1
|
Yi X, Wang Q, Zhang M, Shu Q, Zhu J. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2024; 178:117217. [PMID: 39079260 DOI: 10.1016/j.biopha.2024.117217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Doxorubicin (DOX), a commonly used chemotherapy drug, is hindered due to its tendency to induce cardiotoxicity (DIC). Ferroptosis, a novel mode of programmed cell death, has received substantial attention for its involvement in DIC. Recently, natural product-derived ferroptosis regulator emerged as a potential strategy for treating DIC. In this review, a comprehensive search was conducted across PubMed, Web of Science, Google Scholar, and ScienceDirect databases to gather relevant articles on the use of natural products for treating DIC in relation to ferroptosis. The available papers were carefully reviewed to summarize the therapeutic effects and underlying mechanisms of natural products in modulating ferroptosis for DIC treatment. It was found that ferroptosis plays an important role in DIC pathogenesis, with dysregulated expression of ferroptosis-related proteins strongly implicated in the condition. Natural products, such as flavonoids, polyphenols, terpenoids, and quinones can act as GPX4 activators, Nrf2 agonists, and lipid peroxidation inhibitors, thereby enhancing cell viability, attenuating myocardial fibrosis, improving cardiac function, and suppressing ferroptosis in both in vitro and in vivo models of DIC. This review demonstrates a strong correlation between DOX-induced cardiac ferroptosis and key proteins, such as GPX4, Keap1, Nrf2, AMPK, and HMOX1. Natural products are likely to exert therapeutic effects against DIC by modulating the activity of these proteins.
Collapse
Affiliation(s)
- Xiaojiao Yi
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Wang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Mengjie Zhang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Shu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Junfeng Zhu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
2
|
Cai H, Chen L, Yang S, Jiang R, Guo Y, He M, Luo Y, Hong G, Li H, Song K. Personalized differential expression analysis in triple-negative breast cancer. Brief Funct Genomics 2024; 23:495-506. [PMID: 38197537 DOI: 10.1093/bfgp/elad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
Identification of individual-level differentially expressed genes (DEGs) is a pre-step for the analysis of disease-specific biological mechanisms and precision medicine. Previous algorithms cannot balance accuracy and sufficient statistical power. Herein, RankCompV2, designed for identifying population-level DEGs based on relative expression orderings, was adjusted to identify individual-level DEGs. Furthermore, an optimized version of individual-level RankCompV2, named as RankCompV2.1, was designed based on the assumption that the rank positions of genes and relative rank differences of gene pairs would influence the identification of individual-level DEGs. In comparison to other individualized analysis algorithms, RankCompV2.1 performed better on statistical power, computational efficiency, and acquired coequal accuracy in both simulation and real paired cancer-normal data from ten cancer types. Besides, single sample GSEA and Gene Set Variation Analysis analysis showed that pathways enriched with up-regulated and down-regulated genes presented higher and lower enrichment scores, respectively. Furthermore, we identified 16 genes that were universally deregulated in 966 triple-negative breast cancer (TNBC) samples and interacted with Food and Drug Administration (FDA)-approved drugs or antineoplastic agents, indicating notable therapeutic targets for TNBC. In addition, we also identified genes with highly variable deregulation status and used these genes to cluster TNBC samples into three subgroups with different prognoses. The subgroup with the poorest outcome was characterized by down-regulated immune-regulated pathways, signal transduction pathways, and apoptosis-related pathways. Protein-protein interaction network analysis revealed that OAS family genes may be promising drug targets to activate tumor immunity in this subgroup. In conclusion, RankCompV2.1 is capable of identifying individual-level DEGs with high accuracy and statistical power, analyzing mechanisms of carcinogenesis and exploring therapeutic strategy.
Collapse
Affiliation(s)
- Hao Cai
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Liangbo Chen
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - Shuxin Yang
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - Ronghong Jiang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - You Guo
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ming He
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yun Luo
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Guini Hong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Hongdong Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Kai Song
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Messeha SS, Zarmouh NO, Maku H, Gendy S, Yedjou CG, Elhag R, Latinwo L, Odewumi C, Soliman KFA. Prognostic and Therapeutic Implications of Cell Division Cycle 20 Homolog in Breast Cancer. Cancers (Basel) 2024; 16:2546. [PMID: 39061186 PMCID: PMC11274456 DOI: 10.3390/cancers16142546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Cell division cycle 20 homolog (CDC20) is a well-known regulator of cell cycle progression. Abnormal expression of CDC20 leads to mitotic defects, which play a significant role in cancer development. In breast cancer (BC), CDC20 has been identified as a biomarker that has been linked to poor patient outcomes. In this study, we investigated the association of CDC20 with BC prognosis and immune cell infiltration by using multiple online databases, including UALCAN, KM plotter, TIMER2.0, HPA, TNM-plot, bc-GenExMiner, LinkedOmics, STRING, and GEPIA. The results demonstrate that BC patients have an elevated CDC20 expression in tumor tissues compared with the adjacent normal tissue. In addition, BC patients with overexpressed CDC20 had a median survival of 63.6 months compared to 169.2 months in patients with low CDC20 expression. Prognostic analysis of the examined data indicated that elevated expression of CDC20 was associated with poor prognosis and a reduction of overall survival in BC patients. These findings were even more prevalent in chemoresistance triple-negative breast cancer (TNBC) patients. Furthermore, the Gene Set Enrichment Analysis tool indicated that CDC20 regulates BC cells' cell cycle and apoptosis. CDC20 also significantly correlates with increased infiltrating B cells, CD4+ T cells, neutrophils, and dendritic cells in BC. In conclusion, the findings of this study suggest that CDC20 may be involved in immunomodulating the tumor microenvironment and provide evidence that CDC20 inhibition may serve as a potential therapeutic approach for the treatment of BC patients. In addition, the data indicates that CDC20 can be a reliable prognostic biomarker for BC.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
- College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL 32307, USA
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan Ministry of Technical & Vocational Education, Misrata LY72, Libya;
| | - Henrietta Maku
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Sherif Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Clement G. Yedjou
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Rashid Elhag
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Lekan Latinwo
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Caroline Odewumi
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Karam F. A. Soliman
- College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL 32307, USA
| |
Collapse
|
4
|
Sultana N, Elford HL, Faridi JS. Targeting the Cell Cycle, RRM2 and NF-κB for the Treatment of Breast Cancers. Cancers (Basel) 2024; 16:975. [PMID: 38473336 DOI: 10.3390/cancers16050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
A hallmark of cancer is the dysregulation of the cell cycle. The CDK4/6 inhibitor palbociclib is approved for treating advanced estrogen-receptor-positive breast cancer, but its success is limited by the development of acquired resistance owing to long-term therapy despite promising clinical outcomes. This situation necessitates the development of potential combination strategies. Here, we report that didox, an inhibitor of ribonucleotide reductase in combination with palbociclib, can overcome palbociclib resistance in ER-positive and ER-negative breast cancers. This study shows didox downregulates an element of the cell cycle checkpoint, cyclin D1, accompanied by a reduction in NF-κB activity in vitro and tumor growth inhibition of palbociclib-resistant ER positive breast cancer tumor growth in vivo. Furthermore, didox induces cell cycle arrest at G1 as well as reduces ROS generated by on-target effects of palbociclib on the cell cycle. Our current study also reports that the CCND1 and RRM2 upregulation associated with palbociclib-resistant breast cancers decreases upon ribonucleotide reductase inhibition. Our data present a novel and promising biomarker-driven combination therapeutic approach for the treatment of ER-positive and ER-negative breast cancers that involves the inhibition of the CDK4/6-cyclinD1/pRb cell cycle axis that merits further clinical investigation in human models.
Collapse
Affiliation(s)
- Nahid Sultana
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | | | - Jesika S Faridi
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
5
|
Mahieu CI, Mancini AG, Vikram EP, Planells-Palop V, Joseph NM, Tward AD. ORAOV1, CCND1, and MIR548K Are the Driver Oncogenes of the 11q13 Amplicon in Squamous Cell Carcinoma. Mol Cancer Res 2024; 22:152-168. [PMID: 37930255 PMCID: PMC10831340 DOI: 10.1158/1541-7786.mcr-23-0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/29/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
11q13 amplification is a frequent event in human cancer and in particular in squamous cell carcinomas (SCC). Despite almost invariably spanning 10 genes, it is unclear which genetic components of the amplicon are the key driver events in SCC. A combination of computational, in vitro, ex vivo, and in vivo models leveraging efficient primary human keratinocyte genome editing by Cas9-RNP electroporation, identified ORAOV1, CCND1, and MIR548K as the critical drivers of the amplicon in head and neck SCC. CCND1 amplification drives the cell cycle in a CDK4/6/RB1-independent fashion and may confer a novel dependency on RRM2. MIR548K contributes to epithelial-mesenchymal transition. Finally, we identify ORAOV1 as an oncogene that acts likely via its ability to modulate reactive oxygen species. Thus, the 11q13 amplicon drives SCC through at least three independent genetic elements and suggests therapeutic targets for this morbid and lethal disease. IMPLICATIONS This work demonstrates novel mechanisms and ways to target these mechanisms underlying the most common amplification in squamous cell carcinoma, one of the most prevalent and deadly forms of human cancer.
Collapse
Affiliation(s)
- Céline I. Mahieu
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| | | | - Ellee P. Vikram
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| | - Vicente Planells-Palop
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| | - Nancy M. Joseph
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Aaron D. Tward
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| |
Collapse
|
6
|
Giang LH, Wu KS, Lee WC, Chu SS, Do AD, Changou CA, Tran HM, Hsieh TH, Chen HH, Hsieh CL, Sung SY, Yu AL, Yen Y, Wong TT, Chang CC. Targeting of RRM2 suppresses DNA damage response and activates apoptosis in atypical teratoid rhabdoid tumor. J Exp Clin Cancer Res 2023; 42:346. [PMID: 38124207 PMCID: PMC10731702 DOI: 10.1186/s13046-023-02911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumors (ATRT) is a rare but aggressive malignancy in the central nervous system, predominantly occurring in early childhood. Despite aggressive treatment, the prognosis of ATRT patients remains poor. RRM2, a subunit of ribonucleotide reductase, has been reported as a biomarker for aggressiveness and poor prognostic conditions in several cancers. However, little is known about the role of RRM2 in ATRT. Uncovering the role of RRM2 in ATRT will further promote the development of feasible strategies and effective drugs to treat ATRT. METHODS Expression of RRM2 was evaluated by molecular profiling analysis and was confirmed by IHC in both ATRT patients and PDX tissues. Follow-up in vitro studies used shRNA knockdown RRM2 in three different ATRT cells to elucidate the oncogenic role of RRM2. The efficacy of COH29, an RRM2 inhibitor, was assessed in vitro and in vivo. Western blot and RNA-sequencing were used to determine the mechanisms of RRM2 transcriptional activation in ATRT. RESULTS RRM2 was found to be significantly overexpressed in multiple independent ATRT clinical cohorts through comprehensive bioinformatics and clinical data analysis in this study. The expression level of RRM2 was strongly correlated with poor survival rates in patients. In addition, we employed shRNAs to silence RRM2, which led to significantly decrease in ATRT colony formation, cell proliferation, and migration. In vitro experiments showed that treatment with COH29 resulted in similar but more pronounced inhibitory effect. Therefore, ATRT orthotopic mouse model was utilized to validate this finding, and COH29 treatment showed significant tumor growth suppression and prolong overall survival. Moreover, we provide evidence that COH29 treatment led to genomic instability, suppressed homologous recombinant DNA damage repair, and subsequently induced ATRT cell death through apoptosis in ATRT cells. CONCLUSIONS Collectively, our study uncovers the oncogenic functions of RRM2 in ATRT cell lines, and highlights the therapeutic potential of targeting RRM2 in ATRT. The promising effect of COH29 on ATRT suggests its potential suitability for clinical trials as a novel therapeutic approach for ATRT.
Collapse
Affiliation(s)
- Le Hien Giang
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Biology and Genetics, Hai Phong University of Medicine and Pharmacy, Hai Phong, 180000, Vietnam
| | - Kuo-Sheng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wei-Chung Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Shing-Shung Chu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Anh Duy Do
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700000, Vietnam
| | - Chun A Changou
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Huy Minh Tran
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, 700000, Vietnam
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 110, Taiwan
| | - Hsin-Hung Chen
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- Laboratory of Translational Medicine, Development Center for Biotechnology, Taipei, 115, Taiwan
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 333, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yun Yen
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tai-Tong Wong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, 110, Taiwan
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan
- TMU Research Center for Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Che-Chang Chang
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
- TMU Research Center for Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 6F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 23564, Taiwan.
| |
Collapse
|
7
|
A phthalocyanine-based photosensitizer for effectively combating triple negative breast cancer with enhanced photodynamic anticancer activity and immune response. Eur J Med Chem 2022; 241:114644. [PMID: 35939997 DOI: 10.1016/j.ejmech.2022.114644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/01/2023]
Abstract
Although photodynamic therapy (PDT) has attracted great interest, the photosensitizers in clinical had weak inhibition on metastasis and invasion of cancers. Additionally the immune response induced by PDT was insufficient to eradicate cancer. Herein, indoximod, an inhibitor of indoleamine 2,3-dioxygenase (IDO), is introduced to concatenate with zinc phthalocyanines (ZnPc) for effectively overcoming above inadequacy. Due to indoximod moiety, photosensitizer 1-MT-Pc can obtain enhanced intracellular uptake and high reactive oxygen species (ROS) generation. More impressively, 1-MT-Pc can achieve remarkable photocytotoxicity towards TNBC cells and negligible damage to normal cells. Meanwhile, 1-MT-Pc effectively inhibits metastasis and invasion of TNBC cells. Importantly, 1-MT-Pc exhibit elevated inhibitory effect on 4T1 tumor by enhanced PDT and immunotherapy.
Collapse
|
8
|
Wen Y, Zhu M, Zhang X, Xiao H, Wei Y, Zhao P. Integrated analysis of multiple bioinformatics studies to identify microRNA-target gene-transcription factor regulatory networks in retinoblastoma. Transl Cancer Res 2022; 11:2225-2237. [PMID: 35966326 PMCID: PMC9372260 DOI: 10.21037/tcr-21-1748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Background In children, retinoblastoma (RB) is one of the most common primary malignant ocular tumors and has a poor prognosis and high mortality. To understand the molecular mechanisms of RB, we identified microRNAs (miRNAs), key genes and transcription factors (TFs) using bioinformatics analysis to build potential miRNA-gene-TF networks. Methods We collected three gene expression profiles and one miRNA expression profile from the Gene Expression Omnibus (GEO) database. We used the limma R package to identify overlapping differentially expressed genes (DEGs) and differentially expressed miRNAs in RB tissues compared to noncancer tissues. The robust rank aggregation (RRA) method was implemented to identify key genes among the DEGs. Then, miRNA-key gene-TF networks were built using the online tools TransmiR and miRTarBase. Next, we used RT-qPCR to confirm the results. Results We identified 180 DEGs in RB tissues compared to nontumor tissues using integrative analysis, among which 109 genes were upregulated and 71 were downregulated. Gene ontology (GO) analysis revealed that these DEGs were primarily involved with chromosome segregation, condensed chromosome and DNA replication origin binding. The most highly enriched pathways obtained in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were cell cycle, DNA replication, homologous recombination, P53 signaling pathway and pyrimidine metabolism. Furthermore, two key differentially expressed miRNAs (DEMs) were also established: let-7a and let-7b. Finally, the potential regulatory networks of miRNA-target gene-TFs were examined. Conclusions This study identified key genes and built miRNA-target gene-TF regulatory networks in RB, which will deepen our understanding of the molecular mechanisms involved in the development of RB. These key genes and miRNAs may be potential targets and biomarkers for RB diagnosis and therapy.
Collapse
Affiliation(s)
- Yanjun Wen
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Maolin Zhu
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Xuerui Zhang
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Haodong Xiao
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wei
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China.,Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
An C, Wang M, Yao W. Exhausting hsa_circ_0072088 restrains proliferation, motility and angiogenesis of breast carcinoma cells through regulating miR-1236-3p and RRM2 in a ceRNA pathway. Clin Breast Cancer 2022. [DOI: 10.1016/j.clbc.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Lewoniewska S, Oscilowska I, Huynh TYL, Prokop I, Baszanowska W, Bielawska K, Palka J. Troglitazone-Induced PRODH/POX-Dependent Apoptosis Occurs in the Absence of Estradiol or ERβ in ER-Negative Breast Cancer Cells. J Clin Med 2021; 10:jcm10204641. [PMID: 34682765 PMCID: PMC8538344 DOI: 10.3390/jcm10204641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary PRODH/POX (proline dehydrogenase/proline oxidase) is a mitochondrial enzyme that catalyzes proline degradation generating reactive oxygen species (ROS). Estrogens limit proline availability for PRODH/POX by stimulating collagen biosynthesis. It has been considered that estrogens determine efficiency of troglitazone (TGZ)-induced PRODH/POX-dependent apoptosis in breast cancer cells. The studies were performed in wild-type and PRODH/POX-silenced estrogen-dependent MCF-7 cells and estrogen-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, ROS production was measured by fluorescence assay, protein expression was determined by Western blot and proline concentration by LC/MS analysis. We found that: i/TGZ-induced apoptosis in MDA-MB-231 occurs only in the absence of estradiol or ERβ, ii/the process is mediated by PRODH/POX, iii/and is facilitated by proline availability for PRODH/POX by TGZ-dependent inhibition of collagen biosynthesis (proline utilizing process). The data suggest that combined TGZ and anti-estrogen treatment could be considered in experimental therapy of ER negative breast cancers. Abstract The impact of estradiol on troglitazone (TGZ)-induced proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied in wild-type and PRODH/POX-silenced estrogen receptor (ER) dependent MCF-7 cells and ER-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, prolidase activity evaluated by colorimetric method, ROS production was measured by fluorescence assay. Protein expression was determined by Western blot and proline concentration by LC/MS analysis. PRODH/POX degrades proline yielding reactive oxygen species (ROS). Estrogens stimulate collagen biosynthesis utilizing free proline and limiting its availability for PRODH/POX-dependent apoptosis. TGZ cytotoxicity was highly pronounced in wild-type MDA-MB-231 cells cultured in medium without estradiol or in the cells cultured in medium with estradiol but deprived of ERβ (by ICI-dependent degradation), while in PRODH/POX-silenced cells the process was not affected. The TGZ cytotoxicity was accompanied by increase in PRODH/POX expression, ROS production, expression of cleaved caspase-3, caspase-9 and PARP, inhibition of collagen biosynthesis, prolidase activity and decrease in intracellular proline concentration. The phenomena were not observed in PRODH/POX-silenced cells. The data suggest that TGZ-induced apoptosis in MDA-MB-231 cells cultured in medium without estradiol or deprived of ERβ is mediated by PRODH/POX and the process is facilitated by proline availability for PRODH/POX by TGZ-dependent inhibition of collagen biosynthesis. It suggests that combined TGZ and antiestrogen treatment could be considered in experimental therapy of estrogen receptor negative breast cancers.
Collapse
Affiliation(s)
- Sylwia Lewoniewska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Ilona Oscilowska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Thi Yen Ly Huynh
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Izabela Prokop
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Weronika Baszanowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Katarzyna Bielawska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
- Correspondence: ; Tel.: +48-85-748-5706
| |
Collapse
|