1
|
Han R, Luo Y, Gao J, Zhou H, Wang Y, Chen J, Zheng G, Ling C. HDAC3: A Multifaceted Modulator in Immunotherapy Sensitization. Vaccines (Basel) 2025; 13:182. [PMID: 40006729 PMCID: PMC11860249 DOI: 10.3390/vaccines13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Histone deacetylase 3 (HDAC3) has emerged as a critical epigenetic regulator in tumor progression and immune modulation, positioning it as a promising target for enhancing cancer immunotherapy. This work comprehensively explores HDAC3's multifaceted roles, focusing on its regulation of key immune-modulatory pathways such as cGAS-STING, ferroptosis, and the Nrf2/HO-1 axis. These pathways are central to tumor immune evasion, antigen presentation, and immune cell activation. Additionally, the distinct effects of HDAC3 on various immune cell types-including its role in enhancing T cell activation, restoring NK cell cytotoxicity, promoting dendritic cell maturation, and modulating macrophage polarization-are thoroughly examined. These findings underscore HDAC3's capacity to reshape the tumor immune microenvironment, converting immunologically "cold tumors" into "hot tumors" and thereby increasing their responsiveness to immunotherapy. The therapeutic potential of HDAC3 inhibitors is highlighted, both as standalone agents and in combination with immune checkpoint inhibitors, to overcome resistance and improve treatment efficacy. Innovative strategies, such as the development of selective HDAC3 inhibitors, advanced nano-delivery systems, and integration with photodynamic or photothermal therapies, are proposed to enhance treatment precision and minimize toxicity. By addressing challenges such as toxicity, patient heterogeneity, and resistance mechanisms, this study provides a forward-looking perspective on the clinical application of HDAC3 inhibitors. It highlights its significant potential in personalized cancer immunotherapy, paving the way for more effective treatments and improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Rui Han
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yujun Luo
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jingdong Gao
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Oncology Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine Suzhou, Suzhou 215009, China
| | - Huiling Zhou
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yuqian Wang
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jiaojiao Chen
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Guoyin Zheng
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Changquan Ling
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
2
|
Liu Y, Cai L, Wang H, Yao L, Wu Y, Zhang K, Su Z, Zhou Y. BRD4 promotes immune escape of glioma cells by upregulating PD-L1 expression. J Neurooncol 2025; 171:669-679. [PMID: 39607572 DOI: 10.1007/s11060-024-04889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Glioblastoma multiforme (GBM) poses significant challenges in treatment due to its aggressive nature and immune escape mechanisms. Despite recent advances in immune checkpoint blockade therapies, GBM prognosis remains poor. The role of bromodomain and extraterminal domain (BET) protein BRD4 in GBM, especially its interaction with immune checkpoints, is not well understood. Our study aimed to explore the role of BRD4 in GBM, especially the immune aspects. METHODS In this study, we performed bioinformatics gene expression and survival analysis of BRD4 using TCGA and CGGA databases. In addition, we investigated the effects of BRD4 on glioma cell proliferation, invasion and migration by clone formation assay, Transwell assay, CCK8 assay and wound healing assay. Chromatin immunoprecipitation (ChIP) assay was conducted to confirm BRD4 binding to the programmed death ligand 1 (PD-L1) promoter. GL261 cells with BRD4 shRNA and/or PD-L1 cDNA were intracranially injected into mice to investigate tumor growth and survival time. Tumor tissue characteristics were analyzed using H&E and IHC staining and immune cell infiltration were assessed by flow cytometry. RESULTS The results showed that elevated expression of BRD4 in high-grade gliomas was associated with poor patient survival. In addition, we validated the promotional effects of BRD4 on glioma cell proliferation, invasion and migration. The results of ChIP experiments showed that BRD4 is a regulator of PD-L1 at the transcriptional level, implying that it is involved in the immune escape mechanism of glioma cells. In vivo studies showed that BRD4 knockdown inhibited tumor growth and reduced immunosuppression, improving prognosis. CONCLUSION BRD4 has the capability to regulate the growth of glioblastoma and enhance immune suppression by promoting PD-L1 expression. Targeting BRD4 represents a promising direction for future research and treatment.
Collapse
Affiliation(s)
- Yongsheng Liu
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lize Cai
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Wang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lin Yao
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Wu
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Zhang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zuopeng Su
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Youxin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Huang Z, Zeng L, Cheng B, Li D. Overview of class I HDAC modulators: Inhibitors and degraders. Eur J Med Chem 2024; 276:116696. [PMID: 39094429 DOI: 10.1016/j.ejmech.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Class I histone deacetylases (HDACs) are closely associated with the development of a diverse array of diseases, including cancer, neurodegenerative disorders, HIV, and inflammatory diseases. Considering the essential roles in tumorigenesis, class I HDACs have emerged as highly desirable targets for therapeutic strategies, particularly in the field of anticancer drug development. However, the conventional class I HDAC inhibitors faced several challenges such as acquired resistance, inherent toxicities, and limited efficacy in inhibiting non-enzymatic functions of HDAC. To address these problems, novel strategies have emerged, including the development of class I HDAC dual-acting inhibitors, targeted protein degradation (TPD) technologies such as PROTACs, molecular glues, and HyT degraders, as well as covalent inhibitors. This review provides a comprehensive overview of class I HDAC enzymes and inhibitors, by initially introducing their structure and biological roles. Subsequently, we focus on the recent advancements of class I HDAC modulators, including isoform-selective class I inhibitors, dual-target inhibitors, TPDs, and covalent inhibitors, from the perspectives of rational design principles, pharmacodynamics, pharmacokinetics, and clinical progress. Finally, we also provide the challenges and outlines future prospects in the realm of class I HDAC-targeted drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou, 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Guo F, Yang H, Bai X, Li J, Han W, Li W. Probing the mechanisms of hydrazide-based HDAC inhibitors binding to HDAC3 using Gaussian accelerated molecular dynamics (GaMD) simulations. J Biomol Struct Dyn 2023; 42:13779-13792. [PMID: 37937774 DOI: 10.1080/07391102.2023.2278085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Histone deacetylases (HDACs) have emerged as promising targets for anticancer drug development. They regulate gene expression by removing acetyl groups from lysine residues on histone tails, leading to chromatin condensation. A hydrazide-based HDAC inhibitor, N-(4-(2-Propylhydrazine-1-carbonyl)benzyl)-1H-indole-2-carboxamide (11h), has been reported to exhibit significant in vivo antitumor activity. In comparison to the lead compound N-(4-(2-Propylhydrazine-1-carbonyl)benzyl)cinnamamide (17), compound 11h demonstrates 2- to 5-fold higher HDAC inhibition and cell-based antitumor activity. However, the inhibitory mechanism of 11h remains insufficiently explored. In this study, we conducted 500 ns Gaussian Accelerated Molecular Dynamics (GaMD) simulations on Histone deacetylase 3 (HDAC3) and two complex systems (HDAC3-17 and HDAC3-11h). Our findings revealed that upon inhibitor binding, the active pocket volume of HDAC3 undergone alterations, and the movement of the L6-loop toward the active site impeded substrate entry. Moreover, we observed a destabilization of the α-helix in the aa75-89 region of HDAC3 compared to the two complex systems, indicating partial unwinding. Notably, 11h exhibited a closer proximity of its carbonyl oxygen to the active pocket's Zn2+ metal compared to 17, increasing the likelihood of coordination with the Zn2+ metal. The analysis of protein-ligand interactions highlighted a greater number of hydrogen bonds and other interactions between 11h and the receptor protein when compared to 17, underscoring the stronger binding of 11h to HDAC3. In conclusion, our study provided theoretical insights into the inhibitory mechanism of hydrazide-based HDAC inhibitors on HDAC3, thereby contributing to the development of improved drug targets for cancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fangfang Guo
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Hengzheng Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jiaying Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
6
|
Duan W, Yu M, Chen J. BRD4: New Hope in the Battle Against Glioblastoma. Pharmacol Res 2023; 191:106767. [PMID: 37061146 DOI: 10.1016/j.phrs.2023.106767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The BET family proteins, comprising BRD2, BRD3 and BRD4, represent epigenetic readers of acetylated histone marks that play pleiotropic roles in the tumorigenesis and growth of multiple human malignancies, including glioblastoma (GBM). A growing body of investigation has proven BET proteins as valuable therapeutic targets for cancer treatment. Recently, several BRD4 inhibitors and degraders have been reported to successfully suppress GBM in preclinical and clinical studies. However, the precise role and mechanism of BRD4 in the pathogenesis of GBM have not been fully elucidated or summarized. This review focuses on summarizing the roles and mechanisms of BRD4 in the context of the initiation and development of GBM. In addition, several BRD4 inhibitors have been evaluated for therapeutic purposes as monotherapy or in combination with chemotherapy, radiotherapy, and immune therapies. Here, we provide a critical appraisal of studies evaluating various BRD4 inhibitors and degraders as novel treatment strategies against GBM.
Collapse
Affiliation(s)
- Weichen Duan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
7
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
8
|
Zhang M, Li J, Wang Q, Urabe G, Tang R, Huang Y, Mosquera JV, Kent KC, Wang B, Miller CL, Guo LW. Gene-repressing epigenetic reader EED unexpectedly enhances cyclinD1 gene activation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:717-729. [PMID: 36923952 PMCID: PMC10009644 DOI: 10.1016/j.omtn.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Epigenetically switched, proliferative vascular smooth muscle cells (SMCs) form neointima, engendering stenotic diseases. Histone-3 lysine-27 trimethylation (H3K27me3) and acetylation (H3K27ac) marks are associated with gene repression and activation, respectively. The polycomb protein embryonic ectoderm development (EED) reads H3K27me3 and also enhances its deposition, hence is a canonical gene repressor. However, herein we found an unexpected role for EED in activating the bona fide pro-proliferative gene Ccnd1 (cyclinD1). EED overexpression in SMCs increased Ccnd1 mRNA, seemingly contradicting its gene-repressing function. However, consistently, EED co-immunoprecipitated with gene-activating H3K27ac reader BRD4, and they co-occupied at both mitogen-activated Ccnd1 and mitogen-repressed P57 (bona fide anti-proliferative gene), as indicated by chromatin immunoprecipitation qPCR. These results were abolished by an inhibitor of either the EED/H3K27me3 or BRD4/H3K27ac reader function. In accordance, elevating BRD4 increased H3K27me3. In vivo, while EED was upregulated in rat and human neointimal lesions, selective EED inhibition abated angioplasty-induced neointima and reduced cyclinD1 in rat carotid arteries. Thus, results uncover a previously unknown role for EED in Ccnd1 activation, likely via its cooperativity with BRD4 that enhances each other's reader function; i.e., activating pro-proliferative Ccnd1 while repressing anti-proliferative P57. As such, this study confers mechanistic implications for the epigenetic intervention of neointimal pathology.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Qingwei Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Go Urabe
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Runze Tang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - K. Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Clint L. Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Hong X, Zhang J, Zou J, Ouyang J, Xiao B, Wang P, Peng X. Role of COL6A2 in malignant progression and temozolomide resistance of glioma. Cell Signal 2023; 102:110560. [PMID: 36521657 DOI: 10.1016/j.cellsig.2022.110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gliomas are one of the most common primary malignant tumors of the central nervous system, and have an unfavorable prognosis. Even combining precise surgery, chemotherapy and radiotherapy, the survival rate is still unsatisfactory. Chemotherapy resistance is one of main reasons for its adverse prognosis. As shown by several studies, glioma stem cells (GSCs) were correlated with radiotherapy/chemotherapy resistance and high relapse rate. This study aimed to find a new biomarker related to GSCs and chemotherapy resistance. METHODS TCGA, CGGA, GSE16011, GSE23806 and GDSC datasets were used to screen the genes related to GSCs, Temozolomide (TMZ) resistance, and survival. In the TCGA, GTEx, GSE16011 and CGGA datasets, mRNA level, prognostic value, and correlation with immune infiltration in the selected genes were analyzed through methods including Kaplan-Meier analysis, Cox analysis, the ESTIMATE algorithm, and the CIBERSORT algorithm. The expression of COL6A2 mRNA and protein in different groups was detected by RT-qPCR and western blot. A MTT assay and flow cytometry were used to measure the effect of COL6A2 on proliferation and apoptosis of glioma cells. RESULTS COL6A2 was positively correlated with glioma stemness and TMZ resistance. Its expression was up-regulated in GBM, and high expression was correlated with adverse prognosis. As shown by Cox analysis, COL6A2 was an independent prognostic factor for glioma. COL6A2 mRNA was increased with the glioma grade. It was over-expressed in MGMT non-methylation and IDH wild-type specimens. The results of in vitro experiments showed that COL6A2 promots proliferation of glioma cells and inhibits their apoptosis. Meanwhile, the expression of COL6A2 in TMZ-resistant glioma cells was significantly higher than that in ordinary glioma cells. As shown by GO and KEGG pathway analysis, COL6A2 was correlated with glioma proliferation, migration, invasion, and immunity. In particular, it was significantly positively correlated with PD-1, PD-L2, PD-L1, B7-H3, CTLA-4, IDO1 and TIM-3 expression, further verifying that it may play an important role in immune response. In addition, COL6A2 might influence immune cell infiltration in the glioma microenvironment. CONCLUSION COL6A2 high-expression is an indicator for adverse glioma prognosis, and is correlated with TMZ-resistant and immune response. Meanwhile, it may be a prospective biomarker for treatment.
Collapse
Affiliation(s)
- Xia Hong
- Medical School of Jingchu University of Technology, Jingmen 448000, China
| | - Jingjing Zhang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Jianmin Zou
- The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, China
| | - Jiecai Ouyang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Boan Xiao
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Peng Wang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| | - Xiaobin Peng
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| |
Collapse
|
10
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
11
|
Multiprotein GLI Transcriptional Complexes as Therapeutic Targets in Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121967. [PMID: 36556332 PMCID: PMC9786339 DOI: 10.3390/life12121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The Hedgehog signaling pathway functions in both embryonic development and adult tissue homeostasis. Importantly, its aberrant activation is also implicated in the progression of multiple types of cancer, including basal cell carcinoma and medulloblastoma. GLI transcription factors function as the ultimate effectors of the Hedgehog signaling pathway. Their activity is regulated by this signaling cascade via their mRNA expression, protein stability, subcellular localization, and ultimately their transcriptional activity. Further, GLI proteins are also regulated by a variety of non-canonical mechanisms in addition to the canonical Hedgehog pathway. Recently, with an increased understanding of epigenetic gene regulation, novel transcriptional regulators have been identified that interact with GLI proteins in multi-protein complexes to regulate GLI transcriptional activity. Such complexes have added another layer of complexity to the regulation of GLI proteins. Here, we summarize recent work on the regulation of GLI transcriptional activity by these novel protein complexes and describe their relevance to cancer, as such GLI regulators represent alternative and innovative druggable targets in GLI-dependent cancers.
Collapse
|
12
|
Chen HM, Nikolic A, Singhal D, Gallo M. Roles of Chromatin Remodelling and Molecular Heterogeneity in Therapy Resistance in Glioblastoma. Cancers (Basel) 2022; 14:4942. [PMID: 36230865 PMCID: PMC9563350 DOI: 10.3390/cancers14194942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) represent a therapy-resistant reservoir in glioblastoma (GBM). It is now becoming clear that epigenetic and chromatin remodelling programs link the stemlike behaviour of CSCs to their treatment resistance. New evidence indicates that the epigenome of GBM cells is shaped by intrinsic and extrinsic factors, including their genetic makeup, their interactions and communication with other neoplastic and non-neoplastic cells, including immune cells, and their metabolic niche. In this review, we explore how all these factors contribute to epigenomic heterogeneity in a tumour and the selection of therapy-resistant cells. Lastly, we discuss current and emerging experimental platforms aimed at precisely understanding the epigenetic mechanisms of therapy resistance that ultimately lead to tumour relapse. Given the growing arsenal of drugs that target epigenetic enzymes, our review addresses promising preclinical and clinical applications of epidrugs to treat GBM, and possible mechanisms of resistance that need to be overcome.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ana Nikolic
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Divya Singhal
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
13
|
Wu S, Ren K, Zhao J, Li J, Jia B, Wu X, Dou Y, Fei X, Huan Y, He X, Wang T, Lv W, Wang L, Wang Y, Zhao J, Fei Z, Li S. LncRNA GAS5 represses stemness and malignancy of gliomas via elevating the SPACA6-miR-125a/let-7e Axis. Front Oncol 2022; 12:803652. [PMID: 36106122 PMCID: PMC9465381 DOI: 10.3389/fonc.2022.803652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is a highly invasive neurological malignancy with poor prognosis. LncRNA-GAS5 (growth arrest-specific transcript 5) is a tumor suppressor involved in multiple cancers. In this study, we explored the clinical significance, biological function, and underlying mechanisms of GAS5 in GBM. We showed that lncRNA-GAS5 expression decreased in high-grade glioma tissues and cells, which might be associated with poor prognosis. GAS5 overexpression lowered cell viability, suppressed GBM cell migration and invasion, and impaired the stemness and proliferation of glioma stem cells (GSCs). We further discovered that GAS5 inhibited the viability of glioma cells through miR-let-7e and miR-125a by protecting SPACA6 from degradation. Moreover, GAS5 played an anti-oncogenic role in GBM through the combined involvement of let-7e and miR-125a in vivo and in vitro. Notably, these two miRNAs block the IL-6/STAT3 pathway in tumor tissues extracted from a xenograft model. Taken together, our study provides evidence for an important role of GAS5 in GBM by affecting the proliferation and migration of GSCs, thus providing a new potential prognostic biomarker and treatment strategy for GBM.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Kaixi Ren
- Department of Neurology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Jing Zhao
- Department of Anesthesiology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Juan Li
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Bo Jia
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Tingting Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yan’gang Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Junlong Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Military Medical University, Xi’an, China
- *Correspondence: Sanzhong Li, ; Zhou Fei, ; Junlong Zhao,
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Sanzhong Li, ; Zhou Fei, ; Junlong Zhao,
| | - Sanzhong Li
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Sanzhong Li, ; Zhou Fei, ; Junlong Zhao,
| |
Collapse
|
14
|
Liu T, Zhang Z, Wang C, Huang H, Li Y. BRD4 promotes the migration and invasion of bladder cancer cells through the Sonic hedgehog signaling pathway and enhances cisplatin resistance. Biochem Cell Biol 2022; 100:179-187. [PMID: 35167374 DOI: 10.1139/bcb-2021-0552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platinum-based chemotherapy is a widely used strategy for bladder cancer (BCa) treatment. However, its clinical efficacy is affected by chemotherapy resistance via complex molecular mechanisms. Therefore, there is an urgent need to explore new targets for BCa therapy. Here, we showed that bromodomain-4 protein (BRD4) expression is upregulated in BCa tissues and cells. Inhibition of BRD4 attenuated the migration and invasion of BCa cells, which was rescued by the Sonic hedgehog (SHH) pathway activator recombinant human Sonic hedgehog peptide (rhSHH). We further found that cisplatin (DDP) suppressed the migration and invasion of BCa cells in vitro and inhibited tumor growth in vivo. However, overexpression of BRD4 weakened the pharmacological effects of DDP. In brief, our research revealed that BRD4 promotes migration and invasion by positively regulating the SHH pathway, drives DDP resistance in BCa, and is a novel therapeutic target for the treatment of BCa.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000 Guangdong, P.R. China.,Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001 Anhui, China
| | - Ze Zhang
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000 Guangdong, P.R. China.,Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001 Anhui, China
| | - Chong Wang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001 Anhui, China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China
| | - Yawei Li
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000 Guangdong, P.R. China
| |
Collapse
|
15
|
Jiang L, Hao Y, Shao C, Wu Q, Prager BC, Gimple RC, Sulli G, Kim LJ, Zhang G, Qiu Z, Zhu Z, Fu XD, Rich JN. ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. J Clin Invest 2022; 132:143397. [PMID: 35133980 PMCID: PMC8920333 DOI: 10.1172/jci143397] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, containing GBM stem cells (GSCs) that contribute to therapeutic resistance and relapse. Exposing potential GSC vulnerabilities may provide therapeutic strategies against GBM. Here, we interrogated the role of Adenosine-to-Inosine (A-to-I) RNA editing mediated by ADAR1 (adenosine deaminase acting on RNA 1) in GSCs and found that both ADAR1 and global RNA editomes were elevated in GSCs compared to normal neural stem cells (NSCs). ADAR1 inactivation or blocking the upstream JAK/STAT pathway through TYK2 inhibition impaired GSC self-renewal and stemness. Downstream of ADAR1, RNA editing of the 3'UTR of GM2A, a key ganglioside catabolism activator, proved to be critical, as interfering with ganglioside catabolism showed similar functional impact on GSCs as ADAR1 disruption. These findings reveal RNA editing links ganglioside catabolism to GSC self-renewal and stemness, exposing a potential vulnerability of GBM for therapeutic intervention.
Collapse
Affiliation(s)
- Li Jiang
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Yajing Hao
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Qiulian Wu
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Briana C Prager
- Stem Cell Biology, Cleveland Clinic, Cleveland, United States of America
| | - Ryan C Gimple
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Gabriele Sulli
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Leo Jk Kim
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Guoxin Zhang
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Zhixin Qiu
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Zhe Zhu
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Jeremy N Rich
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
16
|
Kumbhar N, Nimal S, Barale S, Kamble S, Bavi R, Sonawane K, Gacche R. Identification of novel leads as potent inhibitors of HDAC3 using ligand-based pharmacophore modeling and MD simulation. Sci Rep 2022; 12:1712. [PMID: 35110603 PMCID: PMC8810932 DOI: 10.1038/s41598-022-05698-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023] Open
Abstract
In the landscape of epigenetic regulation, histone deacetylase 3 (HDAC3) has emerged as a prominent therapeutic target for the design and development of candidate drugs against various types of cancers and other human disorders. Herein, we have performed ligand-based pharmacophore modeling, virtual screening, molecular docking, and MD simulations to design potent and selective inhibitors against HDAC3. The predicted best pharmacophore model 'Hypo 1' showed excellent correlation (R2 = 0.994), lowest RMSD (0.373), lowest total cost value (102.519), and highest cost difference (124.08). Hypo 1 consists of four salient pharmacophore features viz. one hydrogen bond acceptor (HBA), one ring aromatic (RA), and two hydrophobic (HYP). Hypo 1 was validated by Fischer's randomization with a 95% of confidence level and the external test set of 60 compounds with a good correlation coefficient (R2 = 0.970). The virtual screening of chemical databases, drug-like properties calculations followed by molecular docking resulted in identifying 22 representative hit compounds. Performed 50 ns of MD simulations on top three hits were retained the salient π-stacking, Zn2+ coordination, hydrogen bonding, and hydrophobic interactions with catalytic residues from the active site pocket of HDAC3. Total binding energy calculated by MM-PBSA showed that the Hit 1 and Hit 2 formed stable complexes with HDAC3 as compared to reference TSA. Further, the PLIP analysis showed a close resemblance between the salient pharmacophore features of Hypo 1 and the presence of molecular interactions in co-crystallized FDA-approved drugs. We conclude that the screened hit compounds may act as potent inhibitors of HDAC3 and further preclinical and clinical studies may pave the way for developing them as effective therapeutic agents for the treatment of different cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India
| | - Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India
| | - Sagar Barale
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Subodh Kamble
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Rohit Bavi
- School of Chemical Science, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, Maharashtra (MS), 413255, India
| | - Kailas Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Rajesh Gacche
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India.
| |
Collapse
|
17
|
Chromatin insulation dynamics in glioblastoma: challenges and future perspectives of precision oncology. Clin Epigenetics 2021; 13:150. [PMID: 34332627 PMCID: PMC8325855 DOI: 10.1186/s13148-021-01139-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, having a poor prognosis and a median overall survival of less than two years. Over the last decade, numerous findings regarding the distinct molecular and genetic profiles of GBM have led to the emergence of several therapeutic approaches. Unfortunately, none of them has proven to be effective against GBM progression and recurrence. Epigenetic mechanisms underlying GBM tumor biology, including histone modifications, DNA methylation, and chromatin architecture, have become an attractive target for novel drug discovery strategies. Alterations on chromatin insulator elements (IEs) might lead to aberrant chromatin remodeling via DNA loop formation, causing oncogene reactivation in several types of cancer, including GBM. Importantly, it is shown that mutations affecting the isocitrate dehydrogenase (IDH) 1 and 2 genes, one of the most frequent genetic alterations in gliomas, lead to genome-wide DNA hypermethylation and the consequent IE dysfunction. The relevance of IEs has also been observed in a small population of cancer stem cells known as glioma stem cells (GSCs), which are thought to participate in GBM tumor initiation and drug resistance. Recent studies revealed that epigenomic alterations, specifically chromatin insulation and DNA loop formation, play a crucial role in establishing and maintaining the GSC transcriptional program. This review focuses on the relevance of IEs in GBM biology and their implementation as a potential theranostic target to stratify GBM patients and develop novel therapeutic approaches. We will also discuss the state-of-the-art emerging technologies using big data analysis and how they will settle the bases on future diagnosis and treatment strategies in GBM patients.
Collapse
|
18
|
Yang H, Wei L, Xun Y, Yang A, You H. BRD4: An emerging prospective therapeutic target in glioma. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:1-14. [PMID: 33851008 PMCID: PMC8010576 DOI: 10.1016/j.omto.2021.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite advances in treatment, the prognosis for glioma patients remains poor. Bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extraterminal (BET) protein family, plays an important role in controlling oncogene expression and genome stability. In recent years, numerous BRD4 inhibitors have entered clinical trials and achieved exciting results in tumor treatment. Recent clinical studies have shown that BRD4 expression in glioma is significantly higher than in the adjacent normal brain tissue. BRD4 inhibitors effectively penetrate the blood-brain barrier and target glioma tumor tissues but have little effect on normal brain tissues. Thus, BRD4 is a target for the treatment of glioma. In this study, we discuss the progress in the use of BRD4 inhibitors for glioma treatment, their mechanism of action, and their broad potential clinical application.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Li Wei
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Anping Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| |
Collapse
|