1
|
Smith MR, Naeli P, Jafarnejad SM, Costa G. The scaffolding protein AKAP12 regulates mRNA localization and translation. Proc Natl Acad Sci U S A 2024; 121:e2320609121. [PMID: 38652739 PMCID: PMC11067055 DOI: 10.1073/pnas.2320609121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Regulation of subcellular messenger (m)RNA localization is a fundamental biological mechanism, which adds a spatial dimension to the diverse layers of post-transcriptional control of gene expression. The cellular compartment in which mRNAs are located may define distinct aspects of the encoded proteins, ranging from production rate and complex formation to localized activity. Despite the detailed roles of localized mRNAs that have emerged over the past decades, the identity of factors anchoring mRNAs to subcellular domains remains ill-defined. Here, we used an unbiased method to profile the RNA-bound proteome in migrating endothelial cells (ECs) and discovered that the plasma membrane (PM)-associated scaffolding protein A-kinase anchor protein (AKAP)12 interacts with various mRNAs, including transcripts encoding kinases with Actin remodeling activity. In particular, AKAP12 targets a transcript coding for the kinase Abelson Tyrosine-Protein Kinase 2 (ABL2), which we found to be necessary for adequate filopodia formation and angiogenic sprouting. Moreover, we demonstrate that AKAP12 is necessary for anchoring ABL2 mRNA to the PM and show that in the absence of AKAP12, the translation efficiency of ABL2 mRNA is reduced. Altogether, our work identified a unique post-transcriptional function for AKAP12 and sheds light into mechanisms of spatial control of gene expression.
Collapse
Affiliation(s)
- Madeleine R. Smith
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, BelfastBT9 7BL, United Kingdom
| | - Parisa Naeli
- The Patrick G Johnston Centre for Cancer Research, Queen’s University, BelfastBT9 7BL, United Kingdom
| | - Seyed M. Jafarnejad
- The Patrick G Johnston Centre for Cancer Research, Queen’s University, BelfastBT9 7BL, United Kingdom
| | - Guilherme Costa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, BelfastBT9 7BL, United Kingdom
| |
Collapse
|
2
|
Gelman IH. Metastasis suppressor genes in clinical practice: are they druggable? Cancer Metastasis Rev 2023; 42:1169-1188. [PMID: 37749308 DOI: 10.1007/s10555-023-10135-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023]
Abstract
Since the identification of NM23 (now called NME1) as the first metastasis suppressor gene (MSG), a small number of other gene products and non-coding RNAs have been identified that suppress specific parameters of the metastatic cascade, yet which have little or no ability to regulate primary tumor initiation or maintenance. MSG can regulate various pathways or cell biological functions such as those controlling mitogen-activated protein kinase pathway mediators, cell-cell and cell-extracellular matrix protein adhesion, cytoskeletal architecture, G-protein-coupled receptors, apoptosis, and transcriptional complexes. One defining facet of this gene class is that their expression is typically downregulated, not mutated, in metastasis, such that any effective therapeutic intervention would involve their re-expression. This review will address the therapeutic targeting of MSG, once thought to be a daunting task only facilitated by ectopically re-expressing MSG in metastatic cells in vivo. Examples will be cited of attempts to identify actionable oncogenic pathways that might suppress the formation or progression of metastases through the re-expression of specific metastasis suppressors.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
3
|
Liang Q, Peng J, Xu Z, Li Z, Jiang F, Ouyang L, Wu S, Fu C, Liu Y, Liu Y, Yan Y. Pan-cancer analysis of the prognosis and immunological role of AKAP12: A potential biomarker for resistance to anti-VEGF inhibitors. Front Genet 2022; 13:943006. [PMID: 36110213 PMCID: PMC9468827 DOI: 10.3389/fgene.2022.943006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The primary or acquired resistance to anti-VEGF inhibitors remains a common problem in cancer treatment. Therefore, identifying potential biomarkers enables a better understanding of the precise mechanism. Through the GEO database, three profiles associated with bevacizumab (BV) resistance to ovarian cancer, glioma, and non-small-cell lung carcinoma, respectively, were collected for the screening process, and two genes were found. A-kinase anchor protein 12 (AKAP12), one of these two genes, correlates with tumorigenesis of some cancers. However, the role of AKAP12 in pan-cancer remains poorly defined. The present study first systematically analyzed the association of AKAP12 with anti-VEGF inhibitors’ sensitivity, clinical prognosis, DNA methylation, protein phosphorylation, and immune cell infiltration across various cancers via bioinformatic tools. We found that AKAP12 was upregulated in anti-VEGF therapy-resistant cancers, including ovarian cancer (OV), glioblastoma (GBM), lung cancer, and colorectal cancer (CRC). A high AKAP12 expression revealed dismal prognoses in OV, GBM, and CRC patients receiving anti-VEGF inhibitors. Moreover, AKAP12 expression was negatively correlated with cancer sensitivity towards anti-VEGF therapy. Clinical prognosis analysis showed that AKAP12 expression predicted worse prognoses of various cancer types encompassing colon adenocarcinoma (COAD), OV, GBM, and lung squamous cell carcinoma (LUSC). Gene mutation status may be a critical cause for the involvement of AKAP12 in resistance. Furthermore, lower expression of AKAP12 was detected in nearly all cancer types, and hypermethylation may explain its decreased expression. A decreased phosphorylation of T1760 was observed in breast cancer, clear-cell renal cell carcinoma, and lung adenocarcinoma. For the immunologic significance, AKAP12 was positively related to the abundance of pro-tumor cancer-associated fibroblasts (CAFs) in various types of cancer. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that “cell junction organization” and “MAPK pathway” participated in the effect of AKAP12. Importantly, we discovered that AKAP12 expression was greatly associated with metastasis of lung adenocarcinoma as well as differential and angiogenesis of retinoblastoma through investigating the single-cell sequencing data. Our study showed that the dual role of AKAP12 in various cancers and AKAP12 could serve as a biomarker of anti-VEGF resistance in OV, GBM, LUSC, and COAD.
Collapse
Affiliation(s)
- Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhilan Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Feng Jiang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Lingzi Ouyang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Shangjun Wu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Chencheng Fu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Ying Liu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yuanliang Yan,
| |
Collapse
|
4
|
AKAP12 Supports Blood-Brain Barrier Integrity against Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21239078. [PMID: 33260683 PMCID: PMC7730430 DOI: 10.3390/ijms21239078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
A-kinase anchor protein 12 (AKAP12) is a scaffolding protein that associates with intracellular molecules to regulate multiple signal transductions. Although the roles of AKAP12 in the central nervous system are still relatively understudied, it was previously shown that AKAP12 regulates blood-retinal barrier formation. In this study, we asked whether AKAP12 also supports the function and integrity of the blood-brain barrier (BBB). In a mouse model of focal ischemia, the expression level of AKAP12 in cerebral endothelial cells was upregulated during the acute phase of stroke. Also, in cultured cerebral endothelial cells, oxygen-glucose deprivation induced the upregulation of AKAP12. When AKAP12 expression was suppressed by an siRNA approach in cultured endothelial cells, endothelial permeability was increased along with the dysregulation of ZO-1/Claudin 5 expression. In addition, the loss of AKAP12 expression caused an upregulation/activation of the Rho kinase pathway, and treatment of Rho kinase inhibitor Y-27632 mitigated the increase of endothelial permeability in AKAP12-deficient endothelial cell cultures. These in vitro findings were confirmed by our in vivo experiments using Akap12 knockout mice. Compared to wild-type mice, Akap12 knockout mice showed a larger extent of BBB damage after stroke. However, the inhibition of rho kinase by Y-27632 tightened the BBB in Akap12 knockout mice. These data may suggest that endogenous AKAP12 works to alleviate the damage and dysfunction of the BBB caused by ischemic stress. Therefore, the AKAP12-rho-kinase signaling pathway represents a novel therapeutic target for stroke.
Collapse
|
5
|
Abstract
For many years, major differences in morphology, motility, and mechanical characteristics have been observed between transformed cancer and normal cells. In this review, we consider these differences as linked to different states of normal and transformed cells that involve distinct mechanosensing and motility pathways. There is a strong correlation between repeated tissue healing and/or inflammation and the probability of cancer, both of which involve growth in adult tissues. Many factors are likely needed to enable growth, including the loss of rigidity sensing, but recent evidence indicates that microRNAs have important roles in causing the depletion of growth-suppressing proteins. One microRNA, miR-21, is overexpressed in many different tissues during both healing and cancer. Normal cells can become transformed by the depletion of cytoskeletal proteins that results in the loss of mechanosensing, particularly rigidity sensing. Conversely, the transformed state can be reversed by the expression of cytoskeletal proteins-without direct alteration of hormone receptor levels. In this review, we consider the different stereotypical forms of motility and mechanosensory systems. A major difference between normal and transformed cells involves a sensitivity of transformed cells to mechanical perturbations. Thus, understanding the different mechanical characteristics of transformed cells may enable new approaches to treating wound healing and cancer.
Collapse
Affiliation(s)
- Michael Sheetz
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411
- Molecular MechanoMedicine Program and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA;
| |
Collapse
|
6
|
Chen Y, Hou Y, Yang Y, Pan M, Wang J, Wang W, Zuo Y, Cong J, Wang X, Mu N, Zhang C, Gong B, Hou J, Wang S, Xu L. Gene expression changes in cervical squamous cancers following neoadjuvant interventional chemoembolization. Clin Chim Acta 2019; 493:79-86. [PMID: 30772336 DOI: 10.1016/j.cca.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND The efficacy of therapy for cervical cancer is related to the alteration of multiple molecular events and signaling networks during treatment. The aim of this study was to evaluate gene expression alterations in advanced cervical cancers before- and after-trans-uterine arterial chemoembolization- (TUACE). METHODS Gene expression patterns in three squamous cell cervical cancers before- and after-TUACE were determined using microarray technique. Changes in AKAP12 and CA9 genes following TUACE were validated by quantitative real-time PCR. RESULTS Unsupervised cluster analysis revealed that the after-TUACE samples clustered together, which were separated from the before-TUACE samples. Using a 2-fold threshold, we identified 1131 differentially expressed genes that clearly discriminate after-TUACE tumors from before-TUACE tumors, including 209 up-regulated genes and 922 down-regulated genes. Pathway analysis suggests these genes represent diverse functional categories. Results from real-time PCR confirmed the expression changes detected by microarray. CONCLUSIONS Gene expression signature significantly changes during TUACE therapy of cervical cancer. Theses alterations provide useful information for the development of novel treatment strategies for cervical cancers on the molecular level.
Collapse
Affiliation(s)
- Yonghua Chen
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Yuanyuan Hou
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Ying Yang
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Meixia Pan
- Yantai Yuhuangding Hospital LaiShan Division of Medical College, Qingdao University, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Wenshuang Wang
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Ying Zuo
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Jianglin Cong
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Xiaojie Wang
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Nan Mu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Chenglin Zhang
- Central Laboratory, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Benjiao Gong
- Central Laboratory, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China
| | - Jianqing Hou
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China.
| | - Shaoguang Wang
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China.
| | - Liping Xu
- Medical College, Qingdao University, Qingdao 266021, Shandong, China
| |
Collapse
|
7
|
Jones DZ, Schmidt ML, Suman S, Hobbing KR, Barve SS, Gobejishvili L, Brock G, Klinge CM, Rai SN, Park J, Clark GJ, Agarwal R, Kidd LR. Micro-RNA-186-5p inhibition attenuates proliferation, anchorage independent growth and invasion in metastatic prostate cancer cells. BMC Cancer 2018; 18:421. [PMID: 29653561 PMCID: PMC5899400 DOI: 10.1186/s12885-018-4258-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
Background Dysregulation of microRNA (miRNA) expression is associated with hallmarks of aggressive tumor phenotypes, e.g., enhanced cell growth, proliferation, invasion, and anchorage independent growth in prostate cancer (PCa). Methods Serum-based miRNA profiling involved 15 men diagnosed with non-metastatic (stage I, III) and metastatic (stage IV) PCa and five age-matched disease-free men using miRNA arrays with select targets confirmed by quantitative real-time PCR (qRT-PCR). The effect of miR-186-5p inhibition or ectopic expression on cellular behavior of PCa cells (i.e., PC-3, MDA-PCa-2b, and LNCaP) involved the use bromodeoxyuridine (BrdU) incorporation, invasion, and colony formation assays. Assessment of the impact of miR-186-5p inhibition or overexpression on selected targets entailed microarray analysis, qRT-PCR, and/or western blots. Statistical evaluation used the modified t-test and ANOVA analysis. Results MiR-186-5p was upregulated in serum from PCa patients and metastatic PCa cell lines (i.e., PC-3, MDA-PCa-2b, LNCaP) compared to serum from disease-free individuals or a normal prostate epithelial cell line (RWPE1), respectively. Inhibition of miR-186-5p reduced cell proliferation, invasion, and anchorage-independent growth of PC-3 and/or MDA-PCa-2b PCa cells. AKAP12, a tumor suppressor target of miR-186-5p, was upregulated in PC-3 and MDA-PCa-2b cells transfected with a miR-186-5p inhibitor. Conversely, ectopic miR-186-5p expression in HEK 293 T cells decreased AKAP12 expression by 30%. Both pAKT and β-catenin levels were down-regulated in miR-186-5p inhibited PCa cells. Conclusions Our findings suggest miR-186-5p plays an oncogenic role in PCa. Inhibition of miR-186-5p reduced PCa cell proliferation and invasion as well as increased AKAP12 expression. Future studies should explore whether miR-186-5p may serve as a candidate prognostic indicator and a therapeutic target for the treatment of aggressive prostate cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4258-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dominique Z Jones
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, USA
| | - M Lee Schmidt
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Suman Suman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Katharine R Hobbing
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Shirish S Barve
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,Division of Gastroenterology and Hepatology, University of Louisville School of Medicine, Louisville, USA
| | - Leila Gobejishvili
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,Division of Gastroenterology and Hepatology, University of Louisville School of Medicine, Louisville, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, USA
| | - Carolyn M Klinge
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.,Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, USA
| | - Shesh N Rai
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.,Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Science, Louisville, USA
| | - Jong Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Geoffrey J Clark
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, USA
| | - LaCreis R Kidd
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA. .,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.
| |
Collapse
|
8
|
Reggi E, Diviani D. The role of A-kinase anchoring proteins in cancer development. Cell Signal 2017; 40:143-155. [DOI: 10.1016/j.cellsig.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|
9
|
Muramatsu M, Gao L, Peresie J, Balderman B, Akakura S, Gelman IH. SSeCKS/AKAP12 scaffolding functions suppress B16F10-induced peritoneal metastasis by attenuating CXCL9/10 secretion by resident fibroblasts. Oncotarget 2017; 8:70281-70298. [PMID: 29050279 PMCID: PMC5642554 DOI: 10.18632/oncotarget.20092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
SSeCKS/Gravin/AKAP12 (SSeCKS) is a kinase scaffolding protein known to suppress metastasis by attenuating tumor-intrinsic PKC- and Src-mediated signaling pathways [1]. In addition to downregulation in metastatic cells, in silico analyses identified SSeCKS downregulation in prostate or breast cancer-derived stroma, suggesting a microenvironmental cell role in controlling malignancy. Although orthotopic B16F10 and SM1WT1[BrafV600E] mouse melanoma tumors grew similarly in syngeneic WT or SSeCKS-null (KO) mice, KO hosts exhibited 5- to 10-fold higher levels of peritoneal metastasis, and this enhancement could be adoptively transferred by pre-injecting naïve WT mice with peritoneal fluid (PF), but not non-adherent peritoneal cells (PC), from naïve KO mice. B16F10 and SM1WT1 cells showed increased chemotaxis to KO-PF compared to WT-PF, corresponding to increased PF levels of multiple inflammatory mediators, including the Cxcr3 ligands, Cxcl9 and 10. Cxcr3 knockdown abrogated enhanced chemotaxis to KO-PF and peritoneal metastasis in KO hosts. Conditioned media from KO peritoneal membrane fibroblasts (PMF), but not from KO-PC, induced increased B16F10 chemotaxis over controls, which could be blocked with Cxcl10 neutralizing antibody. KO-PMF exhibited increased levels of the senescence markers, SA-β-galactosidase, p21waf1 and p16ink4a, and enhanced Cxcl10 secretion induced by inflammatory mediators, lipopolysaccharide, TNFα, IFNα and IFNγ. SSeCKS scaffolding-site mutants and small molecule kinase inhibitors were used to show that the loss of SSeCKS-regulated PKC, PKA and PI3K/Akt pathways are responsible for the enhanced Cxcl10 secretion. These data mark the first description of a role for stromal SSeCKS/AKAP12 in suppressing metastasis, specifically by attenuating signaling pathways that promote secretion of tumor chemoattractants in the peritoneum.
Collapse
Affiliation(s)
- Masashi Muramatsu
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Lingqiu Gao
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Jennifer Peresie
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Benjamin Balderman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Shin Akakura
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine 92618, CA, USA
| | - Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| |
Collapse
|
10
|
The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget 2016; 6:35522-41. [PMID: 26431493 PMCID: PMC4742122 DOI: 10.18632/oncotarget.5849] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023] Open
Abstract
A major problem for cancer patients is the metastasis of cancer cells from the primary tumor. This involves: (1) migration through the basement membrane; (2) dissemination via the circulatory system; and (3) invasion into a secondary site. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade. Notably, Src is a non-receptor, cytoplasmic, tyrosine kinase, which becomes aberrantly activated in many cancer-types following stimulation of plasma membrane receptors (e.g., receptor tyrosine kinases and integrins). There is evidence of a prominent role of Src in tumor progression-related events such as the epithelial–mesenchymal transition (EMT) and the development of metastasis. However, the precise molecular interactions of Src with metastasis suppressors remain unclear. Herein, we review known metastasis suppressors and summarize recent advances in understanding the mechanisms of how these proteins inhibit metastasis through modulation of Src. Particular emphasis is bestowed on the potent metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1) and its interactions with the Src signaling cascade. Recent studies demonstrated a novel mechanism through which NDRG1 plays a significant role in regulating cancer cell migration by inhibiting Src activity. Moreover, we discuss the rationale for targeting metastasis suppressor genes as a sound therapeutic modality, and we review several examples from the literature where such strategies show promise. Collectively, this review summarizes the essential interactions of metastasis suppressors with Src and their effects on progression of cancer metastasis. Moreover, interesting unresolved issues regarding these proteins as well as their potential as therapeutic targets are also discussed.
Collapse
|
11
|
Bateman NW, Jaworski E, Ao W, Wang G, Litzi T, Dubil E, Marcus C, Conrads KA, Teng PN, Hood BL, Phippen NT, Vasicek LA, McGuire WP, Paz K, Sidransky D, Hamilton CA, Maxwell GL, Darcy KM, Conrads TP. Elevated AKAP12 in paclitaxel-resistant serous ovarian cancer cells is prognostic and predictive of poor survival in patients. J Proteome Res 2015; 14:1900-10. [PMID: 25748058 DOI: 10.1021/pr5012894] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A majority of high-grade (HG) serous ovarian cancer (SOC) patients develop resistant disease despite high initial response rates to platinum/paclitaxel-based chemotherapy. We identified shed/secreted proteins in preclinical models of paclitaxel-resistant human HGSOC models and correlated these candidate proteins with patient outcomes using public data from HGSOC patients. Proteomic analyses of a HGSOC cell line secretome was compared to those from a syngeneic paclitaxel-resistant variant and from a line established from an intrinsically chemorefractory HGSOC patient. Associations between the identified candidate proteins and patient outcome were assessed in a discovery cohort of 545 patients and two validation cohorts totaling 795 independent SOC patients. Among the 81 differentially abundant proteins identified (q < 0.05) from paclitaxel-sensitive vs -resistant HGSOC cell secretomes, AKAP12 was verified to be elevated in all models of paclitaxel-resistant HGSOC. Furthermore, elevated AKAP12 transcript expression was associated with worse progression-free and overall survival. Associations with outcome were observed in three independent cohorts and remained significant after adjusted multivariate modeling. We further provide evidence to support that differential gene methylation status is associated with elevated expression of AKAP12 in taxol-resistant ovarian cancer cells and ovarian cancer patient subsets. Elevated expression and shedding/secretion of AKAP12 is characteristic of paclitaxel-resistant HGSOC cells, and elevated AKAP12 transcript expression is a poor prognostic and predictive marker for progression-free and overall survival in SOC patients.
Collapse
Affiliation(s)
- Nicholas W Bateman
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Elizabeth Jaworski
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Wei Ao
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Guisong Wang
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Tracy Litzi
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Elizabeth Dubil
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States.,‡Gynecologic Oncology Service, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, Maryland 20814, United States
| | - Charlotte Marcus
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States.,‡Gynecologic Oncology Service, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, Maryland 20814, United States
| | - Kelly A Conrads
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Pang-ning Teng
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Brian L Hood
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Neil T Phippen
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States.,‡Gynecologic Oncology Service, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, Maryland 20814, United States
| | - Lisa A Vasicek
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - William P McGuire
- §Massey Cancer Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Keren Paz
- ∥Champions Oncology, Inc., 855 North Wolfe Street, Suite 619, Baltimore, Maryland 21205, United States
| | - David Sidransky
- ⊥Otolaryngology-Head and Neck Surgery and Oncology, Johns Hopkins University, 1550 Orleans Street, Baltimore, Maryland 21287, United States
| | - Chad A Hamilton
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States.,‡Gynecologic Oncology Service, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, Maryland 20814, United States
| | - G Larry Maxwell
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States.,#Department of Obstetrics and Gynecology, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, Virginia 22042, United States
| | - Kathleen M Darcy
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Thomas P Conrads
- †Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Annandale, Virginia 22003, United States
| |
Collapse
|
12
|
Ko HK, Guo LW, Su B, Gao L, Gelman IH. Suppression of chemotaxis by SSeCKS via scaffolding of phosphoinositol phosphates and the recruitment of the Cdc42 GEF, Frabin, to the leading edge. PLoS One 2014; 9:e111534. [PMID: 25356636 PMCID: PMC4214753 DOI: 10.1371/journal.pone.0111534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/28/2014] [Indexed: 01/09/2023] Open
Abstract
Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the actin cytoskeleton controlling directional movement.
Collapse
Affiliation(s)
- Hyun-Kyung Ko
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Li-wu Guo
- Div. of Genetic & Reproductive Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| | - Bing Su
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Lingqiu Gao
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Irwin H. Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell's Journey. CANCER MICROENVIRONMENT 2014; 7:117-31. [PMID: 24938990 DOI: 10.1007/s12307-014-0148-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/08/2014] [Indexed: 12/21/2022]
Abstract
Metastasis is the process of primary tumor cells breaking away and colonizing distant secondary sites. In order for a tumor cell growing in one microenvironment to travel to, and flourish in, a secondary environment, it must survive a series of events termed the metastatic cascade. Before departing the primary tumor, cells acquire genetic and epigenetic changes that endow them with properties not usually associated with related normal differentiated cells. Those cells also induce a subset of bone marrow-derived stem cells to mobilize and establish pre-metastatic niches [1]. Many tumor cells undergo epithelial-to-mesenchymal transition (EMT), where they transiently acquire morphologic changes, reduced requirements for cell-cell contact and become more invasive [2]. Invasive tumor cells eventually enter the circulatory (hematogenous) or lymphatic systems or travel across body cavities. In transit, tumor cells must resist anoikis, survive sheer forces and evade detection by the immune system. For blood-borne metastases, surviving cells then arrest or adhere to endothelial linings before either proliferating or extravasating. Eventually, tumor cells complete the process by proliferating to form a macroscopic mass [3].Up to 90 % of all cancer related morbidity and mortality can be attributed to metastasis. Surgery manages to ablate most primary tumors, especially when combined with chemotherapy and radiation. But if cells have disseminated, survival rates drop precipitously. While multiple parameters of the primary tumor are predictive of local or distant relapse, biopsies remain an imperfect science. The introduction of molecular and other biomarkers [4, 5] continue to improve the accuracy of prognosis. However, the invasive procedure introduces new complications for the patient. Likewise, the heterogeneity of any tumor population [3, 6, 7] means that sampling error (i.e., since it is impractical to examine the entire tumor) necessitates further improvements.In the case of breast cancer, for example, women diagnosed with stage I diseases (i.e., no evidence of invasion through a basement membrane) still have a ~30 % likelihood of developing distant metastases [8]. Many physicians and patients opt for additional chemotherapy in order to "mop up" cells that have disseminated and have the potential to grow into macroscopic metastases. This means that ~ 70 % of patients receive unnecessary therapy, which has undesirable side effects. Therefore, improving prognostic capability is highly desirable.Recent advances allow profiling of primary tumor DNA sequences and gene expression patterns to define a so-called metastatic signature [9-11], which can be predictive of patient outcome. However, the genetic changes that a tumor cell must undergo to survive the initial events of the metastatic cascade and colonize a second location belie a plasticity that may not be adequately captured in a sampling of heterogeneous tumors. In order to tailor or personalize patient treatments, a more accurate assessment of the genetic profile in the metastases is needed. Biopsy of each individual metastasis is not practical, safe, nor particularly cost-effective. In recent years, there has been a resurrection of the notion to do a 'liquid biopsy,' which essentially involves sampling of circulating tumor cells (CTC) and/or cell free nucleic acids (cfDNA, including microRNA (miRNA)) present in blood and lymph [12-16].The rationale for liquid biopsy is that tumors shed cells and/or genetic fragments into the circulation, theoretically making the blood representative of not only the primary tumor but also distant metastases. Logically, one would predict that the proportion of CTC and/or cfDNA would be proportionate to the likelihood of developing metastases [14]. While a linear relationship does not exist, the information within CTC or cfDNA is beginning to show great promise for enabling a global snapshot of the disease. However, the CTC and cfDNA are present at extremely low levels. Nonetheless, newer technologies capture enough material to enrich and sequence the patient's DNA or quantification of some biomarkers.Among the biomarkers showing great promise are metastasis suppressors which, by definition, block a tumor cell's ability to complete the metastatic process without prohibiting primary tumor growth [17]. Since the discovery of the first metastasis suppressor, Nm23, more than 30 have been functionally characterized. They function at various stages of the metastatic cascade, but their mechanisms of action, for the most part, remain ill-defined. Deciphering the molecular interactions of functional metastasis suppressors may provide insights for targeted therapies when these regulators cease to function and result in metastatic disease.In this brief review, we summarize what is known about the various metastasis suppressors and their functions at individual steps of the metastatic cascade (Table 1). Some of the subdivisions are rather arbitrary in nature, since many metastasis suppressors affect more than one step in the metastatic cascade. Nonetheless what emerges is a realization that metastasis suppressors are intimately associated with the microenvironments in which cancer cells find themselves [18].
Collapse
|
14
|
Ko HK, Akakura S, Peresie J, Goodrich DW, Foster BA, Gelman IH. A transgenic mouse model for early prostate metastasis to lymph nodes. Cancer Res 2014; 74:945-53. [PMID: 24492704 DOI: 10.1158/0008-5472.can-13-1157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The emergence of recurrent, metastatic prostate cancer following the failure of androgen-deprivation therapy represents the lethal phenotype of this disease. However, little is known regarding the genes and pathways that regulate this metastatic process, and moreover, it is unclear whether metastasis is an early or late event. The individual genetic loss of the metastasis suppressor, SSeCKS/Gravin/AKAP12 or Rb, genes that are downregulated or deleted in human prostate cancer, results in prostatic hyperplasia. Here, we show that the combined loss of Akap12 and Rb results in prostatic intraepithelial neoplasia (PIN) that fails to progress to malignancy after 18 months. Strikingly, 83% of mice with PIN lesions exhibited metastases to draining lymph nodes, marked by relatively differentiated tumor cells expressing markers of basal (p63, cytokeratin 14) and luminal (cytokeratin 8 and androgen receptor) epithelial cells, although none expressed the basal marker, cytokeratin 5. The finding that PIN lesions contain increased numbers of p63/AR-positive, cytokeratin 5-negative basal cells compared with WT or Akap12-/- prostate lobes suggests that these transitional cells may be the source of the lymph node metastases. Taken together, these data suggest that in the context of Rb loss, Akap12 suppresses the oncogenic proliferation and early metastatic spread of basal-luminal prostate tumor cells.
Collapse
Affiliation(s)
- Hyun-Kyung Ko
- Authors' Affiliations: Departments of Cancer Genetics and Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | | | | | | | | | | |
Collapse
|
15
|
Schott MB, Grove B. Receptor-mediated Ca2+ and PKC signaling triggers the loss of cortical PKA compartmentalization through the redistribution of gravin. Cell Signal 2013; 25:2125-35. [PMID: 23838009 DOI: 10.1016/j.cellsig.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
A-Kinase Anchoring Proteins (AKAPs) direct the flow of cellular information by positioning multiprotein signaling complexes into proximity with effector proteins. However, certain AKAPs are not stationary but can undergo spatiotemporal redistribution in response to stimuli. Gravin, a 300kD AKAP that intersects with a diverse signaling array, is localized to the plasma membrane but has been shown to translocate to the cytosol following the elevation of intracellular calcium ([Ca(2+)]i). Despite the potential for gravin redistribution to impact multiple signaling pathways, the dynamics of this event remain poorly understood. In this study, quantitative microscopy of cells expressing gravin-EGFP revealed that Ca(2+) elevation caused the complete translocation of gravin from the cell cortex to the cytosol in as little as 60s of treatment with ionomycin or thapsigargin. In addition, receptor mediated signaling was also shown to cause gravin redistribution following ATP treatment, and this event required both [Ca(2+)]i elevation and PKC activation. To understand the mechanism for Ca(2+) mediated gravin dynamics, deletion of calmodulin-binding domains revealed that a fourth putative calmodulin binding domain called CB4 (a.a. 670-694) is critical for targeting gravin to the cell cortex despite its location downstream of gravin's membrane-targeting domains, which include an N-terminal myristoylation site and three polybasic domains. Finally, confocal microscopy of cells co-transfected with gravin-EYFP and PKA RII-ECFP revealed that gravin redistribution mediated by ionomycin, thapsigargin, and ATP each triggered the gravin-dependent loss of PKA localized at the cell cortex. Our results support the hypothesis that gravin redistribution regulates cross-talk between PKA-dependent signaling and receptor-mediated events involving Ca(2+) and PKC.
Collapse
Affiliation(s)
- Micah B Schott
- Department of Basic Sciences, UND School of Medicine and Health Sciences, 501 N Columbia Rd., Grand Forks, ND 58202-9037, USA
| | | |
Collapse
|
16
|
Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Rev 2013; 31:493-500. [PMID: 22684366 DOI: 10.1007/s10555-012-9360-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scaffolding proteins such as SSeCKS/Gravin/AKAP12 ("AKAP12") are thought to control oncogenic signaling pathways by regulating key mediators in a spatiotemporal manner. The downregulation of AKAP12 in many human cancers, often associated with promoter hypermethylation, or the loss of its locus at 6q24-25.2, correlates with progression to malignancy and metastasis. The forced re-expression of AKAP12 in cancer cell lines suppresses in vitro parameters of oncogenic growth, invasiveness, and cell motility through its ability to scaffold protein kinase C (PKC), F-actin, cyclins, Src, and phosphoinositides, and possibly through additional scaffolding domains for PKA, calmodulin, β1,4-galactosyltransferase-polypeptide-1, β2-adrenergic receptors, and cAMP-specific 3',5'-cyclic phosphodiesterase 4D. Moreover, AKAP12 re-expression in tumor models results in metastasis suppression through the inhibition of Src-regulated, VEGF-mediated neovascularization at distal sites. The current review will describe the emerging understanding of how AKAP12 regulates cellular senescence and oncogenic progression at the level of tumor cells and tumor-associated microenvironment via its multiple scaffolding functions.
Collapse
|
17
|
Pivotal Role of AKAP12 in the Regulation of Cellular Adhesion Dynamics: Control of Cytoskeletal Architecture, Cell Migration, and Mitogenic Signaling. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:529179. [PMID: 22811901 PMCID: PMC3395252 DOI: 10.1155/2012/529179] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/24/2012] [Indexed: 11/18/2022]
Abstract
Cellular dynamics are controlled by key signaling molecules such as cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). AKAP12/SSeCKS/Gravin (AKAP12) is a scaffold protein for PKA and PKC which controls actin-cytoskeleton reorganization in a spatiotemporal manner. AKAP12 also acts as a tumor suppressor which regulates cell-cycle progression and inhibits Src-mediated oncogenic signaling and cytoskeletal pathways. Reexpression of AKAP12 causes cell flattening, reorganization of the actin cytoskeleton, and the production of normalized focal adhesion structures. Downregulation of AKAP12 induces the formation of thickened, longitudinal stress fibers and the proliferation of adhesion complexes. AKAP12-null mouse embryonic fibroblasts exhibit hyperactivation of PKC, premature cellular senescence, and defects in cytokinesis, relating to the loss of PKC scaffolding activity by AKAP12. AKAP12-null mice exhibit increased cell senescence and increased susceptibility to carcinogen-induced oncogenesis. The paper describes the regulatory and scaffolding functions of AKAP12 and how it regulates cell adhesion, signaling, and oncogenic suppression.
Collapse
|
18
|
Su B, Gao L, Meng F, Guo LW, Rothschild J, Gelman IH. Adhesion-mediated cytoskeletal remodeling is controlled by the direct scaffolding of Src from FAK complexes to lipid rafts by SSeCKS/AKAP12. Oncogene 2012; 32:2016-26. [PMID: 22710722 PMCID: PMC3449054 DOI: 10.1038/onc.2012.218] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metastatic cell migration and invasion are regulated by altered adhesion-mediated signaling to the actin-based cytoskeleton via activated Src-FAK complexes. SSeCKS (the rodent orthologue of human Gravin/AKAP12), whose expression is downregulated by oncogenic Src and in many human cancers, antagonizes oncogenic Src pathways including those driving neovascularization at metastatic sites, metastatic cell motility and invasiveness. This is likely manifested through its function as a scaffolder of F-actin and signaling proteins such as cyclins, calmodulin, protein kinase (PK) C and PKA. Here, we show that in contrast to its ability to inhibit haptotaxis, SSeCKS increased prostate cancer cell adhesion to fibronectin (FN) and type I collagen in a FAK-dependent manner, correlating with a relative increase in FAKpoY397 levels. In contrast, SSeCKS suppressed adhesion-induced Src activation (SrcpoY416) and phosphorylation of FAK at Y925, a known Src substrate site. SSeCKS also induced increased cell spreading, cell flattening, integrin β1 clustering and formation of mature focal adhesion plaques. An in silico analysis identified a Src-binding domain on SSeCKS (a.a.153–166) that is homologous to the Src binding domain of Caveolin-1, and this region is required for SSeCKS-Src interaction, for SSeCKS-enhanced Src activity and sequestration to lipid rafts, and for SSeCKS-enhanced adhesion of MAT-LyLu and CWR22Rv1 prostate cancer cells. Our data suggest a model in which SSeCKS suppresses oncogenic motility by sequestering Src to caveolin-rich lipid rafts, thereby disengaging Src from FAK-associated adhesion and signaling complexes.
Collapse
Affiliation(s)
- B Su
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|
19
|
Gelman IH. Emerging Roles for SSeCKS/Gravin/AKAP12 in the Control of Cell Proliferation, Cancer Malignancy, and Barriergenesis. Genes Cancer 2011; 1:1147-56. [PMID: 21779438 DOI: 10.1177/1947601910392984] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Emerging data suggest that SSeCKS/Gravin/AKAP12 ("AKAP12"), originally identified as an autoantigen in cases of myasthenia gravis, controls multiple biological processes through its ability to scaffold key signaling proteins such as protein kinase (PK) C and A, calmodulin, cyclins, phosphoinositides, "long" β-1,4 galactosyltransferase (GalTase) isoform, Src, as well as the actin cytoskeleton in a spatiotemporal manner. Specialized functions attributed to AKAP12 include the suppression of cancer malignancy, especially aspects of metastatic progression, regulation of blood-brain and blood-retina barrier formation, and resensitization of β2-adrenergic pain receptors. Recent data identify a direct role for AKAP12 in cytokinesis completion, further suggesting a function as a negative regulator of cell senescence. The current review will discuss the emerging knowledge base of AKAP12-related biological roles and how the factors that affect AKAP12 expression or that interact with AKAP12 at the protein level control cancer progression and blood-tissue barrier formation.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
20
|
Akakura S, Nochajski P, Gao L, Sotomayor P, Matsui SI, Gelman IH. Rb-dependent cellular senescence, multinucleation and susceptibility to oncogenic transformation through PKC scaffolding by SSeCKS/AKAP12. Cell Cycle 2010; 9:4656-65. [PMID: 21099353 DOI: 10.4161/cc.9.23.13974] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A subset of AKAPs (A Kinase Anchoring Proteins) regulate signaling and cytoskeletal pathways through the spaciotemporal scaffolding of multiple protein kinases (PK) such as PKC and PKA, and associations with the plasma membrane and the actin-based cytoskeleton. SSeCKS/Gravin/Akap12 expression is severely downregulated in many advanced cancers and exhibits tumor- and metastasis-suppressing activity. akap12-null (KO) mice develop prostatic hyperplasia with focal dysplasia, but the precise mechanism how Akap12 prevents oncogenic progression remains unclear. Here, we show that KO mouse embryonic fibroblasts (MEF) exhibit premature senescence marked by polyploidy and multinucleation, and by increased susceptibility to oncogenic transformation. Although p53 and Rb pathways are activated in the absence of Akap12, senescence is dependent on Rb. Senescence is driven by the activation of PKCα, which induces p16(Ink4a)/Rb through a MEK-dependent downregulation of Id1, and PKCδ, which downregulates Lats1/Warts, a mitotic exit network kinase required for cytokinesis. Our data strongly suggest that Akap12 controls Rb-mediated cell aging and oncogenic progression by directly scaffolding and attenuating PKCα/δ.
Collapse
Affiliation(s)
- Shin Akakura
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | |
Collapse
|
21
|
Oser M, Dovas A, Cox D, Condeelis J. Nck1 and Grb2 localization patterns can distinguish invadopodia from podosomes. Eur J Cell Biol 2010; 90:181-8. [PMID: 20850195 DOI: 10.1016/j.ejcb.2010.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/21/2010] [Accepted: 08/17/2010] [Indexed: 01/07/2023] Open
Abstract
Invadopodia are matrix-degrading ventral cell surface structures formed in invasive carcinoma cells. Podosomes are matrix-degrading structures formed in normal cell types including macrophages, endothelial cells, and smooth muscle cells that are believed to be related to invadopodia in function. Both invadopodia and podosomes are enriched in proteins that regulate actin polymerization including proteins involved in N-WASp/WASp-dependent Arp2/3-complex activation. However, it is unclear whether invadopodia and podosomes use distinct mediators for N-WASp/WASp-dependent Arp2/3-complex activation. We investigated the localization patterns of the upstream N-WASp/WASp activators Nck1 and Grb2 in invadopodia of metastatic mammary carcinoma cells, podosomes formed in macrophages, and degradative structures formed in Src-transformed fibroblasts and PMA-stimulated endothelial cells. We provide evidence that Nck1 specifically localizes to invadopodia, but not to podosomes formed in macrophages or degradative structures formed in Src-transformed fibroblasts and PMA-stimulated endothelial cells. In contrast, Grb2 specifically localizes to degradative structures formed in Src-transformed fibroblasts and PMA-stimulated endothelial cells, but not invadopodia or podosomes formed in macrophages. These findings suggest that distinct upstream activators are responsible for N-WASp/WASp activation in invadopodia and podosomes, and that all these ventral cell surface degradative structures have distinguishing molecular as well as structural characteristics. These patterns of Nck1 and Grb2 localization, identified in our study, can be used to sub-classify ventral cell surface degradative structures.
Collapse
Affiliation(s)
- Matthew Oser
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
22
|
Direct and indirect effects of kisspeptin on liver oxidant and antioxidant systems in young male rats. Cell Biochem Funct 2010; 28:293-9. [PMID: 20517893 DOI: 10.1002/cbf.1656] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Kisspeptin is a recently discovered hypothalamic peptide which plays an important role in the central control of reproductive functions. We have investigated direct and indirect effects of kisspeptin on the liver oxidative stress in young male rats. Twenty-four rats were divided into four groups (n = 6/group). First group served as control and received saline. Kisspeptin-10 was administered to the animals in the second group (20 nmol/rat/day), for a period of 7 days. Rats were given only one dose gosereline (0.9 mg/rat), a GnRH agonist in the third group. The last group received kisspeptin-10 with gosereline. The activities of catalase, superoxide dismutase (SOD), xanthine oxidase (XO), adenosine deaminase (AD) and level of malondialdehyde were studied in liver tissue. Serum samples were separated for total antioxidant capacity (TAC), total oxidant status (TOS), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, blood urea nitrogen (BUN), colesterol, high-density lipoprotein (HDL) and triglyceride. Kisspeptin increased the activities of SOD and catalase (p < 0.05). When compared to the control group, the levels of malondialdehyde, TOS and AST were lower, but levels of BUN, cholesterole, HDL and AD were higher in the other three groups (p < 0.05). In conclusion, our findings suggest that kisspeptin may have antioxidant and thus protective effects on the liver tissue.
Collapse
|
23
|
Su B, Bu Y, Engelberg D, Gelman IH. SSeCKS/Gravin/AKAP12 inhibits cancer cell invasiveness and chemotaxis by suppressing a protein kinase C- Raf/MEK/ERK pathway. J Biol Chem 2009; 285:4578-86. [PMID: 20018890 DOI: 10.1074/jbc.m109.073494] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SSeCKS/Gravin/AKAP12 ("SSeCKS") encodes a cytoskeletal protein that regulates G(1) --> S progression by scaffolding cyclins, protein kinase C (PKC) and PKA. SSeCKS is down-regulated in many tumor types including prostate, and when re-expressed in MAT-LyLu (MLL) prostate cancer cells, SSeCKS selectively inhibits metastasis by suppressing neovascularization at distal sites, correlating with its ability to down-regulate proangiogenic genes including Vegfa. However, the forced re-expression of VEGF only rescues partial lung metastasis formation. Here, we show that SSeCKS potently inhibits chemotaxis and Matrigel invasion, motility parameters contributing to metastasis formation. SSeCKS suppressed serum-induced activation of the Raf/MEK/ERK pathway, resulting in down-regulation of matrix metalloproteinase-2 expression. In contrast, SSeCKS had no effect on serum-induced phosphorylation of the Src substrate, Shc, in agreement with our previous data that SSeCKS does not inhibit Src kinase activity in cells. Invasiveness and chemotaxis could be restored by the forced expression of constitutively active MEK1, MEK2, ERK1, or PKCalpha. SSeCKS suppressed phorbol ester-induced ERK1/2 activity only if it encoded its PKC binding domain (amino acids 553-900), suggesting that SSeCKS attenuates ERK activation through a direct scaffolding of conventional and/or novel PKC isozymes. Finally, control of MLL invasiveness by SSeCKS is influenced by the actin cytoskeleton: the ability of SSeCKS to inhibit podosome formation is unaffected by cytochalasin D or jasplakinolide, whereas its ability to inhibit MEK1/2 and ERK1/2 activation is nullified by jasplakinolide. Our findings suggest that SSeCKS suppresses metastatic motility by disengaging activated Src and then inhibiting the PKC-Raf/MEK/ERK pathways controlling matrix metalloproteinase-2 expression and podosome formation.
Collapse
Affiliation(s)
- Bing Su
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
24
|
Liu H, Huang X, Wang H, Shen A, Cheng C. Dexamethasone inhibits proliferation and stimulates SSeCKS expression in C6 rat glioma cell line. Brain Res 2009; 1265:1-12. [PMID: 19368818 DOI: 10.1016/j.brainres.2009.01.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/13/2009] [Accepted: 01/22/2009] [Indexed: 12/28/2022]
Abstract
Although there is ample evidence that dexamethasone (DEX) has an antiproliferative effect on C6 glioma cells, the molecular mechanism remains elusive. Src suppressed C kinase substrates (SSeCKS), as a member of PKC substrates, have been implicated to be a negative regulator of cell proliferation. In this study, we provided novel evidence that DEX induced the expression of SSeCKS mRNA and protein in a time- and dose-dependent manner, and translocation of SSeCKS from the cytosol to the membrane. The glucocorticoid receptor antagonist, RU486, significantly decreased DEX-induced SSeCKS expression, inhibited SSeCKS translocation and actin cytoskeleton reorganization after DEX challenge. Knock-down of SSeCKS expression by RNA interference inhibited DEX-induced actin cytoskeleton reorganization and reversed DEX-induced growth arrest. We also presented the novel observation that knock-down of SSeCKS expression elevated the expression of cyclin D1 and the phosphorylation of extracellular signal-regulated Kinase 1/2, indicating that SSeCKS is involved in the regulation of cell cycle related proteins and is essential for DEX induced growth arrest.
Collapse
Affiliation(s)
- Haiou Liu
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | | | | | | | | |
Collapse
|
25
|
Yan M, Cheng C, Jiang J, Liu Y, Gao Y, Guo Z, Liu H, Shen A. Essential role of SRC suppressed C kinase substrates in Schwann cells adhesion, spreading and migration. Neurochem Res 2008; 34:1002-10. [PMID: 18979197 DOI: 10.1007/s11064-008-9869-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2008] [Indexed: 11/26/2022]
Abstract
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, while the responses of Schwann cells during adhesion and migration are unknown, so we examined the expression changes of SSeCKS and F-actin in Schwann cells after exposure to fibronectin. Src (sarcoma) suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after Schwann cells adhesion and that SSeCKS increased during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we showed that Schwann cells in which SSeCKS expression was inhibited reduced cellular adhesion, spreading and promoted cellular migration on fibronectin through reorganization of actin stress fibers and blocking formation of focal adhesions. These results demonstrated SSeCKS modulate Schwann cells adhesion, spreading and migration by reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Meijuan Yan
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Miranti CK. Controlling cell surface dynamics and signaling: how CD82/KAI1 suppresses metastasis. Cell Signal 2008; 21:196-211. [PMID: 18822372 DOI: 10.1016/j.cellsig.2008.08.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 08/24/2008] [Indexed: 12/29/2022]
Abstract
The recent identification of metastasis suppressor genes, uniquely responsible for negatively controlling cancer metastasis, are providing inroads into the molecular machinery involved in metastasis. While the normal function of a few of these genes is known; the molecular events associated with their loss that promotes tumor metastasis is largely not understood. KAI1/CD82, whose loss is associated with a wide variety of metastatic cancers, belongs to the tetraspanin family. Despite intense scrutiny, many aspects of how CD82 specifically functions as a metastasis suppressor and its role in normal biology remain to be determined. This review will focus on the molecular events associated with CD82 loss, the potential impact on signaling pathways that regulate cellular processes associated with metastasis, and its relationship with other metastasis suppressor genes.
Collapse
Affiliation(s)
- C K Miranti
- Laboratory of Integrin Signaling, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, United States.
| |
Collapse
|
27
|
Weiser DC, St Julien KR, Lang JS, Kimelman D. Cell shape regulation by Gravin requires N-terminal membrane effector domains. Biochem Biophys Res Commun 2008; 375:512-516. [PMID: 18725198 DOI: 10.1016/j.bbrc.2008.08.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 12/11/2022]
Abstract
Gravin (AKAP12, SSeCKS) is a scaffolding protein that acts as a potent inhibitor of tumor metastasis in vivo and in vitro, and regulates morphogenesis during vertebrate gastrulation. Despite being implicated in many cellular processes, surprisingly little is known about the mechanism by which Gravin elicits cell shape changes. In this work, we use in vitro cell spreading assays to demonstrate that the Gravin N-terminus containing the three MARCKS-like basic regions (BRs) is necessary and sufficient to regulate cell shape in vitro. We show that the conserved phosphorylation sites in the BRs are essential for their function in these assays. We further demonstrate that the Gravin BRs are necessary for in vivo function during gastrulation in zebrafish. Together, these results provide an important step forward in understanding the mechanism of Gravin function in cell shape regulation and provide valuable insight into how Gravin acts as a cytoskeletal regulator.
Collapse
Affiliation(s)
- Douglas C Weiser
- Department of Biochemistry, University of Washington, Seattle WA 98195
| | | | - James S Lang
- Department of Biochemistry, University of Washington, Seattle WA 98195
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle WA 98195
| |
Collapse
|
28
|
Akakura S, Huang C, Nelson PJ, Foster B, Gelman IH. Loss of the SSeCKS/Gravin/AKAP12 gene results in prostatic hyperplasia. Cancer Res 2008; 68:5096-103. [PMID: 18593908 DOI: 10.1158/0008-5472.can-07-5619] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SSeCKS/Gravin/AKAP12 (SSeCKS) is a kinase scaffolding protein that encodes metastasis-suppressor activity through the suppression of Src-mediated oncogenic signaling and vascular endothelial growth factor expression. SSeCKS expression is down-regulated in Src- and Ras-transformed fibroblasts, in human cancer cell lines and in several types of human cancer, including prostate. Normal human and mouse prostates express abundant SSeCKS in secretory epithelial cells and, to a lesser extent, in the surrounding mesenchyme. Here, we show that the loss of SSeCKS results in prostatic hyperplasia in the anterior and ventral lobes as well as increased levels of apoptosis throughout the prostate. Dysplastic foci were observed less frequently but were associated with the loss of E-cadherin staining and the loss of high molecular weight cytokeratin-positive basal epithelial cells. SSeCKS-null prostate tissues expressed significantly higher relative levels of AKT(poS473) compared with wild-type controls, suggesting that SSeCKS attenuates phosphatidylinositol-3-OH kinase signaling. The data suggest that SSeCKS-null mice have increased susceptibility for oncogenic transformation in the prostate.
Collapse
Affiliation(s)
- Shin Akakura
- Department of Cancer Genetics, Therapeutics Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
29
|
Choi YK, Kim KW. AKAP12 in astrocytes induces barrier functions in human endothelial cells through protein kinase Czeta. FEBS J 2008; 275:2338-53. [PMID: 18397319 DOI: 10.1111/j.1742-4658.2008.06387.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interactions between astrocytes and blood vessels are essential for the formation and maintenance of the blood-neural barrier (BNB). Astrocyte-derived A-kinase anchor protein 12 (AKAP12) influences BNB formation, but the mechanism of regulation of BNB functions by AKAP12 is not fully understood. We have defined a new pathway of barriergenesis in human retina microvascular endothelial cells (HRMECs) involving astrocytic AKAP12. Treatment of HRMECs with conditioned media from AKAP12-overexpressing astrocytes reduced phosphorylation of protein kinase Czeta (PKCzeta), decreased the levels of vascular endothelial growth factor (VEGF) mRNA and protein, and increased thrombospondin-1 (TSP-1) levels, which led to antiangiogenesis and barriergenesis. Transfection of a small interference RNA targeting PKCzeta decreased VEGF levels and increased TSP-1 levels in HRMECs. Rho is a putative downstream signal of PKCzeta, and inhibition of Rho kinase with a specific inhibitor, Y27632, decreased VEGF levels and increased TSP-1 levels. We therefore suggest that AKAP12 in astrocytes differentially regulates the expression of VEGF and TSP-1 via the inhibition of PKCzeta phosphorylation and Rho kinase activity in HRMECs.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- NeuroVascular Coordination Research Center, College of Pharmacy and Research, Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | |
Collapse
|
30
|
Boissan M, Poupon MF, Lacombe ML. NM23 et les genès Suppresseurs de métastases. Med Sci (Paris) 2007; 23:1115-23. [DOI: 10.1051/medsci/200723121115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Yildirim M, Paydas S, Tanriverdi K, Seydaoglu G, Disel U, Yavuz S. Gravin gene expression in acute leukaemias: clinical importance and review of the literature. Leuk Lymphoma 2007; 48:1167-72. [PMID: 17577780 DOI: 10.1080/10428190701377055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to determine the expression of Gravin (a tumor suppressor gene belonging to the A kinase anchoring protein family) in samples of acute leukaemia and to explore its association with the prognosis. The study group consisted of 162 people (137 patients with acute leukaemia and 25 volunteers as control). Real-time quantitative PCR was used to determine the gene expression and beta Actin used as a control gene. The results were evaluated with Comparative Ct method. Gravin beta-Actin DeltaCt was statistically different between patients and controls (p value < 0.001). The Gravin expression was found to be decreased 11-fold when compared with controls and was found to be decreased in 106 cases (77.5%). There was an inverse correlation between gravin expression and overall survival. The Gravin expression was found to be decreased in samples of acute leukaemia and was associated with an inferior overall survival. Because of paradoxical results, there is a need for more studies exploring gravin isoforms and other related gene expressions.
Collapse
Affiliation(s)
- Mustafa Yildirim
- Department of Oncology, Cukurova University Faculty of Medicine, Cukurova University, Adana, Turkey
| | | | | | | | | | | |
Collapse
|
32
|
Bu Y, Gelman IH. v-Src-mediated Down-regulation of SSeCKS Metastasis Suppressor Gene Promoter by the Recruitment of HDAC1 into a USF1-Sp1-Sp3 Complex. J Biol Chem 2007; 282:26725-26739. [PMID: 17626016 DOI: 10.1074/jbc.m702885200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
SSeCKS (Src-suppressed C kinase substrate), also called gravin/AKAP12, is a large scaffolding protein with metastasis suppressor activity. Two major isoforms of SSeCKS are expressed in most cell and tissue types under the control of two independent promoters, designated alpha and beta, separated by 68 kb. SSeCKS transcript and protein levels are severely decreased in Src- and Ras-transformed fibroblasts and in many epithelial tumors. By dissecting its promoters with progressive deletion analysis, we identified the sequence between -106 and -49 in the alpha proximal promoter as the minimal v-Src-responsive element, which contains E- and GC-boxes bound by USF1 and Sp1/Sp3, respectively. Both E- and GC-boxes are crucial for v-Src-responsive and basal promoter activities. v-Src does not alter USF1 binding levels at the E-box, but it increases Sp1/Sp3 binding to the GC-box despite no change in their cellular protein abundance. SSeCKS alpha and beta transcript levels in v-Src/3T3 cells can be restored by treatment with the histone deacetylase inhibitor, trichostatin A, but not with the DNA demethylation agent, 5-azacytidine. Chromatin changes are found only on the alpha promoter even though the beta proximal promoter contains a similar E- and GC-box arrangement. Recruitment of HDAC1 is necessary and sufficient to cause repression of alpha proximal promoter activity, and the addition of Sp1 and/or Sp3 potentiates the repression. Our data suggest that suppression of the beta promoter is facilitated by Src-induced changes in the alpha promoter chromatinization mediated by a USF1-Sp1-Sp3 complex.
Collapse
Affiliation(s)
- Yahao Bu
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263.
| |
Collapse
|
33
|
Weiser DC, Pyati UJ, Kimelman D. Gravin regulates mesodermal cell behavior changes required for axis elongation during zebrafish gastrulation. Genes Dev 2007; 21:1559-71. [PMID: 17575056 PMCID: PMC1891432 DOI: 10.1101/gad.1535007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Convergent extension of the mesoderm is the major driving force of vertebrate gastrulation. During this process, mesodermal cells move toward the future dorsal side of the embryo, then radically change behavior as they initiate extension of the body axis. How cells make this transition in behavior is unknown. We have identified the scaffolding protein and tumor suppressor Gravin as a key regulator of this process in zebrafish embryos. We show that Gravin is required for the conversion of mesodermal cells from a highly migratory behavior to the medio-laterally intercalative behavior required for body axis extension. In the absence of Gravin, paraxial mesodermal cells fail to shut down the protrusive activity mediated by the Rho/ROCK/Myosin II pathway, resulting in embryos with severe extension defects. We propose that Gravin functions as an essential scaffold for regulatory proteins that suppress the migratory behavior of the mesoderm during gastrulation, and suggest that this function also explains how Gravin inhibits invasive behaviors in metastatic cells.
Collapse
Affiliation(s)
- Douglas C. Weiser
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Ujwal J. Pyati
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Corresponding author.E-MAIL ; FAX (206) 616-8676
| |
Collapse
|
34
|
Cheng C, Liu H, Ge H, Qian J, Qin J, Sun L, Shen A. Essential role of Src suppressed C kinase substrates in endothelial cell adhesion and spreading. Biochem Biophys Res Commun 2007; 358:342-8. [PMID: 17482576 DOI: 10.1016/j.bbrc.2007.04.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 04/23/2007] [Indexed: 01/28/2023]
Abstract
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, but the mechanism by which this occurs is unknown. Src suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after cell adhesion and that SSeCKS translocated from the membrane to the cytosol during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we show that RPMVEC cells in which SSeCKS expression was inhibited reduce adhesion and spread on LN through blocking the formation of actin stress fibers and focal adhesions. These results demonstrated SSeCKS modulate endothelial cells adhesion and spreading by reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Chun Cheng
- Institute of Nautical Medicine, Nantong University, Nantong 226001, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Rinker-Schaeffer CW, O’Keefe JP, Welch DR, Theodorescu D. Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clin Cancer Res 2006; 12:3882-9. [PMID: 16818682 PMCID: PMC1525213 DOI: 10.1158/1078-0432.ccr-06-1014] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinically and experimentally, primary tumor formation and metastasis are distinct processes — locally growing tumors can progress without the development of metastases. This observation prompted the hypothesis that the molecular processes regulating tumorigenicity and metastasis are distinguishable and could be targeted therapeutically. During the process of transformation and subsequent progression to a malignant phenotype, both genetic and epigenetic alterations alter a cell’s ability to perceive and respond to signals that regulate normal tissue homeostasis. A minority of tumorigenic cells accrue the full complement of alterations that enables them to disseminate from the primary tumor, survive insults from the immune system and biophysical forces, and respond to growth-promoting and/or inhibitory signals from the distant tissues and thrive there. Identification of genes and proteins that specifically inhibit the ability of cells to form metastases (e.g., metastasis suppressors) is providing new insights into the molecular mechanisms that regulate this complex process. This review will highlight: (a ) the functional identification of metastasis suppressors, (b ) the signaling cascades and cellular phenotypes which are controlled or modulated by metastasis suppressors, and (c ) op portunities for translation and clinical trials that are based on mechanistic studies regarding metastasis suppressors.
Collapse
Affiliation(s)
| | - James P. O’Keefe
- Section of Urology, Department of Surgery, The University of Chicago, Chicago, Illinois
| | - Danny R. Welch
- Departments of Pathology, Cell Biology, and Pharmacology/Toxicology, Comprehensive Cancer Center, University of Alabama-Birmingham, Birmingham, Alabama
| | - Dan Theodorescu
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia
| |
Collapse
|