1
|
Cruz-Collazo AM, Katsara O, Grafals-Ruiz N, Gonzalez JC, Dorta-Estremera S, Carlo VP, Chorna N, Schneider RJ, Dharmawardhane S. Novel Inhibition of Central Carbon Metabolism Pathways by Rac and CDC42 inhibitor MBQ167 and Paclitaxel. Mol Cancer Ther 2024; 23:1613-1625. [PMID: 39087451 PMCID: PMC11534544 DOI: 10.1158/1535-7163.mct-23-0803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Triple negative breast cancer (TNBC) represents a therapeutic challenge in which standard chemotherapy is limited to paclitaxel. MBQ167, a clinical stage small molecule inhibitor that targets Rac and Cdc42, inhibits tumor growth and metastasis in mouse models of TNBC. Herein, we investigated the efficacy of MBQ167 in combination with paclitaxel in TNBC preclinical models, as a prelude to safety trials of this combination in patients with advanced breast cancer. Individual MBQ167 or combination therapy with paclitaxel was more effective at reducing TNBC cell viability and increasing apoptosis compared with paclitaxel alone. In orthotopic mouse models of human TNBC (MDA-MB231 and MDA-MB468), individual MBQ167, paclitaxel, or the combination reduced mammary tumor growth with similar efficacy, with no apparent liver toxicity. However, paclitaxel single agent treatment significantly increased lung metastasis, whereas MBQ167, single or combined, reduced lung metastasis. In the syngeneic 4T1/BALB/c model, combined MBQ167 and paclitaxel decreased established lung metastases by ∼80%. To determine the molecular basis for the improved efficacy of the combined treatment on metastasis, 4T1 tumor extracts from BALB/c mice treated with MBQ167, paclitaxel, or the combination were subjected to transcriptomic analysis. Gene set enrichment identified specific downregulation of central carbon metabolic pathways by the combination of MBQ167 and paclitaxel but not individual compounds. Biochemical validation, by immunoblotting and metabolic Seahorse analysis, shows that combined MBQ167 and paclitaxel reduces glycolysis. This study provides a strong rationale for the clinical testing of MBQ167 in combination with paclitaxel as a potential therapeutic for TNBC and identifies a unique mechanism of action.
Collapse
Affiliation(s)
- Ailed M. Cruz-Collazo
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Olga Katsara
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Nilmary Grafals-Ruiz
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Jessica Colon Gonzalez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Stephanie Dorta-Estremera
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
- Cancer Biology Division, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR
| | | | - Nataliya Chorna
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Robert J Schneider
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
- Cancer Biology Division, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR
- MBQ Pharma, Inc., San Juan, PR
| |
Collapse
|
2
|
Zhang Q, Qin Z, Wang Q, Lu L, Wang J, Lu M, Wang P, Liu D, Zhou C, Liu Z. Pharmacokinetic profiling of ZCL-278, a cdc42 inhibitor, and its effectiveness against chronic kidney disease. Biomed Pharmacother 2024; 179:117329. [PMID: 39180793 DOI: 10.1016/j.biopha.2024.117329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
ZCL-278 is a selective small molecule specifically inhibiting the Cdc42-intersectin interaction, yet its in-vivo pharmacokinetic and pharmacodynamic properties against renal diseases had not been determined. Thus, our study explored the absorption, distribution and excretion of ZCL-278 as well as its pharmacological efficacy against chronic kidney disease (CKD). With the optimized detection method, absolute oral bioavailability of ZCL-278 was determined as 10.99 % in male and 17.34 % in female rats. ZCL-278 was rapidly and abundantly distributed in various tissues, especially the kidney and heart, while few excreted through urine and feces. In the adenine-induced CKD mice, the increased plasma creatinine and urea, the decreased body weight as well as the renal pathological alterations, including vacuolization of renal tubular epithelial cells, granular degeneration, cell flattening, luminal dilation, and cylindruria, were significantly ameliorated after ZCL-278 administration. Moreover, ZCL-278 could also reverse the increased intensities of renal inflammation and fibrosis in the CKD mice. These results clarified the pharmacokinetics of ZCL-278 in rats and preliminarily indicated that ZCL-278 has favorable pharmacodynamic properties for CKD primed for lead development and optimization, warranting further drug development.
Collapse
Affiliation(s)
- Qing Zhang
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhiying Qin
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China; Henan Engineering Research Center for Application and Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qiang Wang
- Department of Nephrology, The Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Liqian Lu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jiao Wang
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Manman Lu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Pei Wang
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Chunyu Zhou
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China; Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| |
Collapse
|
3
|
Shen J, Su X, Wang S, Wang Z, Zhong C, Huang Y, Duan S. RhoJ: an emerging biomarker and target in cancer research and treatment. Cancer Gene Ther 2024; 31:1454-1464. [PMID: 38858534 DOI: 10.1038/s41417-024-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ's expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ's effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shana Wang
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Xia L, Lu J, Qin Y, Huang R, Kong F, Deng Y. Analysis of chromatin accessibility in peripheral blood mononuclear cells from patients with early-stage breast cancer. Front Pharmacol 2024; 15:1465586. [PMID: 39376611 PMCID: PMC11456436 DOI: 10.3389/fphar.2024.1465586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
Objective: This study was aimed at exploring a specific open region of chromatin in the peripheral blood mononuclear cells (PBMCs) of patients with breast cancer and evaluating its feasibility as a biomarker for diagnosing and predicting breast cancer prognosis. Methods: We obtained PBMCs from breast cancer patients and healthy people for the assay for transposase-accessible chromatin (ATAC) sequencing (n = 3) and obtained the GSE27562 chip sequencing data for secondary analyses. Through bioinformatics analysis, we mined the pattern changes for chromatin accessibility in the PBMCs of breast cancer patients. Results: A total of 1,906 differentially accessible regions (DARs) and 1,632 differentially expressed genes (DEGs) were identified via ATAC sequencing. The upregulated DEGs in the disease group were mainly distributed in the cells, organelles, and cell-intima-related structures and were mainly responsible for biological functions such as cell nitrogen complex metabolism, macromolecular metabolism, and cell communication, in addition to functions such as nucleic acid binding, enzyme binding, hydrolase reaction, and transferase activity. Combined with microarray data analysis, the following set of nine DEGs showed intersection between the ATAC and microarray data: JUN, MSL2, CDC42, TRIB1, SERTAD3, RAB14, RHOB, RAB40B, and PRKDC. HOMER predicted and identified five transcription factors that could potentially bind to these peak sites, namely NFY, Sp 2, GFY, NRF, and ELK 1. Conclusion: Chromatin accessibility analysis of the PBMCs from patients with early-stage breast cancer underscores its potential as a significant avenue for biomarker discovery in breast cancer diagnostics and treatment. By screening the transcription factors and DEGs related to breast cancer, this study provides a comprehensive theoretical foundation that is expected to guide future clinical applications and therapeutic developments.
Collapse
Affiliation(s)
- Longjie Xia
- Department of Cosmetology and Plastic Surgery Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou, China
| | - Jiamin Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yixuan Qin
- Department of Cosmetology and Plastic Surgery Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Runchun Huang
- Department of Cosmetology and Plastic Surgery Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Fanbiao Kong
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yu Deng
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Bannoura SF, Khan HY, Uddin MH, Mohammad RM, Pasche BC, Azmi AS. Targeting guanine nucleotide exchange factors for novel cancer drug discovery. Expert Opin Drug Discov 2024; 19:949-959. [PMID: 38884380 PMCID: PMC11380440 DOI: 10.1080/17460441.2024.2368242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Guanine nucleotide exchange factors (GEFs) regulate the activation of small GTPases (G proteins) of the Ras superfamily proteins controlling cellular functions. Ras superfamily proteins act as 'molecular switches' that are turned 'ON' by guanine exchange. There are five major groups of Ras family GTPases: Ras, Ran, Rho, Rab and Arf, with a variety of different GEFs regulating their GTP loading. GEFs have been implicated in various diseases including cancer. This makes GEFs attractive targets to modulate signaling networks controlled by small GTPases. AREAS COVERED In this review, the roles and mechanisms of GEFs in malignancy are outlined. The mechanism of guanine exchange activity by GEFs on a small GTPase is illustrated. Then, some examples of GEFs that are significant in cancer are presented with a discussion on recent progress in therapeutic targeting efforts using a variety of approaches. EXPERT OPINION Recently, GEFs have emerged as potential therapeutic targets for novel cancer drug development. Targeting small GTPases is challenging; thus, targeting their activation by GEFs is a promising strategy. Most GEF-targeted drugs are still in preclinical development. A deeper biological understanding of the underlying mechanisms of GEF activity and utilizing advanced technology are necessary to enhance drug discovery for GEFs in cancer.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Husain Yar Khan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Boris C Pasche
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
6
|
Velázquez-Vega LE, Rivera-Robles M, Sánchez-Álvarez AO, Vivas-Mejía PE, Aponte-Reyes M, Cruz-Collazo AM, Grafals-Ruiz N, Dorta-Estremera S, Hernández-O'Farrill E, Vlaar CP, Dharmawardhane S. Efficacy and delivery strategies of the dual Rac/Cdc42 inhibitor MBQ-167 in HER2 overexpressing breast cancer. Transl Oncol 2024; 44:101928. [PMID: 38489873 PMCID: PMC10956050 DOI: 10.1016/j.tranon.2024.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Trastuzumab and trastuzumab-based treatments are the standard of care for breast cancer patients who overexpress the human epidermal growth factor receptor 2 (HER2). However, patients often develop resistance to trastuzumab via signaling from alternative growth factor receptors that converge to activate guanine nucleotide exchange factors (GEFs) that in turn activate the Rho GTPases Rac and Cdc42. Since Rac and Cdc42 have been implicated in high tumor grade and therapy resistance, inhibiting the activity of Rac and Cdc42 is a rational strategy to overcome HER2-targeted therapy resistance. Therefore, our group developed MBQ-167, a dual Rac/Cdc42 inhibitor with IC50s of 103 nM and 78 nM for Rac and Cdc42, respectively, which is highly effective in reducing cell and tumor growth and metastasis in breast cancer cell and mouse models. Herein, we created a trastuzumab resistant variant of the SKBR3 HER2 positive breast cancer cell line and show that Rac activation is a central mechanism in trastuzumab resistance. Next, we tested the potential of targeting MBQ-167 to HER2 overexpressing trastuzumab-resistant cell lines in vitro, and show that MBQ-167, but not trastuzumab, reduces cell viability and induces apoptosis. When MBQ-167 was targeted to mammary fatpad tumors established from HER2 overexpressing cells via immunoliposomes functionalized with trastuzumab, MBQ-167 and MBQ-167-loaded liposomes show equal efficacy in reducing the viability of trastuzumab-resistant cells, inhibiting tumor growth in mouse xenografts, and reducing metastasis to lungs and liver. This study demonstrates the efficacy of MBQ-167 as an alternative therapeutic in HER2 overexpressing cancers, delivered either in free form or in liposomes.
Collapse
Affiliation(s)
- Luis E Velázquez-Vega
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Michael Rivera-Robles
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Pablo E Vivas-Mejía
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico; University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | | | - Ailed M Cruz-Collazo
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Nilmary Grafals-Ruiz
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Stephanie Dorta-Estremera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico; Department of Microbiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Eliud Hernández-O'Farrill
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Cornelis P Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico; University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico.
| |
Collapse
|
7
|
Jiang T, Wang X, Huang J, Chen D. CDC42-A promising immune-related target in glioma. Front Neurosci 2023; 17:1192766. [PMID: 37476838 PMCID: PMC10354248 DOI: 10.3389/fnins.2023.1192766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Glioma is the worst prognostic neoplasm in the central nervous system. A polarity-regulating GTPase in cells, known as cell division cycle 42 (CdC42), has been proven to have its overactivation tightly connected to high tumor malignancy. The RNA-seq and protein expression of CDC42 in tumor and comparison tissues were analyzed based on the online tools; CDC42 was remarkably boosted in tumor tissues compared to normal controls. A total of 600 patients in the analysis set from The Cancer Genome Atlas (TCGA) database and 657 patients in the validation set from the Chinese Glioma Genome Atlas (CGGA) database were adopted. The expression of CDC42 in clinical features and biological functions of glioma was analyzed, including differential expression analysis, survival analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and immune infiltration analysis. The enrichment of CDC42 was shown to be strongly associated with poor prognosis and terrible clinical indexes of glioma, including higher World Health Organization scale grade, wild-type isocitrate dehydrogenase 1 expression, O6-methylguanine-DNA methyltransferase non-methylated status, and 1p19q non-codeletion status (p < 0.0001). Functional enrichment analysis showed that CDC42 was highly correlated with immune and inflammatory responses in glioma. Additionally, the concentration extent of CDC42 was closely related to immune infiltration, immune checkpoints, and regulatory T (Treg) cell markers (CD4, CD25, and CD127). All evidence suggested that CDC42 may be a potential target for glioma immunotherapy.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Neurosurgery, The Dalian Municipal Central Hospital, Dalian, China
- Dalian Municipal Central Hospital, China Medical University, Shenyang, China
| | - Xianwei Wang
- Department of Neurosurgery, The Dalian Municipal Central Hospital, Dalian, China
| | - Jiaming Huang
- Department of Neurosurgery, The Dalian Municipal Central Hospital, Dalian, China
| | - Dong Chen
- Department of Neurosurgery, The Dalian Municipal Central Hospital, Dalian, China
- Dalian Municipal Central Hospital, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Torres-Sanchez A, Rivera-Robles M, Castillo-Pichardo L, Martínez-Ferrer M, Dorta-Estremera SM, Dharmawardhane S. Rac and Cdc42 inhibitors reduce macrophage function in breast cancer preclinical models. Front Oncol 2023; 13:1152458. [PMID: 37397366 PMCID: PMC10313121 DOI: 10.3389/fonc.2023.1152458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background Metastatic disease lacks effective treatments and remains the primary cause of mortality from epithelial cancers, especially breast cancer. The metastatic cascade involves cancer cell migration and invasion and modulation of the tumor microenvironment (TME). A viable anti-metastasis strategy is to simultaneously target the migration of cancer cells and the tumor-infiltrating immunosuppressive inflammatory cells such as activated macrophages, neutrophils, and myeloid-derived suppressor cells (MDSC). The Rho GTPases Rac and Cdc42 are ideal molecular targets that regulate both cancer cell and immune cell migration, as well as their crosstalk signaling at the TME. Therefore, we tested the hypothesis that Rac and Cdc42 inhibitors target immunosuppressive immune cells, in addition to cancer cells. Our published data demonstrate that the Vav/Rac inhibitor EHop-016 and the Rac/Cdc42 guanine nucleotide association inhibitor MBQ-167 reduce mammary tumor growth and prevent breast cancer metastasis from pre-clinical mouse models without toxic effects. Methods The potential of Rac/Cdc42 inhibitors EHop-016 and MBQ-167 to target macrophages was tested in human and mouse macrophage cell lines via activity assays, MTT assays, wound healing, ELISA assays, and phagocytosis assays. Immunofluorescence, immunohistochemistry, and flow cytometry were used to identify myeloid cell subsets from tumors and spleens of mice following EHop-016 or MBQ-167 treatment. Results EHop-016 and MBQ-167 inhibited Rac and Cdc42 activation, actin cytoskeletal extensions, migration, and phagocytosis without affecting macrophage cell viability. Rac/Cdc42 inhibitors also reduced tumor- infiltrating macrophages and neutrophils in tumors of mice treated with EHop-016, and macrophages and MDSCs from spleens and tumors of mice with breast cancer, including activated macrophages and monocytes, following MBQ-167 treatment. Mice with breast tumors treated with EHop-016 significantly decreased the proinflammatory cytokine Interleukin-6 (IL-6) from plasma and the TME. This was confirmed from splenocytes treated with lipopolysaccharide (LPS) where EHop-016 or MBQ-167 reduced IL-6 secretion in response to LPS. Conclusion Rac/Cdc42 inhibition induces an antitumor environment via inhibition of both metastatic cancer cells and immunosuppressive myeloid cells in the TME.
Collapse
Affiliation(s)
- Anamaris Torres-Sanchez
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Michael Rivera-Robles
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Magaly Martínez-Ferrer
- Department of Pharmaceutical Sciences, School of Pharmacy, San Juan, Puerto Rico
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Stephanie M. Dorta-Estremera
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Microbiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| |
Collapse
|
9
|
Moescheid MF, Puckelwaldt O, Beutler M, Haeberlein S, Grevelding CG. Defining an optimal control for RNAi experiments with adult Schistosoma mansoni. Sci Rep 2023; 13:9766. [PMID: 37328492 PMCID: PMC10276032 DOI: 10.1038/s41598-023-36826-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023] Open
Abstract
In parasites such as Schistosoma mansoni, gene knockdown by RNA interference (RNAi) has become an indispensable tool for functional gene characterization. To distinguish target-specific RNAi effects versus off-target effects, controls are essential. To date, however, there is still no general agreement about suitable RNAi controls, which limits the comparability between studies. To address this point, we investigated three selected dsRNAs for their suitability as RNAi controls in experiments with adult S. mansoni in vitro. Two dsRNAs were of bacterial origin, the neomycin resistance gene (neoR) and the ampicillin resistance gene (ampR). The third one, the green fluorescent protein gene (gfp), originated from jellyfish. Following dsRNA application, we analyzed physiological parameters like pairing stability, motility, and egg production as well as morphological integrity. Furthermore, using RT-qPCR we evaluated the potential of the used dsRNAs to influence transcript patterns of off-target genes, which had been predicted by si-Fi (siRNA-Finder). At the physiological and morphological levels, we observed no obvious changes in the dsRNA treatment groups compared to an untreated control. However, we detected remarkable differences at the transcript level of gene expression. Amongst the three tested candidates, we suggest dsRNA of the E. coli ampR gene as the most suitable RNAi control.
Collapse
Affiliation(s)
- Max F Moescheid
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Mandy Beutler
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
10
|
Zhang Y, Li G, Zhao Y. Advances in the development of Rho GTPase inhibitors. Bioorg Med Chem 2023; 90:117337. [PMID: 37253305 DOI: 10.1016/j.bmc.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Rho guanosine triphosphatases (Rho GTPases), as members of the Ras superfamily, are GDP/GTP binding proteins that behave as molecular switches for the transduction of signals from external stimuli. Rho GTPases play essential roles in a number of cellular processes including cell cycle, cell polarity as well as cell migration. The dysregulations of Rho GTPases are related with various diseases, especially with cancers. Accumulating evidence supports that Rho GTPases play important roles in cancer development and progression. Rho GTPases become potential therapeutic targets for cancer therapy. And a number of inhibitors targeting Rho GTPases have been developed. In this review, we discuss their structural features, summarize their roles in cancer, and focus on the recent progress of their inhibitors, which are beneficial for the drug discovery targeting Rho GTPases.
Collapse
Affiliation(s)
- Yijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
11
|
Medina JI, Cruz-Collazo A, Maldonado MDM, Matos Gascot T, Borrero-Garcia LD, Cooke M, Kazanietz MG, Hernandez O'Farril E, Vlaar CP, Dharmawardhane S. Characterization of Novel Derivatives of MBQ-167, an inhibitor of the GTP-binding proteins Rac/Cdc42. CANCER RESEARCH COMMUNICATIONS 2022; 2:1711-1726. [PMID: 36861094 PMCID: PMC9970268 DOI: 10.1158/2767-9764.crc-22-0303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rac and Cdc42, are homologous GTPases that regulate cell migration, invasion, and cell cycle progression; thus, representing key targets for metastasis therapy. We previously reported on the efficacy of MBQ-167, which blocks both Rac1 and Cdc42 in breast cancer cells and mouse models of metastasis. To identify compounds with increased activity, a panel of MBQ-167 derivatives was synthesized, maintaining its 9-ethyl-3-(1H-1,2,3-triazol-1-yl)-9H-carbazole core. Similar to MBQ-167, MBQ-168 and EHop-097, inhibit activation of Rac and Rac1B splice variant and breast cancer cell viability, and induce apoptosis. MBQ-167 and MBQ-168 inhibit Rac and Cdc42 by interfering with guanine nucleotide binding, and MBQ-168 is a more effective inhibitor of PAK (1,2,3) activation. EHop-097 acts via a different mechanism by inhibiting the interaction of the guanine nucleotide exchange factor (GEF) Vav with Rac. MBQ-168 and EHop-097 inhibit metastatic breast cancer cell migration, and MBQ-168 promotes loss of cancer cell polarity to result in disorganization of the actin cytoskeleton and detachment from the substratum. In lung cancer cells, MBQ-168 is more effective than MBQ-167 or EHop-097 at reducing ruffle formation in response to EGF. Comparable to MBQ-167, MBQ-168 significantly inhibits HER2+ tumor growth and metastasis to lung, liver, and spleen. Both MBQ-167 and MBQ-168 inhibit the cytochrome P450 (CYP) enzymes 3A4, 2C9, and 2C19. However, MBQ-168 is ~10X less potent than MBQ-167 at inhibiting CYP3A4, thus demonstrating its utility in relevant combination therapies. In conclusion, the MBQ-167 derivatives MBQ-168 and EHop-097 are additional promising anti metastatic cancer compounds with similar and distinct mechanisms.
Collapse
Affiliation(s)
- Julia I. Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Ailed Cruz-Collazo
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Maria del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Tatiana Matos Gascot
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eliud Hernandez O'Farril
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, Puerto Rico
- MBQ Pharma, Inc., San Juan, Puerto Rico
| | - Cornelis P. Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, Puerto Rico
- MBQ Pharma, Inc., San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
- MBQ Pharma, Inc., San Juan, Puerto Rico
- Corresponding Author: Suranganie Dharmawardhane, University of Puerto Rico, Medical Sciences Campus, School of Medicine, PO Box 365067, San Juan, PR 00936-5067. Phone: 787-758-2525, ext. 1623; E-mail:
| |
Collapse
|
12
|
Xu J, Yang R, Li J, Wang L, Cohen M, Simeone DM, Costa M, Wu XR. DNMT3A/ miR-129-2-5p/Rac1 Is an Effector Pathway for SNHG1 to Drive Stem-Cell-like and Invasive Behaviors of Advanced Bladder Cancer Cells. Cancers (Basel) 2022; 14:4159. [PMID: 36077697 PMCID: PMC9454896 DOI: 10.3390/cancers14174159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The stem-cell-like behavior of cancer cells plays a central role in tumor heterogeneity and invasion and correlates closely with drug resistance and unfavorable clinical outcomes. However, the molecular underpinnings of cancer cell stemness remain incompletely defined. Here, we show that SNHG1, a long non-coding RNA that is over-expressed in ~95% of human muscle-invasive bladder cancers (MIBCs), induces stem-cell-like sphere formation and the invasion of cultured bladder cancer cells by upregulating Rho GTPase, Rac1. We further show that SNHG1 binds to DNA methylation transferase 3A protein (DNMT3A), and tethers DNMT3A to the promoter of miR-129-2, thus hyper-methylating and repressing miR-129-2-5p transcription. The reduced binding of miR-129-2 to the 3'-UTR of Rac1 mRNA leads to the stabilization of Rac1 mRNA and increased levels of Rac1 protein, which then stimulates MIBC cell sphere formation and invasion. Analysis of the Human Protein Atlas shows that a high expression of Rac1 is strongly associated with poor survival in patients with MIBC. Our data strongly suggest that the SNHG1/DNMT3A/miR-129-2-5p/Rac1 effector pathway drives stem-cell-like and invasive behaviors in MIBC, a deadly form of bladder cancer. Targeting this pathway, alone or in combination with platinum-based therapy, may reduce chemoresistance and improve longer-term outcomes in MIBC patients.
Collapse
Affiliation(s)
- Jiheng Xu
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Rui Yang
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jingxia Li
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Lidong Wang
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Mitchell Cohen
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Diane M. Simeone
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Max Costa
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Xue-Ru Wu
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY 10016, USA
- Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA
| |
Collapse
|
13
|
Bailly C, Beignet J, Loirand G, Sauzeau V. Rac1 as a therapeutic anticancer target: Promises and limitations. Biochem Pharmacol 2022; 203:115180. [PMID: 35853497 DOI: 10.1016/j.bcp.2022.115180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Small molecule inhibitors of GTPases are increasingly considered for the treatment of multiple human pathologies. The GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) plays major roles in vital cellular processes, notably in the control cell motility and dynamic, the regulation of oxidative stress, and in inflammatory and immune surveillance. As such, Rac1 is viewed as a potential target to combat cancers but also diverse inflammatory, metabolic, neurodegenerative, respiratory, cardiovascular, viral, and parasitic diseases. Potent and selective Rac1 inhibitors have been identified and designed, such as compounds GYS32661 and MBQ-167 both in preclinical development for the treatment of advanced solid tumors. The pleiotropic roles and ubiquitous expression of the protein can be viewed as limitations for anticancer approaches. However, the frequent overexpression and/or hyperactivation of the Rac1 in difficult-to-treat chemoresistant cancers, make Rac1 an attractive target in oncology. The key roles of Rac1 in multiple cellular pathways, together with its major implications in carcinogenesis, tumor proliferation and metastasis, support the development of small molecule inhibitors. The challenge is high and the difficulty shall not be underestimated, but the target is innovative and promising in combination with chemo- and/or immuno-therapy. Opportunities and challenges associated with the targeting of Rac1 are discussed.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal), 59290, France.
| | - Julien Beignet
- SATT Ouest Valorisation, 30 boulevard Vincent Gâche, CS 70211, 44202 Nantes cedex, France
| | - Gervaise Loirand
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| |
Collapse
|
14
|
Rac1 as a Target to Treat Dysfunctions and Cancer of the Bladder. Biomedicines 2022; 10:biomedicines10061357. [PMID: 35740379 PMCID: PMC9219850 DOI: 10.3390/biomedicines10061357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022] Open
Abstract
Bladder pathologies, very common in the aged population, have a considerable negative impact on quality of life. Novel targets are needed to design drugs and combinations to treat diseases such as overactive bladder and bladder cancers. A promising new target is the ubiquitous Rho GTPase Rac1, frequently dysregulated and overexpressed in bladder pathologies. We have analyzed the roles of Rac1 in different bladder pathologies, including bacterial infections, diabetes-induced bladder dysfunctions and bladder cancers. The contribution of the Rac1 protein to tumorigenesis, tumor progression, epithelial-mesenchymal transition of bladder cancer cells and their metastasis has been analyzed. Small molecules selectively targeting Rac1 have been discovered or designed, and two of them—NSC23766 and EHT 1864—have revealed activities against bladder cancer. Their mode of interaction with Rac1, at the GTP binding site or the guanine nucleotide exchange factors (GEF) interaction site, is discussed. Our analysis underlines the possibility of targeting Rac1 with small molecules with the objective to combat bladder dysfunctions and to reduce lower urinary tract symptoms. Finally, the interest of a Rac1 inhibitor to treat advanced chemoresistance prostate cancer, while reducing the risk of associated bladder dysfunction, is discussed. There is hope for a better management of bladder pathologies via Rac1-targeted approaches.
Collapse
|
15
|
Sauzeau V, Beignet J, Vergoten G, Bailly C. Overexpressed or hyperactivated Rac1 as a target to treat hepatocellular carcinoma. Pharmacol Res 2022; 179:106220. [PMID: 35405309 DOI: 10.1016/j.phrs.2022.106220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Abstract
Despite novel targeted and immunotherapies, the prognosis remains bleak for patients with hepatocellular carcinoma (HCC), especially for advanced and/or metastatic forms. The rapid emergence of drug resistance is a major obstacle in the success of chemo-, targeted-, immuno-therapies of HCC. Novel targets are needed. The prominent roles of the small GTPase Rac1 in the development and progression of HCC are discussed here, together with its multiple protein partners, and the targeting of Rac1 with RNA-based regulators and small molecules. We discuss the oncogenic functions of Rac1 in HCC, including the contribution of Rac1 mutants and isoform Rac1b. Rac1 is a ubiquitous target, but the protein is frequently overexpressed and hyperactivated in HCC. It contributes to the aggressivity of the disease, with key roles in cancer cell proliferation, tumor metastasis and resistance to treatment. Small molecule targeting Rac1, indirectly or directly, have shown anticancer effects in HCC experimental models. Rac1-binding agents such as EHT 1864 and analogues offer novel opportunities to combat HCC. We discuss the different modalities to repress Rac1 overactivation in HCC with small molecules and the combination with reference drugs to promote cancer cell death and to repress cell invasion. We highlight the necessity to combine Rac1-targeted approach with appropriate biomarkers to select Rac1 activated tumors. Our analysis underlines the prominent oncogenic functions of Rac1 in HCC and discuss the modalities to target this small GTPase. Rac1 shall be considered as a valid target to limit the acquired and intrinsic resistance of HCC tumors and their metastatic potential.
Collapse
Affiliation(s)
- Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du Thorax, Nantes, France.
| | - Julien Beignet
- SATT Ouest Valorisation, 30 boulevard Vincent Gâche, CS 70211, 44202 Nantes Cedex, France
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, 59006, Lille, France
| | - Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal 59290, France.
| |
Collapse
|
16
|
Jahid S, Ortega JA, Vuong LM, Acquistapace IM, Hachey SJ, Flesher JL, La Serra MA, Brindani N, La Sala G, Manigrasso J, Arencibia JM, Bertozzi SM, Summa M, Bertorelli R, Armirotti A, Jin R, Liu Z, Chen CF, Edwards R, Hughes CCW, De Vivo M, Ganesan AK. Structure-based design of CDC42 effector interaction inhibitors for the treatment of cancer. Cell Rep 2022; 39:110641. [PMID: 35385746 PMCID: PMC9127750 DOI: 10.1016/j.celrep.2022.110641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 01/21/2023] Open
Abstract
CDC42 family GTPases (RHOJ, RHOQ, CDC42) are upregulated but rarely mutated in cancer and control both the ability of tumor cells to invade surrounding tissues and the ability of endothelial cells to vascularize tumors. Here, we use computer-aided drug design to discover a chemical entity (ARN22089) that has broad activity against a panel of cancer cell lines, inhibits S6 phosphorylation and MAPK activation, activates pro-inflammatory and apoptotic signaling, and blocks tumor growth and angiogenesis in 3D vascularized microtumor models (VMT) in vitro. Additionally, ARN22089 has a favorable pharmacokinetic profile and can inhibit the growth of BRAF mutant mouse melanomas and patient-derived xenografts in vivo. ARN22089 selectively blocks CDC42 effector interactions without affecting the binding between closely related GTPases and their downstream effectors. Taken together, we identify a class of therapeutic agents that influence tumor growth by modulating CDC42 signaling in both the tumor cell and its microenvironment.
Collapse
Affiliation(s)
- Sohail Jahid
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Jose A Ortega
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Linh M Vuong
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Isabella Maria Acquistapace
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Stephanie J Hachey
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Jessica L Flesher
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Maria Antonietta La Serra
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Nicoletta Brindani
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Giuseppina La Sala
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jacopo Manigrasso
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jose M Arencibia
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Maria Summa
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rosalia Bertorelli
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Chi-Fen Chen
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Robert Edwards
- Department of Pathology and Lab Medicine, University of California, Irvine, CA 92697, USA
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Ji M, Sun J, Zhao J. Verbascoside represses malignant phenotypes of esophageal squamous cell carcinoma cells by inhibiting CDC42 via the HMGB1/RAGE axis. Hum Exp Toxicol 2022; 41:9603271221127429. [PMID: 36112883 DOI: 10.1177/09603271221127429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND As an aggressive human malignancy, esophageal squamous cell carcinoma (ESCC) is prevalent globally, especially in China. Verbascoside (VE) exerts anti-cancer effects in several human cancers. This work was to investigate the effects of VE on ESCC cells. METHODS Esophageal squamous cell carcinoma cell proliferation, apoptosis, migration, and invasion were assessed by CCK-8, TUNEL, and Transwell assays. Gene and protein levels were detected by RT-qPCR and western blotting. CDC42 activity was evaluated by G-lisa assay. RESULTS Verbascoside significantly inhibited cell proliferation, migration, and invasion and induced cell apoptosis in ESCC cells. Furthermore, it was found that VE markedly inhibited HMGB1 and RAGE expression in a dose-dependent manner. Besides, HMGB1/RAGE upregulation partially reversed the anti-cancer effects of VE on ESCC cells. VE repressed HMGB1/RAGE-induced CDC42 activation in ESCC cells. In addition, ML141-mediated CDC42 inactivation further enhanced the effect of VE on ESCC cell proliferation, apoptosis, migration, and invasion. CONCLUSIONS Our findings indicated that VE has significant anti-tumor potential in ESCC by suppressing HMGB1/RAGE-dependent CDC42 activation.
Collapse
Affiliation(s)
- Mingming Ji
- Department of Thoracic Surgery, 74566The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Jian Sun
- The First People's Hospital of Yancheng, 38044The Yancheng Clinical College of Xuzhou Medical University, Jiangsu, China
| | - Jun Zhao
- Department of Thoracic Surgery, 74566The First Affiliated Hospital of Soochow University, Jiangsu, China
| |
Collapse
|