinical outcomes of MET inhibitors, including small molecules, monoclonal antibodies, and other agents, in patients with non-small-cell lung cancer (NSCLC) harboring MET alterations. MET amplification, overexpression, and MET exon 14 skipping mutations were the major MET alteration types reported across the included studies. Clinical responses/outcomes varied considerably. Conclusion This systematic literature review provides an overview of the literature available in Embase and PubMed regarding MET-targeted therapies. MET-selective tyrosine kinase inhibitors (TKIs) (capmatinib, tepotinib, and savolitinib) may become a new standard of care in NSCLC, specifically with MET exon 14 skipping mutations. A combination of MET TKIs with epidermal growth factor receptor (EGFR) TKIs (osimertinib + savolitinib, tepotinib + gefitinib) may be a potential solution for MET-driven EGFR TKI resistance. Further, MET alteration (MET amplification/overexpression) may be an actionable target in gastric cancer and papillary renal cell carcinoma.
Collapse
Affiliation(s)
- Yiting Dong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan-jia-yuan South Lane, Chaoyang District, Beijing, 100021, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan-jia-yuan South Lane, Chaoyang District, Beijing, 100021, China
| | - Boyang Sun
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan-jia-yuan South Lane, Chaoyang District, Beijing, 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan-jia-yuan South Lane, Chaoyang District, Beijing, 100021, China.
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan-jia-yuan South Lane, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
5
|
The Emerging Role of c-Met in Carcinogenesis and Clinical Implications as a Possible Therapeutic Target. JOURNAL OF ONCOLOGY 2022; 2022:5179182. [PMID: 35069735 PMCID: PMC8776431 DOI: 10.1155/2022/5179182] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023]
Abstract
Background c-MET is a receptor tyrosine kinase receptor (RTK) for the hepatocyte growth factor (HGF). The binding of HGF to c-MET regulates several cellular functions: differentiation, proliferation, epithelial cell motility, angiogenesis, and epithelial-mesenchymal transition (EMT). Moreover, it is known to be involved in carcinogenesis. Comprehension of HGF-c-MET signaling pathway might have important clinical consequences allowing to predict prognosis, response to treatment, and survival rates based on its expression and dysregulation. Discussion. c-MET represents a useful molecular target for novel engineered drugs. Several clinical trials are underway for various solid tumors and the development of new specific monoclonal antibodies depends on the recent knowledge about the definite c-MET role in each different malignance. Recent clinical trials based on c-MET molecular targets result in good safety profile and represent a promising therapeutic strategy for solid cancers, in monotherapy or in combination with other target drugs. Conclusion The list of cell surface receptors crosslinking with the c-MET signaling is constantly growing, highlighting the importance of this pathway for personalized target therapy. Research on the combination of c-MET inhibitors with other drugs will hopefully lead to discovery of new effective treatment options.
Collapse
|
6
|
Camidge DR, Morgensztern D, Heist RS, Barve M, Vokes E, Goldman JW, Hong DS, Bauer TM, Strickler JH, Angevin E, Motwani M, Parikh A, Sun Z, Bach BA, Wu J, Komarnitsky PB, Kelly K. Phase I Study of 2- or 3-Week Dosing of Telisotuzumab Vedotin, an Antibody-Drug Conjugate Targeting c-Met, Monotherapy in Patients with Advanced Non-Small Cell Lung Carcinoma. Clin Cancer Res 2021; 27:5781-5792. [PMID: 34426443 PMCID: PMC9401525 DOI: 10.1158/1078-0432.ccr-21-0765] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/11/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Telisotuzumab vedotin (Teliso-V) is an anti-c-Met-directed antibody-drug conjugate. Here, we present safety and efficacy data from a phase I/Ib study of Teliso-V monotherapy evaluated in once every 2 weeks/once every 3 weeks schedules in patients with non-small cell lung cancer (NSCLC). PATIENTS AND METHODS During dose escalation, patients received Teliso-V monotherapy intravenously once every 3 weeks (0.15-3.3 mg/kg) or once every 2 weeks (1.6-2.2 mg/kg). The dose-expansion phase enrolled patients with NSCLC and c-Met H-score ≥150 (c-Met+) or MET amplification/exon 14 skipping mutations. Safety, pharmacokinetics, and efficacy were assessed. Herein, the analysis of patients receiving ≥1.6 mg/kg once every 2 weeks or ≥2.4 mg/kg once every 3 weeks Teliso-V is reported. RESULTS Fifty-two patients with NSCLC were enrolled and received ≥1.6 mg/kg Teliso-V once every 2 weeks (n = 28) or ≥2.4 mg/kg Teliso-V once every 3 weeks (n = 24). The most common adverse events were fatigue (54%), peripheral neuropathy (42%), and nausea (38%). No dose-limiting toxicities were observed for Teliso-V once every 2 weeks and once every 3 weeks up to 2.2 and 2.7 mg/kg, respectively. The recommended phase II dose was established at 1.9 mg/kg once every 2 weeks and 2.7 mg/kg once every 3 weeks on the basis of overall safety and pharmacokinetics. Forty of 52 patients were c-Met+ (33 nonsquamous, 6 squamous, 1 mixed histology) and were included in the efficacy-evaluable population. Of those, 9 (23%) had objective responses with median duration of response of 8.7 months; median progression-free survival was 5.2 months. CONCLUSIONS Teliso-V monotherapy was tolerated and showed antitumor activity in c-Met+ NSCLC. On the basis of overall safety, pharmacokinetics, and efficacy outcomes, 1.9 mg/kg Teliso-V once every 2 weeks and 2.7 mg/kg once every 3 weeks schedules were selected for further clinical development.
Collapse
Affiliation(s)
| | | | - Rebecca S Heist
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Minal Barve
- Mary Crowley Cancer Research Center, Dallas, Texas
| | | | | | - David S Hong
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Todd M Bauer
- Sarah Cannon Research Institute, Nashville, Tennessee
- Tennessee Oncology, Nashville, Tennessee
| | | | | | | | - Apurvasena Parikh
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc., Redwood City, California
| | | | | | - Jun Wu
- AbbVie, Inc., North Chicago, Illinois
| | | | - Karen Kelly
- University of California Davis Comprehensive Cancer Center, Sacramento, California
| |
Collapse
|
7
|
Meng W, Chen T. Association between the HGF/c‑MET signaling pathway and tumorigenesis, progression and prognosis of hepatocellular carcinoma (Review). Oncol Rep 2021; 46:191. [PMID: 34278495 DOI: 10.3892/or.2021.8142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and lethal malignancies with a rising incidence, and is characterized by rapid progression, frequent metastasis, late diagnosis, high postoperative recurrence and poor prognosis. Therefore, novel treatment strategies for HCC, particularly advanced HCC, are urgently required. The hepatocyte growth factor (HGF)/c‑mesenchymal‑epithelial transition receptor (c‑MET) axis is a key signaling pathway in HCC and is strongly associated with its highly malignant features. Available treatments based on HGF/c‑MET inhibition may prolong the lifespan of patients with HCC; however, they do not achieve the desired therapeutic effects. The aim of the present article was to review the basic knowledge regarding the role of the HGF/c‑MET signaling pathway in HCC, and examine the association between the HGF/c‑MET signaling pathway and the tumorigenesis, progression and prognosis of HCC.
Collapse
Affiliation(s)
- Wei Meng
- School of Medicine, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Tao Chen
- School of Medicine, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
8
|
Yao HP, Tong XM, Wang MH. Oncogenic mechanism-based pharmaceutical validation of therapeutics targeting MET receptor tyrosine kinase. Ther Adv Med Oncol 2021; 13:17588359211006957. [PMID: 33868463 PMCID: PMC8020248 DOI: 10.1177/17588359211006957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression and/or activation of the MET receptor tyrosine kinase is
characterized by genomic recombination, gene amplification, activating mutation,
alternative exon-splicing, increased transcription, and their different
combinations. These dysregulations serve as oncogenic determinants contributing
to cancerous initiation, progression, malignancy, and stemness. Moreover,
integration of the MET pathway into the cellular signaling network as an
addiction mechanism for survival has made this receptor an attractive
pharmaceutical target for oncological intervention. For the last 20 years,
MET-targeting small-molecule kinase inhibitors (SMKIs), conventional therapeutic
monoclonal antibodies (TMABs), and antibody-based biotherapeutics such as
bispecific antibodies, antibody–drug conjugates (ADC), and dual-targeting ADCs
have been under intensive investigation. Outcomes from preclinical studies and
clinical trials are mixed with certain successes but also various setbacks. Due
to the complex nature of MET dysregulation with multiple facets and underlying
mechanisms, mechanism-based validation of MET-targeting therapeutics is crucial
for the selection and validation of lead candidates for clinical trials. In this
review, we discuss the importance of various types of mechanism-based
pharmaceutical models in evaluation of different types of MET-targeting
therapeutics. The advantages and disadvantages of these mechanism-based
strategies for SMKIs, conventional TMABs, and antibody-based biotherapeutics are
analyzed. The demand for establishing new strategies suitable for validating
novel biotherapeutics is also discussed. The information summarized should
provide a pharmaceutical guideline for selection and validation of MET-targeting
therapeutics for clinical application in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Strickler JH, Rushing CN, Uronis HE, Morse MA, Niedzwiecki D, Blobe GC, Moyer AN, Bolch E, Webb R, Haley S, Hatch AJ, Altomare IP, Sherrill GB, Chang DZ, Wells JL, Hsu SD, Jia J, Zafar SY, Nixon AB, Hurwitz HI. Cabozantinib and Panitumumab for RAS Wild-Type Metastatic Colorectal Cancer. Oncologist 2021; 26:465-e917. [PMID: 33469991 DOI: 10.1002/onco.13678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
LESSONS LEARNED Antitumor activity was observed in the study population. Dose modifications of cabozantinib improve long-term tolerability. Biomarkers are needed to identify patient populations most likely to benefit. Further study of cabozantinib with or without panitumumab in patients with metastatic colorectal cancer is warranted. BACKGROUND The epidermal growth factor receptor (EGFR) antibody panitumumab is active in patients with RAS wild-type (WT) metastatic colorectal cancer (mCRC), but nearly all patients experience resistance. MET amplification is a driver of panitumumab resistance. Cabozantinib is an inhibitor of multiple kinases, including vascular endothelial growth factor receptor 2 (VEGFR2) and c-MET, and may delay or reverse anti-EGFR resistance. METHODS In this phase Ib clinical trial, we established the maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of cabozantinib and panitumumab. We then treated an expansion cohort to further describe the tolerability and clinical activity of the RP2D. Eligibility included patients with KRAS WT mCRC (later amended to include only RAS WT mCRC) who had received prior treatment with a fluoropyrimidine, oxaliplatin, irinotecan, and bevacizumab. RESULTS Twenty-five patients were enrolled and treated. The MTD/RP2D was cabozantinib 60 mg p.o. daily and panitumumab 6 mg/kg I.V. every 2 weeks. The objective response rate (ORR) was 16%. Median progression free survival (PFS) was 3.7 months (90% confidence interval [CI], 2.3-7.1). Median overall survival (OS) was 12.1 months (90% CI, 7.5-14.3). Five patients (20%) discontinued treatment due to toxicity, and 18 patients (72%) required a dose reduction of cabozantinib. CONCLUSION The combination of cabozantinib and panitumumab has activity. Dose reductions of cabozantinib improve tolerability.
Collapse
Affiliation(s)
| | - Christel N Rushing
- Duke Cancer Institute, Biostatistics, Duke University Medical Center, Durham, North Carolina, USA
| | - Hope E Uronis
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Donna Niedzwiecki
- Duke Cancer Institute, Biostatistics, Duke University Medical Center, Durham, North Carolina, USA
| | - Gerard C Blobe
- Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley N Moyer
- Duke University Medical Center, Durham, North Carolina, USA
| | - Emily Bolch
- Duke University Medical Center, Durham, North Carolina, USA
| | - Renee Webb
- Duke University Medical Center, Durham, North Carolina, USA
| | - Sherri Haley
- Duke University Medical Center, Durham, North Carolina, USA
| | - Ace J Hatch
- Duke University Medical Center, Durham, North Carolina, USA
| | - Ivy P Altomare
- Duke University Medical Center, Durham, North Carolina, USA
| | - Gary B Sherrill
- Moses Cone Regional Cancer Center, Greensboro, North Carolina, USA
| | - David Z Chang
- Virginia Oncology Associates, Hampton, Virginia, USA
| | - James L Wells
- Lexington Oncology, West Columbia, South Carolina, USA
| | - S David Hsu
- Duke University Medical Center, Durham, North Carolina, USA
| | - Jingquan Jia
- Duke University Medical Center, Durham, North Carolina, USA
| | - S Yousuf Zafar
- Duke University Medical Center, Durham, North Carolina, USA
| | - Andrew B Nixon
- Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
10
|
Pharmaceutical strategies in the emerging era of antibody-based biotherapeutics for the treatment of cancers overexpressing MET receptor tyrosine kinase. Drug Discov Today 2020; 26:106-121. [PMID: 33171292 DOI: 10.1016/j.drudis.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
Pharmaceutical innovation in the development of novel antibody-based biotherapeutics with increased therapeutic indexes makes MET-targeted cancer therapy a clinical reality.
Collapse
|
11
|
Shao Z, Pan H, Tu S, Zhang J, Yan S, Shao A. HGF/c-Met Axis: The Advanced Development in Digestive System Cancer. Front Cell Dev Biol 2020; 8:801. [PMID: 33195182 PMCID: PMC7649216 DOI: 10.3389/fcell.2020.00801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Numerous studies have indicated that abnormal activation of the HGF/c-Met signaling pathway can lead to cell proliferation, invasiveness, and metastasis of cancers of the digestive system. Moreover, overexpression of c-Met has been implicated in poor prognosis of patients with these forms of cancer, suggesting the possibility for HGF/c-Met axis as a potential therapeutic target. Despite the large number of clinical and preclinical trials worldwide, no significant positive success in the use of anti-HGF/c-Met treatments on cancers of the digestive system has been achieved. In this review, we summarize advanced development of clinical research on HGF/c-Met antibody and small-molecule c-Met inhibitors of cancers of the digestive system and provide a possible direction for future research.
Collapse
Affiliation(s)
- Zhiwei Shao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoqi Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingying Zhang
- Department of General Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
HGF/MET Signaling in Malignant Brain Tumors. Int J Mol Sci 2020; 21:ijms21207546. [PMID: 33066121 PMCID: PMC7590206 DOI: 10.3390/ijms21207546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte growth factor (HGF) ligand and its receptor tyrosine kinase (RTK) mesenchymal-epithelial transition factor (MET) are important regulators of cellular processes such as proliferation, motility, angiogenesis, and tissue regeneration. In healthy adult somatic cells, this ligand and receptor pair is expressed at low levels and has little activity except when tissue injuries arise. In cancer cells, HGF/MET are often overexpressed, and this overexpression is found to correlate with tumorigenesis, metastasis, and poorer overall prognosis. This review focuses on the signaling of these molecules in the context of malignant brain tumors. RTK signaling pathways are among the most common and universally dysregulated pathways in gliomas. We focus on the role of HGF/MET in the following primary malignant brain tumors: astrocytomas, glioblastomas, oligodendrogliomas, ependymomas, and embryonal central nervous system tumors (including medulloblastomas and others). Brain metastasis, as well as current advances in targeted therapies, are also discussed.
Collapse
|
13
|
Yao HP, Tong XM, Hudson R, Wang MH. MET and RON receptor tyrosine kinases in colorectal adenocarcinoma: molecular features as drug targets and antibody-drug conjugates for therapy. J Exp Clin Cancer Res 2020; 39:198. [PMID: 32962738 PMCID: PMC7510328 DOI: 10.1186/s13046-020-01711-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Advanced colorectal adenocarcinoma (CRAC), featured by distinctive histopathological appearance, distant organ metastasis, acquired chemoresistance, and tumorigenic stemness is a group of heterogeneous cancers with unique genetic signatures and malignant phenotypes. Treatment of CRAC is a daunting task for oncologists. Currently, various strategies including molecular targeting using therapeutic monoclonal antibodies, small molecule kinase inhibitors and immunoregulatory checkpoint therapy have been applied to combat this deadly disease. However, these therapeutic modalities and approaches achieve only limited success. Thus, there is a pharmaceutical need to discover new targets and develop novel therapeutics for CRAC therapy. MET and RON receptor tyrosine kinases have been implicated in CRAC pathogenesis. Clinical studies have revealed that aberrant MET and/or RON expression and signaling are critical in regulating CRAC progression and malignant phenotypes. Increased MET and/or RON expression also has prognostic value for CRAC progression and patient survival. These features provide the rationale to target MET and RON for clinical CRAC intervention. At present, the use of small molecule kinase inhibitors targeting MET for CRAC treatment has achieved significant progress with several approvals for clinical application. Nevertheless, antibody-based biotherapeutics, although under clinical trials for more than 8 years, have made very little progress. In this review, we discuss the importance of MET and/or RON in CRAC tumorigenesis and development of anti-MET, anti-RON, and MET and RON-dual targeting antibody-drug conjugates for clinical application. The findings from both preclinical studies and clinical trials highlight the potential of this novel type of biotherapeutics for CRAC therapy in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Rachel Hudson
- Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, TX, Amarillo, USA
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, TX, Amarillo, USA.
| |
Collapse
|
14
|
Yao HP, Hudson R, Wang MH. Progress and challenge in development of biotherapeutics targeting MET receptor for treatment of advanced cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188425. [PMID: 32961258 DOI: 10.1016/j.bbcan.2020.188425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Advanced epithelial cancers such as gastric, lung, and pancreatic tumors are featured by invasive proliferation, distant metastasis, acquired chemoresistance, and tumorigenic stemness. For the last decade, molecular-targeted therapies using therapeutic antibodies, small molecule kinase inhibitors and immune-checkpoint blockades have been applied for these diseases with significant clinical benefits. Nevertheless, there is still a large gap to achieve curative outcomes. MET (mesenchymal-epithelial transition protein), a receptor tyrosine kinase, is a tumorigenic determinant that regulates epithelial cancer initiation, progression, and malignancy. Increased MET expression also has prognostic value for cancer progression and patient survival. These features provide the rationale to target MET for cancer treatment. In this review, we discuss the importance of MET in epithelial tumorigenesis and the development of antibody-based biotherapeutics, including bispecific antibodies and antibody-drug conjugates, for clinical application. The findings from both preclinical and clinical studies highlight the potential of MET-targeted biotherapeutics for cancer therapy in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Rachel Hudson
- Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
15
|
Spiegelberg D, Mortensen ACL, Palupi KD, Micke P, Wong J, Vojtesek B, Lane DP, Nestor M. The Novel Anti-cMet Antibody seeMet 12 Potentiates Sorafenib Therapy and Radiotherapy in a Colorectal Cancer Model. Front Oncol 2020; 10:1717. [PMID: 33014851 PMCID: PMC7516085 DOI: 10.3389/fonc.2020.01717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
Rational cMet is abnormally regulated in gastrointestinal cancer, and is associated with increased invasiveness of the disease and poor overall survival. There are indications that targeted therapy against cMet, alone or in combination with additional cancer therapies, can help improve treatment outcome. Thus, in the present study we investigated the therapeutic efficacy of a novel cMet-targeting antibody therapy in gastrointestinal cancer models, and assessed potential augmenting effects in combination with tyrosine kinase inhibitor (TKI) targeted therapy or radiotherapy. Methods Three different cMet-targeting antibodies were first characterized with respect to antigen binding and effects on cell viability in vitro. The best performing candidate seeMet 12 was then further assessed for effects on colorectal cancer cell growth, proliferation and migration. Combinations with the TKI-inhibitor sorafenib or external beam radiotherapy were then evaluated for potential additive or synergistic effects in vitro using monolayer- and multicellular tumor spheroid assays. Finally, the combination of seeMet 12 and radiotherapy was evaluated in vivo in a proof-of-concept colorectal cancer xenograft study. Results Dose-dependent therapeutic effects were demonstrated for all three cMet-targeting antibodies. Monotherapy using seeMet 12 resulted in impaired cellular migration/proliferation and reduced tumor spheroid growth. Moreover, seeMet 12 was able to potentiate therapeutic effects in vitro for both sorafenib and radiotherapy treatments. Finally, the in vivo therapy study demonstrated promising results, where a combination of seeMet 12 and fractionated radiotherapy increased median survival by 79% compared to radiotherapy alone, and tripled maximum survival. Conclusion The novel anti-cMet antibody seeMet 12 demonstrated therapeutic effects in cMet positive gastrointestinal cancer cells in vitro. Moreover, the addition of seeMet 12 augmented the effects of sorafenib and radiotherapy. An in vivo proof-of-concept study of seeMet 12 and radiotherapy further validated the results. Thus, cMet-targeted therapy should be further explored as a promising approach to increase therapeutic effects, circumvent treatment resistance, and reduce side effects.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Kartika Dyah Palupi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Julin Wong
- p53 Laboratory, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - David Philip Lane
- p53 Laboratory, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
The c-MET oncoprotein: Function, mechanisms of degradation and its targeting by novel anti-cancer agents. Biochim Biophys Acta Gen Subj 2020; 1864:129650. [PMID: 32522525 DOI: 10.1016/j.bbagen.2020.129650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The c-MET oncoprotein drives cancer progression in a variety of tumors through its signaling transduction pathways. This oncoprotein is also degraded by multiple mechanisms involving the lysosome, proteasome and cleavage by proteases. Targeting c-MET degradation pathways may result in effective therapeutic strategies. SCOPE OF REVIEW Since the discovery of oncogenic functions of c-MET, there has been a great deal of effort to develop anti-cancer drugs targeting this oncoprotein. Unexpectedly, novel di-2-pyridylketone thiosemicarbazones that demonstrate marked anti-tumor activity, down-regulate c-MET through their ability to bind intracellular iron and via mechanisms including, down-regulation of MET mRNA, enhanced lysosomal processing and increased metalloprotease-mediated cleavage. MAJOR CONCLUSIONS The c-MET oncoprotein regulation and degradation pathways are complex. However, with increasing understanding of its degradation mechanisms, there is also greater opportunities to therapeutically target these pathways. GENERAL SIGNIFICANCE Understanding the mechanisms of degradation of c-MET protein and its regulation could lead to novel therapeutics.
Collapse
|