1
|
Han N, Li X, Wang Y, Wang L, Zhang C, Zhang Z, Ruan M, Zhang C. Increased tumor-infiltrating plasmacytoid dendritic cells promote cancer cell proliferation and invasion via TNF-α/NF-κB/CXCR-4 pathway in oral squamous cell carcinoma. J Cancer 2021; 12:3045-3056. [PMID: 33854604 PMCID: PMC8040884 DOI: 10.7150/jca.55580] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Tumor-infiltrating immune cells are closely associated with tumor occurrence and progression. The present study explored the potential mechanism of tumor-infiltrating plasmacytoid dendritic cells (pDC) mediating the proliferation and metastasis of cancer cells in oral squamous cell carcinoma (OSCC). Methods: pDC distribution was detected by immunofluorescence and flow cytometry. chemotaxis cytokine receptor-4/7 (CXCR-4/7) expression was detected by quantitative polymerase chain reaction and immunohistochemistry. Cell proliferation and migration were measured by CCK-8, colony formation, wound healing and transwell assay. ELISA and western blotting were used to investigate cytokines secretion and NF-κB pathway activity. Results: Tumor-infiltrating pDC in OSCC was significantly increased and associated with tumor size, lymph node (LN) metastasis (P <0.05). Tumor-infiltrating-pDC-conditioned medium from OSCC patients significantly promoted tumor cell proliferation and invasion, which was at least partly mediated via enhancing the CXCR-4 expression of tumor cell. In addition, the activation of NF-κB pathway played a decisive role in the overexpression of CXCR-4, which was further regulated by pDC-derived TNF-α secretion. Conclusions: Tumor-infiltrating pDC promoted oral cancer proliferation and invasion via activating the TNF-α/NF-κB/CXCR-4 pathway, which may serve as a potential immunological target for the treatment of OSCC in the future.
Collapse
Affiliation(s)
- Nannan Han
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Xing Li
- Department of Dentistry, Affiliated Hospital, Weifang Medical University, Weifang, 261031, China
| | - Yupu Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Lin Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Chunye Zhang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zun Zhang
- Department of Stomatology, Shanghai East Hospital, Tongji University. Shanghai 200120, China
| | - Min Ruan
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Chenping Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| |
Collapse
|
2
|
Ray S, Saha D, Alam N, Mitra Mustafi S, Mandal S, Sarkar A, Majumder B, Murmu N. Exposure to chewing tobacco promotes primary oral squamous cell carcinoma and regional lymph node metastasis by alterations of SDF1α/CXCR4 axis. Int J Exp Pathol 2021; 102:80-92. [PMID: 33655604 DOI: 10.1111/iep.12386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
A high incidence of oral squamous cell carcinoma (OSCC) is observed in South-East Asian countries due to addictions such as chewing tobacco. Local invasion and distant metastases are primary causes of poor prognosis in OSCC. This study aimed to understand the alterations in metastasis biomarkers, such as stromal cell-derived factor-1α (SDF-1 or SDF1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4), in OSCC patient samples that were stratified based on the history of addiction to chewing tobacco. Targeted immunohistochemical staining and Western blotting were performed on primary tumour and metastatic lymph node (LN) tissues in parallel. Overexpression of hepatocyte growth factor (HGF), activated form of its cognate receptor tyrosine kinase, c-Met (p-Met), GRB2-associated-binding protein 1 (Gab1), phospho-protein kinase B (pAkt), nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2) were observed in primary tumour and metastatic lymph nodes in both chewer and non-chewer cohorts. Variance analysis showed significant positive correlation between them (P < .0001) indicating upregulation of these biomarkers upon ligand-induced activation of c-Met in both tobacco chewers and non-chewers. Significantly higher expressions of SDF1α and CXCR4 were observed in both primary tumours and metastatic lymph nodes of tobacco chewers (P < .0001) and coincided with overexpressed HGF. In contrast, no significant correlation was observed between expression of HGF and that of SDF1α and CXCR4 in non-chewers. Together, our findings provide important insights into the association of HGF/c-Met and the SDF1α/CXCR4 axis in lymph node metastasis and to an aetiological link with the habit of chewing tobacco.
Collapse
Affiliation(s)
- Sudipta Ray
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Depanwita Saha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | | | - Shyamsundar Mandal
- Department of Epidemiology and Biostatistics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Aniruddha Sarkar
- Department of Head and Neck Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Biswanath Majumder
- Departments of Cancer Biology, Molecular Pathology and Molecular Profiling, Mitra Biotech, Electronic City, Bengaluru, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
3
|
Elhousiny M, Miller K, Ariyawadana A, Nimmo A. Identification of inflammatory mediators associated with metastasis of oral squamous cell carcinoma in experimental and clinical studies: systematic review. Clin Exp Metastasis 2019; 36:481-492. [PMID: 31559586 DOI: 10.1007/s10585-019-09994-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Metastasis, whether regional or distant, remains the main cause of morbidity and recurrence in oral cancer. The accumulating evidence suggests that inflammatory mediators are strong drivers for cancer progression and spread. However, the precise role of these inflammatory mediators in mediating specific metastatic stage is poorly understood due to lack of integration/validation of experimental research data and the clinical trials, i.e., the data produced from research is not translated to clinical therapeutic targets. This, in turn, results in the lack of developing reliable biomarker that can be used for accurate diagnosis/prognosis of the tumour spread. We have performed a systematic review to assess the role of inflammatory mediators as potential markers for diagnosis/prognosis of oral squamous cell carcinoma (OSCC) metastasis. We carried out a systematic search the PubMed, Web of Science, Embase and Scopus databases under the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Australian National Health and Medical Research Council (NHMRC). Articles were divided into two groups; experimental (in-vivo) and clinical studies. The REporting recommendations for tumour MARKer prognostic studies Scale (REMARK) was used to assess the quality of the studies for the clinical search while Animal research: Reporting In-vivo experiments (ARRIVE) guidelines were used to assess the quality of the animal studies. Sixteen articles in the clinical group and four articles in the experimental group were included in the final review. We identified nine inflammatory mediators; CXCR4, CXCL12 (SDF-1), CCR7, IL-6, IL-18, CCL20 (MIP-3), CXCL1 (GRO-1), CCL3, CXCR2. This panel of inflammatory mediators can provide a framework for hypothesis testing of the potential value of these mediators in metastatic prognosis. We recommend carrying a large cohort study with data pooling for adequate assessment and testing of the inflammatory panel of mediators.
Collapse
Affiliation(s)
- Moustafa Elhousiny
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, 4878, Australia.
| | - Kate Miller
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, 4878, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
| | - Anura Ariyawadana
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, 4878, Australia
- Griffith Health Institute, Gold Coast Campus, Griffith University, Gold Coast, Australia
| | - Alan Nimmo
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
4
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
5
|
Zhang J, Chen J, Wo D, Yan H, Liu P, Ma E, Li L, Zheng L, Chen D, Yu Z, Liang C, Peng J, Ren DN, Zhu W. LRP6 Ectodomain Prevents SDF-1/CXCR4-Induced Breast Cancer Metastasis to Lung. Clin Cancer Res 2019; 25:4832-4845. [PMID: 31010839 DOI: 10.1158/1078-0432.ccr-18-3557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/04/2019] [Accepted: 04/15/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Lung metastasis is an important cause of breast cancer-related deaths, in which SDF-1/CXCR4 signaling pathway plays a critical role. Single transmembrane protein LRP6 is viewed as an oncogene via activating the Wnt/β-catenin signaling pathway. Our work aims to investigate the relationship between SDF-1/CXCR4 and LRP6 in breast cancer lung metastasis. EXPERIMENTAL DESIGN We examined the expressions and functions of SDF-1/CXCR4 and LRP6 as well as their relationship in breast cancer in vitro and in vivo. RESULTS LRP6 ectodomain (LRP6N) directly bound to CXCR4 and competitively prevented SDF-1 binding to CXCR4. LRP6N prevented SDF-1/CXCR4-induced metastasis to lung and prolonged survival in mice bearing breast tumors, whereas LRP6 knockdown activated SDF-1/CXCR4 signal transduction and promoted lung metastasis and tumor death. Furthermore, patients with breast cancer with high CXCR4 expression had poor prognosis, which was exacerbated by low LRP6 expression but improved by high LRP6 expression. Interestingly, a secreted LRP6N was found in the serum of mice and humans, which was downregulated by the onset of cancer metastasis in both mice bearing breast cancer as well as in patients with breast cancer. CONCLUSIONS LRP6N might be a promising diagnostic marker for the early detection of breast cancer metastasis as well as an inhibitor of SDF-1/CXCR4-induced breast cancer metastasis. LRP6N also provides an interesting link between Wnt signaling and SDF-1/CXCR4 signaling, the two key pathways involved in cancer development.
Collapse
Affiliation(s)
- Jiankang Zhang
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Jinxiao Chen
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Da Wo
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongwei Yan
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Peng Liu
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - En Ma
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Limei Li
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Liang Zheng
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Daxin Chen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zuoren Yu
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Chunli Liang
- Department of Surgery East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Weidong Zhu
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
PDGFR-induced autocrine SDF-1 signaling in cancer cells promotes metastasis in advanced skin carcinoma. Oncogene 2019; 38:5021-5037. [PMID: 30874597 PMCID: PMC6756210 DOI: 10.1038/s41388-019-0773-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/21/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022]
Abstract
Advanced and undifferentiated skin squamous cell carcinomas (SCCs) exhibit aggressive growth and enhanced metastasis capability, which is associated in mice with an expansion of the cancer stem-like cell (CSC) population and with changes in the regulatory mechanisms that control the proliferation and invasion of these cells. Indeed, autocrine activation of PDGFRα induces CSC invasion and promotes distant metastasis in advanced SCCs. However, the mechanisms involved in this process were unclear. Here, we show that CSCs of mouse advanced SCCs (L-CSCs) express CXCR4 and CXCR7, both receptors of SDF-1. PDGFRα signaling induces SDF-1 expression and secretion, and the autocrine activation of this pathway in L-CSCs. Autocrine SDF-1/CXCR4 signaling induces L-CSC proliferation and survival, and mediates PDGFRα-induced invasion, promoting in vivo lung metastasis. Validation of these findings in patient samples of skin SCCs shows a strong correlation between the expression of SDF1, PDGFRA, and PDGFRB, which is upregulated, along CXCR4 in tumor cells of advanced SCCs. Furthermore, PDGFR regulates SDF-1 expression and inhibition of SDF-1/CXCR4 and PDGFR pathways blocks distant metastasis of human PD/S-SCCs. Our results indicate that functional crosstalk between PDGFR/SDF-1 signaling regulates tumor cell invasion and metastasis in human and mouse advanced SCCs, and suggest that CXCR4 and/or PDGFR inhibitors could be used to block metastasis of these aggressive tumors.
Collapse
|
7
|
Werner TA, Forster CM, Dizdar L, Verde PE, Raba K, Schott M, Knoefel WT, Krieg A. CXCR4/CXCR7/CXCL12-Axis in Follicular Thyroid Carcinoma. J Cancer 2018; 9:929-940. [PMID: 29581772 PMCID: PMC5868160 DOI: 10.7150/jca.23042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/13/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Follicular thyroid carcinoma's (FTC) often benign course is partially due to adjuvant radioactive iodine (RAI) treatment. However, once the tumour has spread and fails to retain RAI, the therapeutic options are limited and the outcome is poor. In this subset of patients, the identification of novel druggable biomarkers appears invaluable. Here, we investigated the stage dependent expression and functional role of the C-X-C chemokine receptors type 4 and 7 (CXCR4/7) in FTC. Methods: CXCR4/7 expression was examined in 44 FTC and corresponding non-neoplastic thyroid specimens as well as 10 FTC distant metastases and 18 follicular adenomas using tissue microarray technology. Expression levels were correlated with clinicopathological variables as well as overall and recurrence free survival. Changes regarding cell cycle activation, tumour cell invasiveness and mRNA expression of genes related to epithelial-mesenchymal transition (EMT) were investigated after treatment with recombinant human SDF1α/CXCL12 (rh-SDF1α) and CXCR4 antagonists AMD3100 and WZ811. Results: CXCR4/7 expression was associated with large tumour size, advanced UICC stage as well as shorter overall and recurrence free survival. CXCR4 was significantly higher expressed in distant metastases than in primary tumour cores. In addition, rh-SDF1α induced invasive growth, cell cycle activation and EMT, while CXCR4 antagonists significantly reduced FTC invasiveness in vitro. Conclusion: Here we provide first evidence of the biological importance of the CXCR4/CXCR7/CXCL12 axis in FTC. Our findings underscore the therapeutic potential of this chemokine receptor family in advanced FTC and offer new valuable insight into the oncogenesis of metastatic FTC.
Collapse
Affiliation(s)
- Thomas Artur Werner
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Christina Maria Forster
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Pablo Emilio Verde
- Coordination Centre for Clinical Trials, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Matthias Schott
- Division of Endocrinology, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Wolfram Trudo Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| |
Collapse
|
8
|
Taromi S, Kayser G, Catusse J, von Elverfeldt D, Reichardt W, Braun F, Weber WA, Zeiser R, Burger M. CXCR4 antagonists suppress small cell lung cancer progression. Oncotarget 2018; 7:85185-85195. [PMID: 27835905 PMCID: PMC5356728 DOI: 10.18632/oncotarget.13238] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive tumor with poor prognosis due to early metastatic spread and development of chemoresistance. Playing a key role in tumor-stroma interactions the CXCL12-CXCR4 axis may be involved in both processes and thus represent a promising therapeutic target in SCLC treatment. In this study we investigated the effect of CXCR4 inhibition on metastasis formation and chemoresistance using an orthotopic xenograft mouse model. This model demonstrates regional spread and spontaneous distant metastases closely reflecting the clinical situation in extensive SCLC. Tumor engraftment, growth, metabolism, and metastatic spread were monitored using different imaging techniques: Magnetic Resonance Imaging (MRI), Bioluminescence Imaging (BLI) and Positron Emission Tomography (PET). Treatment of mice bearing chemoresistant primary tumors with the specific CXCR4 inhibitor AMD3100 reduced the growth of the primary tumor by 61% (P<0.05) and additionally suppressed metastasis formation by 43%. In comparison to CXCR4 inhibition as a monotherapy, standard chemotherapy composed of cisplatin and etoposide reduced the growth of the primary tumor by 71% (P<0.01) but completely failed to suppress metastasis formation. Combination of chemotherapy and the CXCR4 inhibitor integrated the highest of both effects. The growth of the primary tumor was reduced to a similar extent as with chemotherapy alone and metastasis formation was reduced to a similar extent as with CXCR4 inhibitor alone. In conclusion, we demonstrate in this orthotopic mouse model that the addition of a CXCR4 inhibitor to chemotherapy significantly reduces metastasis formation. Thus, it might improve the overall therapy response and consequently the outcome of SCLC patients.
Collapse
Affiliation(s)
- Sanaz Taromi
- Department of Medicine, Division of Hematology/Oncology, University Medical Center, Hugstetter, D-79106 Freiburg, Germany
| | - Gian Kayser
- Department of Pathology, University Medical Center, Breisacher, D-79106 Freiburg
| | - Julie Catusse
- Department of Medicine, Division of Hematology/Oncology, University Medical Center, Hugstetter, D-79106 Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology Medical Physics, University Medical Center, Breisacher, D-79106 Freiburg
| | - Wilfried Reichardt
- Department of Radiology Medical Physics, University Medical Center, Breisacher, D-79106 Freiburg
| | - Friederike Braun
- Institute of Nuclear Medicine, University Medical Center, Hugstetter D-79106 Freiburg, Germany.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA.,University of Freiburg, Faculty of Biology, Schaenzlestrasse, D-79106 Freiburg, Germany
| | - Wolfgang A Weber
- Institute of Nuclear Medicine, University Medical Center, Hugstetter D-79106 Freiburg, Germany.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Robert Zeiser
- Department of Medicine, Division of Hematology/Oncology, University Medical Center, Hugstetter, D-79106 Freiburg, Germany
| | - Meike Burger
- Department of Medicine, Division of Hematology/Oncology, University Medical Center, Hugstetter, D-79106 Freiburg, Germany.,University Furtwangen, Faculty of Medical and Life Sciences, Campus Schwenningen, VS-78054 Schwenningen, Germany
| |
Collapse
|
9
|
Abstract
Cancer patients with lymph node (LN) metastases have a worse prognosis than those without nodal disease. However, why LN metastases correlate with reduced patient survival is poorly understood. Recent findings provide insight into mechanisms underlying tumor growth in LNs. Tumor cells and their secreted molecules engage stromal, myeloid, and lymphoid cells within primary tumors and in the lymphatic system, decreasing antitumor immunity and promoting tumor growth. Understanding the mechanisms of cancer survival and growth in LNs is key to designing effective therapy for the eradication of LN metastases. In addition, uncovering the implications of LN metastasis for systemic tumor burden will inform treatment decisions. In this review, we discuss the current knowledge of the seeding, growth, and further dissemination of LN metastases.
Collapse
Affiliation(s)
- Dennis Jones
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Ethel R Pereira
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Timothy P Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Knopf A, Bahadori L, Fritsche K, Piontek G, Becker CC, Knolle P, Krüger A, Bier H, Li Y. Primary tumor-associated expression of CXCR4 predicts formation of local and systemic recurrency in head and neck squamous cell carcinoma. Oncotarget 2017; 8:112739-112747. [PMID: 29348861 PMCID: PMC5762546 DOI: 10.18632/oncotarget.22562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/30/2017] [Indexed: 12/14/2022] Open
Abstract
Objectives Despite modern treatment regimens, overall survival in head and neck squamous cell carcinomas (HNSCC) is less than 50% due to local and systemic disease recurrency. The current study aims to identify molecular markers in primary tumor specimens that predict the risk for local and systemic recurrency at the time of initial diagnosis. Methods The study included clinic-pathological data of 1,057 HNSCC. MMP2/9, TIMP1/2, CXCR4, and CXCL12 immunohistochemistry was done in 150 randomly selected specimens. For statistics, we employed Chi square, Fisher exact, and Student's t-test. Overall survival (OS) was calculated by Kaplan–Meier and log-rank test. Prognostic variables were subsequently evaluated by Cox regression for forward selection. Results CXCR4 positive specimens demonstrated a significant increased risk for tumor recurrency associated death (rT: HR 10.07; p=0.001 / rN: HR 5.04; p=0.013 / rM: HR 2.49; p=0.029) when compared with their unaltered counterparts. Expression of MMP9, TIMP2, CXCR4, and CXCL12 was significantly increased in distant metastasized patients (p<0.0001) and showed significant cross-correlation. In addition, CXCR4 positivity was associated with an increased risk to die due to enhanced T or N status (T1/2 vs. T3/4: HR 5.78; p=0.017; N0 vs. N+: HR 5.18; p=0.033). Conclusion CXCR4 positivity in tumor samples at initial diagnosis were associated with reduced overall survival, in particular with respect to increasing T/N status, local and systemic recurrency.
Collapse
Affiliation(s)
- Andreas Knopf
- Otorhinolaryngology, Head and Neck Surgery, Institute of Molecular Immunology & Experimental Oncology, 81675 München, Germany
| | - Leila Bahadori
- Otorhinolaryngology, Head and Neck Surgery, Institute of Molecular Immunology & Experimental Oncology, 81675 München, Germany
| | - Kristin Fritsche
- Otorhinolaryngology, Head and Neck Surgery, Institute of Molecular Immunology & Experimental Oncology, 81675 München, Germany
| | - Guido Piontek
- Otorhinolaryngology, Head and Neck Surgery, Institute of Molecular Immunology & Experimental Oncology, 81675 München, Germany
| | - Cord-Christian Becker
- Otorhinolaryngology, Head and Neck Surgery, Institute of Molecular Immunology & Experimental Oncology, 81675 München, Germany
| | - Percy Knolle
- Institute of Molecular Immunology & Experimental Oncology, 81675 München, Germany
| | - Achim Krüger
- Institute of Molecular Immunology & Experimental Oncology, 81675 München, Germany
| | - Henning Bier
- Otorhinolaryngology, Head and Neck Surgery, Institute of Molecular Immunology & Experimental Oncology, 81675 München, Germany
| | - Yin Li
- Otorhinolaryngology, Head and Neck Surgery, Institute of Molecular Immunology & Experimental Oncology, 81675 München, Germany
| |
Collapse
|
11
|
Werner TA, Forster CM, Dizdar L, Verde PE, Raba K, Schott M, Knoefel WT, Krieg A. CXCR4/CXCR7/CXCL12 axis promotes an invasive phenotype in medullary thyroid carcinoma. Br J Cancer 2017; 117:1837-1845. [PMID: 29112684 PMCID: PMC5729476 DOI: 10.1038/bjc.2017.364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Medullary thyroid carcinoma (MTC) is a rare and challenging endocrine malignancy. Once spread, the therapeutic options are limited and the outcome poor. For these patients, the identification of new druggable biological markers is of great importance. Here, we investigated the prognostic and biological role of the C-X-C chemokine receptors type 4 and 7 (CXCR4/7) in MTC. Methods: Eighty-six MTC and corresponding non-neoplastic thyroid specimens were immunohistochemically stained for CXCR4/7 using tissue microarray technology and expression levels correlated with clinicopathological variables. Medullary thyroid carcinoma cell line TT was treated with recombinant human SDF1α/CXCL12 (rh-SDF1α) and CXCR4 antagonists AMD3100 and WZ811. Changes in cell cycle activation, tumour cell invasiveness as well as changes in mRNA expression levels of genes associated with epithelial–mesenchymal transition (EMT) were investigated. Results: High CXCR4 expression was associated with large tumour size and metastatic disease. CXCR4 antagonists significantly reduced tumour cell invasiveness, while the treatment with rh-SDF1α stimulated invasive growth, caused cell cycle activation and induced EMT. Conclusions: The CXCR4/CXCR7/CXCL12 axis plays an important role in MTC. We provide first evidence that the chemokine receptors might serve as potential therapeutic targets in patients with advanced MTC and offer new valuable insight into the underlying molecular machinery of metastatic MTC.
Collapse
Affiliation(s)
- Thomas A Werner
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Duesseldorf 40225, Germany
| | - Christina M Forster
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Duesseldorf 40225, Germany
| | - Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Duesseldorf 40225, Germany
| | - Pablo E Verde
- Coordination Centre for Clinical Trials, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Duesseldorf 40225, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Duesseldorf, 40225, Germany
| | - Matthias Schott
- Division for Specific Endocrinology, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Duesseldorf 40225, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Duesseldorf 40225, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Duesseldorf 40225, Germany
| |
Collapse
|
12
|
De-Colle C, Menegakis A, Mönnich D, Welz S, Boeke S, Sipos B, Fend F, Mauz PS, Tinhofer I, Budach V, Abu Jawad J, Stuschke M, Balermpas P, Rödel C, Grosu AL, Abdollahi A, Debus J, Belka C, Ganswindt U, Pigorsch S, Combs SE, Lohaus F, Linge A, Krause M, Baumann M, Zips D. SDF-1/CXCR4 expression is an independent negative prognostic biomarker in patients with head and neck cancer after primary radiochemotherapy. Radiother Oncol 2017; 126:125-131. [PMID: 29061496 DOI: 10.1016/j.radonc.2017.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Preclinical and clinical data suggest that the chemokine pathway governed by SDF-1 and CXCR4 contributes to a resistant phenotype. This retrospective biomarker study aims to explore the specific prognostic value of SDF-1 and CXCR4 expression in locally advanced head and neck squamous cell carcinomas (HNSCC) treated with primary radiochemotherapy (RT-CT). MATERIAL AND METHODS Biopsies from 141 HNSCC tumours of the oral cavity, oropharynx and hypopharynx were evaluated for SDF-1 and CXCR4 expression by immunofluorescence. SDF-1 and CXCR4 expression was correlated with clinico-pathological characteristics and outcome after RT-CT. RESULTS Patients with tumours exhibiting overexpression of intracellular SDF-1 and CXCR4 have a higher risk for loco-regional relapse and a worse overall survival after RT-CT (multivariate analysis, hazard ratio 2.33, CI [1.18-4.62], p = 0.02 and hazard ratio 2.02, CI [1.13-3.59], p = 0.02, respectively). Similar results were observed when only the subgroup of HPV DNA negative patients were analysed (hazard ratio 2.23 and 2.16, p = 0.02 and p = 0.01, respectively). CONCLUSIONS Our data support the importance of SDF-1 and CXCR4 expression for loco-regional control and overall survival in HNSCC after primary radiochemotherapy. Prospective multivariate validation and further studies into CXCR4 inhibition to overcome radiation resistance are warranted.
Collapse
Affiliation(s)
- Chiara De-Colle
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany.
| | - Apostolos Menegakis
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - David Mönnich
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Tübingen, Germany
| | - Stefan Welz
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Simon Boeke
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Bence Sipos
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Falko Fend
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Paul-Stefan Mauz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Inge Tinhofer
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Berlin, Germany; Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Volker Budach
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Berlin, Germany; Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Jehad Abu Jawad
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Essen, Germany; Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Germany
| | - Martin Stuschke
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Essen, Germany; Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Germany
| | - Panagiotis Balermpas
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Frankfurt, Germany; Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Claus Rödel
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Frankfurt, Germany; Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Anca-Ligia Grosu
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Freiburg, Germany; Department of Radiation Oncology, University of Freiburg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany; Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Germany; National Center for Tumor Diseases (NCT), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany; Translational Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany; Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Germany; National Center for Tumor Diseases (NCT), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany; Clinical Cooperation Unit Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
| | - Claus Belka
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Munich, Germany; Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ute Ganswindt
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Munich, Germany; Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Steffi Pigorsch
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Munich, Germany; Department of Radiation Oncology, Technische Universität München, Germany.; Institute for Innovative radiation therapy in Helmholtz-Zentrum München, Germany
| | - Stephanie E Combs
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Munich, Germany; Department of Radiation Oncology, Technische Universität München, Germany.; Institute for Innovative radiation therapy in Helmholtz-Zentrum München, Germany
| | - Fabian Lohaus
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany
| | - Annett Linge
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany
| | - Mechthild Krause
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany
| | - Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Tübingen, Germany
| |
Collapse
|
13
|
De-Colle C, Mönnich D, Welz S, Boeke S, Sipos B, Fend F, Mauz PS, Tinhofer I, Budach V, Jawad JA, Stuschke M, Balermpas P, Rödel C, Grosu AL, Abdollahi A, Debus J, Bayer C, Belka C, Pigorsch S, Combs SE, Lohaus F, Linge A, Krause M, Baumann M, Zips D, Menegakis A. SDF-1/CXCR4 expression in head and neck cancer and outcome after postoperative radiochemotherapy. Clin Transl Radiat Oncol 2017; 5:28-36. [PMID: 29594214 PMCID: PMC5833920 DOI: 10.1016/j.ctro.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/06/2017] [Accepted: 06/10/2017] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Outcome after postoperative radiochemotherapy (RT-CT) for patients with advanced head and neck squamous cell carcinomas (HNSCC) remains unsatisfactory, especially among those with HPV negative tumours. Therefore, new biomarkers are needed to further define subgroups for individualised therapeutic approaches. Preclinical and first clinical observations showed that the chemokine receptor CXCR4 and its ligand SDF-1 (CXCL12) play an important role in tumour cell proliferation, survival, cancer progression, metastasis and treatment resistance. However, the data on the prognostic value of SDF-1/CXCR4 expression for HNSCC are conflicting. The aim of our hypothesis-generating study was to retrospectively explore the prognostic potential of SDF-1/CXCR4 in a well-defined cohort of HNSCC patients collected within the multicenter biomarker study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). MATERIAL AND METHODS Patients with stage III and IVA HNSCC of the oral cavity, oropharynx and hypopharynx were treated with resection and adjuvant radiotherapy (RT) with ≥60 Gy and concurrent cisplatin-based chemotherapy (CT). Tissue micro-arrays (TMAs) from a total of 221 patients were generated from surgical specimens, 201 evaluated for the SDF-1 and CXCR4 expression by immunofluorescence and correlated with clinico-pathological and outcome data. RESULTS In univariate and multivariate analyses intracellular SDF-1 expression was associated with lower loco-regional control (LRC) in the entire patient group as well as in the HPV16 DNA negative subgroup. CXCR4 expression showed a trend for lower LRC in the univariate analysis which was not confirmed in the multivariate analysis. Neither for SDF-1 nor CXCR4 expression associations with distant metastasis free or overall survival were found. CONCLUSIONS Our exploratory data support the hypothesis that overexpression of intracellular SDF-1 is an independent negative prognostic biomarker for LRC after postoperative RT-CT in high-risk HNSCC. Prospective validation is warranted and further exploration of SDF-1/CXCR4 as a potential therapeutic target to overcome treatment resistance in HNSCC appears promising.
Collapse
Affiliation(s)
- Chiara De-Colle
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - David Mönnich
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Tübingen, Germany
| | - Stefan Welz
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Simon Boeke
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bence Sipos
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Falko Fend
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Paul-Stefan Mauz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Inge Tinhofer
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Volker Budach
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Jehad Abu Jawad
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Essen, Germany
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Essen, Germany
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Panagiotis Balermpas
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Claus Rödel
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Anca-Ligia Grosu
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Freiburg, Germany
- Department of Radiation Oncology, University of Freiburg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Germany
- National Center for Tumor Diseases (NCT), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Translational Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Germany
- National Center for Tumor Diseases (NCT), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Clinical Cooperation Unit Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
| | - Christine Bayer
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
| | - Claus Belka
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Steffi Pigorsch
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
- Department of Radiation Oncology, Technische Universität München, Institute for Innovative Radiation Therapy in Helmholtz-Zentrum München, Germany
| | - Stephanie E. Combs
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
- Department of Radiation Oncology, Technische Universität München, Institute for Innovative Radiation Therapy in Helmholtz-Zentrum München, Germany
| | - Fabian Lohaus
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Annett Linge
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Mechthild Krause
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Germany
| | - Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Tübingen, Germany
| | - Apostolos Menegakis
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA, Oupicky D. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther 2017; 179:158-170. [PMID: 28549596 DOI: 10.1016/j.pharmthera.2017.05.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemokine networks regulate a variety of cellular, physiological, and immune processes. These normal functions can become appropriated by cancer cells to facilitate a more hospitable niche for aberrant cells by enhancing growth, proliferation, and metastasis. This is especially true in pancreatic cancer, where chemokine signaling is a vital component in the development of the supportive tumor microenvironment and the signaling between the cancer cells and surrounding stromal cells. Although expression patterns vary among cancer types, the chemokine receptor CXCR4 has been implicated in nearly every major malignancy and plays a prominent role in pancreatic cancer development and progression. This receptor, in conjunction with its primary chemokine ligand CXCL12, promotes pancreatic cancer development, invasion, and metastasis through the management of the tumor microenvironment via complex crosstalk with other pathways. Thus, CXCR4 likely contributes to the poor prognoses observed in patients afflicted with this malignancy. Recent exploration of combination therapies with CXCR4 antagonists have demonstrated improved outcomes, and abolishing the contribution of this pathway may prove crucial to effectively treat pancreatic cancer at both the primary tumor and metastases.
Collapse
Affiliation(s)
- Richard L Sleightholm
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Beth K Neilsen
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Jing Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - David Oupicky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
15
|
da Silva JM, Moreira Dos Santos TP, Sobral LM, Queiroz-Junior CM, Rachid MA, Proudfoot AEI, Garlet GP, Batista AC, Teixeira MM, Leopoldino AM, Russo RC, Silva TA. Relevance of CCL3/CCR5 axis in oral carcinogenesis. Oncotarget 2017; 8:51024-51036. [PMID: 28881626 PMCID: PMC5584227 DOI: 10.18632/oncotarget.16882] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/20/2017] [Indexed: 01/24/2023] Open
Abstract
The chemokine CCL3 is a chemotactic cytokine crucial for inflammatory cell recruitment in homeostatic and pathological conditions. CCL3 might stimulate cancer progression by promoting leukocyte accumulation, angiogenesis and tumour growth. The expression of CCL3 and its receptors CCR1 and CCR5 was demonstrated in oral squamous cell carcinoma (OSCC), but their role was not defined. Here, the functions of CCL3 were assessed using a model of chemically induced tongue carcinogenesis with 4-nitroquinoline-1-oxide (4NQO). Lineages of OSCC were used to analyse the effects of CCL3 in vitro. The 4NQO-induced lesions exhibited increased expression of CCL3, CCR1 and CCR5. CCL3-/- and CCR5-/- mice presented reduced incidence of tongue tumours compared to wild-type (WT) and CCR1-/- mice. Consistently, attenuated cytomorphological atypia and reduced cell proliferation were observed in lesions of CCL3-/- and CCR5-/- mice. OSCC from CCL3-/- mice exhibited lower infiltration of eosinophils and reduced expression of Egf, Fgf1, Tgf-β1, Vegfa, Vegfb, Itga-4, Vtn, Mmp-1a, Mmp-2 and Mmp-9 than WT mice. In vitro, CCL3 induced invasion and production of CCL5, IL-6, MMP -2, -8, -9. Blockage of CCL3 in vitro using α-CCL3 or Evasin-1 (a CCL3-binding protein) impaired tumour cell invasion. In conclusion, CCL3/CCR5 axis has pro-tumourigenic effects in oral carcinogenesis. The induction of inflammatory and angiogenic pathways and eosinophils recruitment appear to be the underlying mechanism explaining these effects. These data reveal potential protective effects of CCL3 blockade in oral cancer.
Collapse
Affiliation(s)
- Janine Mayra da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tálita Pollyanna Moreira Dos Santos
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Bauru, Brazil
| | - Lays Martin Sobral
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Bauru, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Milene Alvarenga Rachid
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, School of Dentistry, Universidade de São Paulo, SE3;o Paulo, Bauru, Brazil
| | - Aline Carvalho Batista
- Department of Stomatology, School of Dentistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Bauru, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
16
|
Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana RD, Reyes-Cruz G. Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 2016; 90:573-586. [DOI: 10.1124/mol.116.105338] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022] Open
|
17
|
CXCL12 expression promotes esophageal squamous cell carcinoma proliferation and worsens the prognosis. BMC Cancer 2016; 16:514. [PMID: 27439769 PMCID: PMC4955220 DOI: 10.1186/s12885-016-2555-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The chemokine CXCL12 and its corresponding receptor CXCR4 are key players in the development of several cancers. Therefore, we hypothesized that there is a functional causality between CXCL12 expression and tumor progression in patients with esophageal squamous cell carcinoma (ESCC). METHODS We performed an immunohistochemical analysis in 79 consecutive patients with ESCC. We performed in vitro and in vivo cell proliferation assays using ESCC cell lines and a newly established transfectant stably overexpressing CXCL12. RESULTS Immunohistochemistry revealed positive CXCR4 and CXCL12 expression in 48 (61 %) and 62 (78 %) patients, respectively. Additionally, the expression levels did not significantly correlate with any clinicopathological factors. The MIB-1 proliferation index was markedly higher in ESCC with a positive expression of CXCR4 or CXCL12. Positive CXCL12 expression was significantly correlated with lower recurrence-free survival (RFS, p = 0.02). Cox's hazard models revealed CXCL12 expression as an independent predictive factor for recurrence. In vitro, CXCL12 exposure or overexpression enhanced ESCC proliferation; and AMD3100, a specific inhibitor of CXCR4, equally decreased proliferation irrespective of CXCL12 exposure or overexpression. In the mouse model, AMD3100 significantly decreased ESCC tumor size (p = 0.03). CONCLUSIONS CXCL12 stimulates ESCC proliferation, and its expression levels are related to lower RFS in patients with ESCC. Our findings indicate that positive CXCL12 expression may be a useful marker for predicting the outcome in patients with ESCC and is a potentially new therapeutic target for ESCC.
Collapse
|
18
|
Panda S, Padhiary SK, Routray S. Chemokines accentuating protumoral activities in oral cancer microenvironment possess an imperious stratagem for therapeutic resolutions. Oral Oncol 2016; 60:8-17. [PMID: 27531867 DOI: 10.1016/j.oraloncology.2016.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/01/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022]
Abstract
Chemokines, the chemotactic cytokines have established their role in tumorigenesis and tumor progression. Studies, which explored their role in oral cancer for protumoral activity, point towards targeting chemokines for oral squamous cell carcinoma therapy. The need of the hour is to emphasize/divulge in the activities of chemokine ligands and their receptors in the tumor microenvironment for augmentation of such stratagems. This progressing sentience of chemokines and their receptors has inspired this review which is an endeavour to comprehend their role as an aid in accentuating hallmarks of cancer and targeted therapy.
Collapse
Affiliation(s)
- Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| | - Subrat Kumar Padhiary
- Department of Oral and Maxillofacial Surgery, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| | - Samapika Routray
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| |
Collapse
|
19
|
Expression of the CXCL12/CXCR4 chemokine axis predicts regional control in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2016; 273:4525-4533. [PMID: 27328961 DOI: 10.1007/s00405-016-4144-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/11/2016] [Indexed: 01/15/2023]
Abstract
Expression of the CXCL12/CXCR4 chemokine axis has been related with the appearance of metastatic recurrence survival, including regional and distant recurrence, in patients with head and neck squamous cell carcinoma (HNSCC). RT-PCR was used to determine mRNA expression levels of CXCL12 and CXCR4 in biopsy tumor samples in 111 patients with HNSCC. Five-year regional recurrence-free survival for patients with low CXCR4 expression (n = 39, 31.5 %) was 97.4 %, for patients with high CXCR4/high CXCL12 expression (n = 22, 19.8 %) it was 94.7 %, and for patients with high CXCR4/low CXCL12 expression (n = 50, 45.0 %) it was 63.3 %. We found significant differences in the regional recurrence-free survival according to CXCR4/CXCL12 expression values (P = 0.001). HNSCC patients with high CXCR4 and low CXCL12 expression values had a significantly higher risk of regional recurrence and could benefit from a more intense treatment of lymph node areas in the neck.
Collapse
|
20
|
da Silva JM, Soave DF, Moreira dos Santos TP, Batista AC, Russo RC, Teixeira MM, Silva TAD. Significance of chemokine and chemokine receptors in head and neck squamous cell carcinoma: A critical review. Oral Oncol 2016; 56:8-16. [DOI: 10.1016/j.oraloncology.2016.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022]
|
21
|
Choi WT, Yang Y, Xu Y, An J. Targeting chemokine receptor CXCR4 for treatment of HIV-1 infection, tumor progression, and metastasis. Curr Top Med Chem 2016; 14:1574-89. [PMID: 25159167 DOI: 10.2174/1568026614666140827143541] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/30/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022]
Abstract
The chemokine receptor CXCR4 is required for the entry of human immunodeficiency virus type 1 (HIV-1) into target cells and for the development and dissemination of various types of cancers, including gastrointestinal, cutaneous, head and neck, pulmonary, gynecological, genitourinary, neurological, and hematological malignancies. The T-cell (T)-tropic HIV-1 strains use CXCR4 as the entry coreceptor; consequently, multiple CXCR4 antagonistic inhibitors have been developed for the treatment of acquired immune deficiency syndrome (AIDS). However, other potential applications of CXCR4 antagonists have become apparent since its discovery in 1996. In fact, increasing evidence demonstrates that epithelial and hematopoietic tumor cells exploit the interaction between CXCR4 and its natural ligand, stromal cellderived factor (SDF)-1α, which normally regulates leukocyte migration. The CXCR4 and/or SDF-1α expression patterns in tumor cells also determine the sites of metastatic spread. In addition, the activation of CXCR4 by SDF-1α promotes invasion and proliferation of tumor cells, enhances tumor-associated neoangiogenesis, and assists in the degradation of the extracellular matrix and basement membrane. As such, the evaluation of CXCR4 and/or SDF-1α expression levels has a significant prognostic value in various types of malignancies. Several therapeutic challenges remain to be overcome before the use of CXCR4 inhibitors can be translated into clinical practice, but promising preclinical data demonstrate that CXCR4 antagonists can mobilize tumor cells from their protective microenvironments, interfere with their metastatic and tumorigenic potentials, and/or make tumor cells more susceptible to chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Jing An
- Department of Pharmacology, State University of New York, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
22
|
Jung YH, Lee DY, Cha W, Kim BH, Sung MW, Kim KH, Ahn SH. Antitumor effect of CXCR4 antagonist AMD3100 on the tumorigenic cell line of BHP10-3 papillary thyroid cancer cells. Head Neck 2016; 38:1479-86. [DOI: 10.1002/hed.24461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/19/2016] [Accepted: 02/19/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Young Ho Jung
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Boramae Hospital; Seoul South Korea
| | - Doh Young Lee
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Boramae Hospital; Seoul South Korea
| | - Wonjae Cha
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Boramae Hospital; Seoul South Korea
| | - Bo Hae Kim
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Boramae Hospital; Seoul South Korea
| | - Myung-Whun Sung
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University College of Medicine; Seoul South Korea
| | - Kwang Hyun Kim
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Boramae Hospital; Seoul South Korea
| | - Soon-Hyun Ahn
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Bundang Hospital; Seongnam South Korea
| |
Collapse
|
23
|
Liu X, Cheng B, Meng T, You J, Zhu Y, Lu B, Yuan H, Huang X, Hu F. Synthesis and biological application of BKT-140 peptide modified polymer micelles for treating tumor metastasis with an enhanced cell internalization. Polym Chem 2016. [DOI: 10.1039/c5py01807b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A modification of CSOSA micelles with BKT-140 increased receptor-mediated cell uptake and anti-metastasis effect in the CXCR4 high expressing cells.
Collapse
Affiliation(s)
- Xuan Liu
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Bolin Cheng
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Tingting Meng
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Jian You
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Yun Zhu
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Binbin Lu
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Hong Yuan
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Xuan Huang
- Department of Pharmacy
- School of Medicine Science
- Jiaxing University
- Zhejiang 314001
- People's Republic of China
| | - Fuqiang Hu
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| |
Collapse
|
24
|
Rave-Fränk M, Tehrany N, Kitz J, Leu M, Weber HE, Burfeind P, Schliephake H, Canis M, Beissbarth T, Reichardt HM, Wolff HA. Prognostic value of CXCL12 and CXCR4 in inoperable head and neck squamous cell carcinoma. Strahlenther Onkol 2015; 192:47-54. [PMID: 26374452 DOI: 10.1007/s00066-015-0892-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The chemokine CXCL12 and its receptor CXCR4 can affect tumor growth, recurrence, and metastasis. We tested the hypothesis that the CXCL12 and CXCR4 expression influences the prognosis of patients with inoperable head and neck cancer treated with definite radiotherapy or chemoradiotherapy. METHODS Formalin-fixed paraffin-embedded pretreatment tumor tissue from 233 patients with known HPV/p16(INK4A) status was analyzed. CXCL12 and CXCR4 expressions were correlated with pretreatment parameters and survival data by univariate and multivariate Cox regression. RESULTS CXCL12 was expressed in 43.3 % and CXCR4 in 66.1 % of the samples and both were correlated with HPV/p16(INK4A) positivity. A high CXCL12 expression was associated with increased overall survival (p = 0.036), while a high CXCR4 expression was associated with decreased metastasis-free survival (p = 0.034). CONCLUSION A high CXCR4 expression could be regarded as a negative prognostic factor in head and neck cancer because it may foster metastatic spread. This may recommend CXCR4 as therapeutic target for combating head and neck cancer metastasis.
Collapse
Affiliation(s)
- Margret Rave-Fränk
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Narges Tehrany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Julia Kitz
- Department of Pathology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Martin Leu
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Hanne Elisabeth Weber
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Peter Burfeind
- Department of Human Genetics, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Tim Beissbarth
- Institute of Medical Statistics, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Holger Michael Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Hendrik Andreas Wolff
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
25
|
CXCL12 and CXCR4, but not CXCR7, are primarily expressed by the stroma in head and neck squamous cell carcinoma. Pathology 2015; 47:45-50. [PMID: 25474514 DOI: 10.1097/pat.0000000000000191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CXCL12/CXCR4 axis is involved in numerous models of metastatic dissemination, including head and neck squamous cell carcinoma (HNSCC). We assessed the relative expressions of CXCL12, CXCR4 and CXCR7 in the stroma and the tumour of HNSCC, and evaluated the methylation status of the CXCL12 promoter.Snap-frozen, HPV negative HNSCC samples were micro-dissected to isolate the tumoural and stromal compartments. The expression levels of CXCL12, CXCR4 and CXCR7 were assessed by qRT-PCR, and the methylation level of the CXCL12 promoter was evaluated by pyrosequencing.In total, 23 matched tumour/stroma samples were analysed. Higher expressions of CXCR4 and CXCL12 were observed in the stroma (p = 0.012 and p < 0.0001, respectively). No significant difference in expression was observed for CXCR7. A high methylation level (>40%) of the CXCL12 promoter was observed in only a few tumoural samples (5/23) and was associated with a lower expression of the gene (p = 0.03).Stromal cells, rather than the tumour itself, are mainly responsible for the expression of both CXCL12 and CXCR4 expression in HNSCC. CXCR7 expression did not differ between the two compartments and was not related to CXCL12 or CXCR4 expression. Finally, the methylation of the CXCL12 promoter could only explain the low intra-tumoural expression of this gene in 20% of cases.
Collapse
|
26
|
Sugihara H, Ishimoto T, Yasuda T, Izumi D, Eto K, Sawayama H, Miyake K, Kurashige J, Imamura Y, Hiyoshi Y, Iwatsuki M, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, Watanabe M, Takamori H, Baba H. Cancer-associated fibroblast-derived CXCL12 causes tumor progression in adenocarcinoma of the esophagogastric junction. Med Oncol 2015; 32:618. [DOI: 10.1007/s12032-015-0618-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 01/18/2023]
|
27
|
Kinouchi M, Uchida D, Kuribayashi N, Tamatani T, Nagai H, Miyamoto Y. Involvement of miR-518c-5p to growth and metastasis in oral cancer. PLoS One 2014; 9:e115936. [PMID: 25536052 PMCID: PMC4275267 DOI: 10.1371/journal.pone.0115936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/02/2014] [Indexed: 12/22/2022] Open
Abstract
We have previously demonstrated that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of metastasis in oral cancer. Recently, small non coding RNAs, microRNAs (miRNAs) have been shown to be involved in the metastatic process of several types of cancers. However, the miRNAs that contribute to metastases induced by the SDF-1/CXCR4 system in oral cancer are largely unknown. In this study, we examined the metastasis-related miRNAs induced by the SDF-1/CXCR4 system using B88-SDF-1 oral cancer cells, which exhibit functional CXCR4 and distant metastatic potential in vivo. Through miRNA microarray analysis, we identified the upregulation of miR-518c-5p in B88-SDF-1 cells, and confirmed the induction by real-time PCR analysis. Although an LNA-based miR-518c-5p inhibitor did not affect cell growth of B88-SDF-1 cells, it did significantly inhibit the migration of the cells. Next, we transfected a miR-518c expression vector into parental B88 cells and CAL27 oral cancer cells and isolated stable transfectants, B88-518c and CAL27-518c cells, respectively. The anchorage-dependent and -independent growth of miR-518c transfectants was significantly enhanced compared with the growth of mock cells. Moreover, we detected the enhanced migration of these cells. The LNA-based miR-518c-5p inhibitor significantly impaired the enhanced cell growth and migration of miR-518c transfectants, indicating that these phenomena were mainly dependent on the expression of miR-518c-5p. Next, we examined the function of miR-518c-5p in vivo. miR-518c transfectants or mock transfectants were inoculated into the masseter muscle or the blood vessels of nude mice. Tumor volume, lymph nodes metastasis, and lung metastasis were significantly increased in the mice inoculated with the miR-518c transfectants. These results indicated that miR-518c-5p regulates the growth and metastasis of oral cancer as a downstream target of the SDF-1/CXCR4 system.
Collapse
Affiliation(s)
- Makoto Kinouchi
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Daisuke Uchida
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
- * E-mail:
| | - Nobuyuki Kuribayashi
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Tetsuya Tamatani
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Hirokazu Nagai
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Youji Miyamoto
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| |
Collapse
|
28
|
Mei L, Liu Y, Zhang Q, Gao H, Zhang Z, He Q. Enhanced antitumor and anti-metastasis efficiency via combined treatment with CXCR4 antagonist and liposomal doxorubicin. J Control Release 2014; 196:324-31. [DOI: 10.1016/j.jconrel.2014.10.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 12/18/2022]
|
29
|
Podgrabinska S, Skobe M. Role of lymphatic vasculature in regional and distant metastases. Microvasc Res 2014; 95:46-52. [PMID: 25026412 DOI: 10.1016/j.mvr.2014.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 11/16/2022]
Abstract
In cancer, lymphatic vasculature has been traditionally viewed only as a transportation system for metastatic cells. It has now become clear that lymphatics perform many additional functions which could influence cancer progression. Lymphangiogenesis, induced at the primary tumor site and at distant sites, potently augments metastasis. Lymphatic endothelial cells (LECs) control tumor cell entry and exit from the lymphatic vessels. LECs also control immune cell traffic and directly modulate adaptive immune responses. This review highlights advances in our understanding of the mechanisms by which lymphatic vessels, and in particular lymphatic endothelium, impact metastasis.
Collapse
Affiliation(s)
- Simona Podgrabinska
- Department of Obstetrics, Gynecology & Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mihaela Skobe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
30
|
Epigenetic silencing of CXCR4 promotes loss of cell adhesion in cervical cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:581403. [PMID: 25114911 PMCID: PMC4119908 DOI: 10.1155/2014/581403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/31/2014] [Accepted: 05/31/2014] [Indexed: 12/15/2022]
Abstract
In the network of chemokine signaling pathways, recent reports have described the SDF-1α/CXCR4 axis and its role in cancer progression and metastasis. Interestingly, we found downregulation of CXCR4 at both transcript and protein level in cervical cancer cell lines and primary tumors. We also found CXCR4 promoter hypermethylation in cervical cancer cell lines and primary biopsy samples. DNA hypomethylating drug 5-AZA-2′-deoxycytidine and histone deacetylase inhibitor Trichostatin A treatments in cell lines reactivate both CXCR4 transcription and protein expression. Cell adhesion assay demonstrated that autocrine SDF-1α promotes the loss of cell adhesion while paracrine SDF-1α predominantly protects the normal cervical cells from loss of cell adhesion. Cervical cancer cell line C-33A having increased expression of CXCR4 after TSA treatment showed increased cell adhesion by paracrine source of SDF-1α in comparison to untreated C-33A. These findings demonstrate the first evidence that epigenetic silencing of CXCR4 makes the cells inefficient to respond to the paracrine source of SDF-1α leading to loss of cell adhesion, one of the key events in metastases and progression of the disease. Our results provide novel insight of SDF-1α/CXCR4 signaling in tumor microenvironment which may be promising to further delineate molecular mechanism of cervical carcinogenesis.
Collapse
|
31
|
Barbieri F, Thellung S, Würth R, Gatto F, Corsaro A, Villa V, Nizzari M, Albertelli M, Ferone D, Florio T. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System. Int J Endocrinol 2014; 2014:753524. [PMID: 25484899 PMCID: PMC4248486 DOI: 10.1155/2014/753524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.
Collapse
Affiliation(s)
- Federica Barbieri
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
- *Federica Barbieri:
| | - Stefano Thellung
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Roberto Würth
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Federico Gatto
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Alessandro Corsaro
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Valentina Villa
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Manuela Albertelli
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Diego Ferone
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| |
Collapse
|
32
|
Kuribayashi N, Uchida D, Kinouchi M, Takamaru N, Tamatani T, Nagai H, Miyamoto Y. The role of metabotropic glutamate receptor 5 on the stromal cell-derived factor-1/CXCR4 system in oral cancer. PLoS One 2013; 8:e80773. [PMID: 24236200 PMCID: PMC3827474 DOI: 10.1371/journal.pone.0080773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/06/2013] [Indexed: 01/23/2023] Open
Abstract
We have demonstrated that blocking CXCR4 may be a potent anti-metastatic therapy for CXCR4-related oral cancer. However, as CXCR4 antagonists are currently in clinical use to induce the mobilization of hematopoietic stem cells, continuous administration as an inhibitor for the metastasis may lead to persistent leukocytosis. In this study, we investigated the novel therapeutic downstream target(s) of the SDF-1/CXCR4 system, using B88-SDF-1 cells, which have an autocrine SDF-1/CXCR4 system and exhibit distant metastatic potential in vivo. Microarray analysis revealed that 418 genes were upregulated in B88-SDF-1 cells. We identified a gene that is highly upregulated in B88-SDF-1 cells, metabotropic glutamate receptor 5 (mGluR5), which was downregulated following treatment with 1,1’ -[1,4-Phenylenebis(methylene)]bis-1,4,8,11-tetraazacyclotetradecane octahydrochloride (AMD3100), a CXCR4 antagonist. The upregulation of mGluR5 mRNA in the SDF-1/CXCR4 system was predominately regulated by the Ras-extracellular signal-regulated kinase (ERK)1/2 pathway. Additionally, the growth of B88-SDF-1 cells was not affected by the mGluR5 agonist (S)-3,5-DHPG (DHPG) or the mGluR5 antagonists 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and 3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP). However, we observed that DHPG promoted B88-SDF-1 cell migration, whereas both MPEP and MTEP inhibited B88-SDF-1 cell migration. To assess drug toxicity, the antagonists were intraperitoneally injected into immunocompetent mice for 4 weeks. Mice injected with MPEP (5 mg/kg) and MTEP (5 mg/kg) did not exhibit any side effects, such as hematotoxicity, allergic reactions or weight loss. The administration of antagonists significantly inhibited the metastasis of B88-SDF-1 cells to the lungs of nude mice. These results suggest that blocking mGluR5 with antagonists such as MPEP and MTEP could prevent metastasis in CXCR4-related oral cancer without causing side effects.
Collapse
Affiliation(s)
- Nobuyuki Kuribayashi
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima, Japan
| | - Daisuke Uchida
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima, Japan
- * E-mail:
| | - Makoto Kinouchi
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima, Japan
| | - Natsumi Takamaru
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima, Japan
| | - Tetsuya Tamatani
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima, Japan
| | - Hirokazu Nagai
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima, Japan
| | - Youji Miyamoto
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima, Japan
| |
Collapse
|
33
|
Cho KS, Yoon SJ, Lee JY, Cho NH, Choi YD, Song YS, Hong SJ. Inhibition of tumor growth and histopathological changes following treatment with a chemokine receptor CXCR4 antagonist in a prostate cancer xenograft model. Oncol Lett 2013; 6:933-938. [PMID: 24137439 PMCID: PMC3796427 DOI: 10.3892/ol.2013.1515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 07/24/2013] [Indexed: 11/09/2022] Open
Abstract
The stromal derived factor-1 (SDF-1)/CXCR4 axis is associated with tumor aggressiveness and metastasis in prostate cancer. The present study aimed to explore the potential therapeutic effects of a CXCR4 antagonist in prostate cancer. The effect of SDF-1 and a CXCR4-specific antagonist, AMD3100, on human prostate cancer PC-3 cell proliferation and protein kinase B (Akt) signaling was assessed. Moreover, a PC-3 tumor xenograft model was used to evaluate the effect of AMD3100 on tumor growth and to identify the histopathological changes and immunohistochemical differences between AMD3100-treated and untreated groups. Cell proliferation was not significantly affected by SDF-1 or AMD3100 treatment in vitro. Western blot analysis revealed that SDF-1 stimulation enhanced the expression of phosphorylated Akt in the PC-3 cells, but that the SDF-1-induced expression of phosphorylated Akt was abrogated in the AMD3100-treated PC-3 cells. In the PC-3 tumor xenograft model, AMD3100 significantly inhibited tumor growth, while AMD3100-treated PC-3 tumors had lower levels of microvessel formation and a lower immunoreactivity for the proliferation marker Ki-67 and the anti-apoptotic marker Bcl-2 compared to control tumors in vivo. The CXCR4-specific antagonist inhibits SDF-1-induced CXCR4/Akt signal transduction, and effectively suppresses tumor growth in the PC-3 xenograft model. The present study indicates that CXCR4 targeting may represent a novel strategy for the treatment of castration-resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Kang Su Cho
- Department of Urology and Urological Science Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Albert S, Riveiro ME, Halimi C, Hourseau M, Couvelard A, Serova M, Barry B, Raymond E, Faivre S. Focus on the role of the CXCL12/CXCR4 chemokine axis in head and neck squamous cell carcinoma. Head Neck 2013; 35:1819-28. [PMID: 23468253 DOI: 10.1002/hed.23217] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2012] [Indexed: 12/28/2022] Open
Abstract
The human chemokine system includes approximately 48 chemokines and 19 chemokine receptors. The CXCL12/CXCR4 system is one of the most frequently studied that is also found overexpressed in a large variety of tumors. The CXCL12/CXCR4 axis has been increasingly identified as an important target in cancer growth, metastasis, relapse, and resistance to therapy. In this review, we highlight current knowledge of the molecular mechanisms involving chemokines CXCL12/CXCR4 and their consequences in head and neck squamous cell carcinoma (HNSCC). Overexpression of CXCL12/CXCR4 in HNSCC appears to activate cellular functions, including motility, invasion, and metastatic processes. Current findings suggest that CXCR4 and epithelial-mesenchymal transition markers are associated with tumor aggressiveness and a poor prognosis, and may be suitable biomarkers for head and neck tumors with high metastatic potential. Furthermore, knowledge of the role of CXCR4 in HNSCC could influence the development of new targeted therapies for treatment, aimed at improving the prognosis of this disease.
Collapse
Affiliation(s)
- Sébastien Albert
- INSERM U728, RayLab, and Departments of Medical Oncology, Beaujon University Hospital (AP-HP, Paris 7 Diderot), Clichy, France; Department of Head and Neck Surgery, Bichat University Hospital, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Don-Salu-Hewage AS, Chan SY, McAndrews KM, Chetram MA, Dawson MR, Bethea DA, Hinton CV. Cysteine (C)-x-C receptor 4 undergoes transportin 1-dependent nuclear localization and remains functional at the nucleus of metastatic prostate cancer cells. PLoS One 2013; 8:e57194. [PMID: 23468933 PMCID: PMC3585330 DOI: 10.1371/journal.pone.0057194] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/18/2013] [Indexed: 01/01/2023] Open
Abstract
The G-protein coupled receptor (GPCR), Cysteine (C)-X-C Receptor 4 (CXCR4), plays an important role in prostate cancer metastasis. CXCR4 is generally regarded as a plasma membrane receptor where it transmits signals that support transformation, progression and eventual metastasis. Due to the central role of CXCR4 in tumorigenesis, therapeutics approaches such as antagonist and monoclonal antibodies have focused on receptors that exist on the plasma membrane. An emerging concept for G-protein coupled receptors is that they may localize to and associate with the nucleus where they retain function and mediate nuclear signaling. Herein, we demonstrate that CXCR4 associated with the nucleus of malignant prostate cancer tissues. Likewise, expression of CXCR4 was detected in nuclear fractions among several prostate cancer cell lines, compared to normal prostate epithelial cells. Our studies identified a nuclear pool of CXCR4 and we defined a nuclear transport pathway for CXCR4. We reveal a putative nuclear localization sequence (NLS), ‘RPRK’, within CXCR4 that contributed to nuclear localization. Additionally, nuclear CXCR4 interacted with Transportinβ1 and Transportinβ1-binding to CXCR4 promoted its nuclear translocation. Importantly, Gαi immunoprecipitation and calcium mobilization studies indicated that nuclear CXCR4 was functional and participated in G-protein signaling, revealing that the nuclear pool of CXCR4 retained function. Given the suggestion that functional, nuclear CXCR4 may be a mechanism underlying prostate cancer recurrence, increased metastatic ability and poorer prognosis after tumors have been treated with therapy that targets plasma membrane CXCR4, these studies addresses a novel mechanism of nuclear signaling for CXCR4, a novel mechanism of clinical targeting, and demonstrate an active nuclear pool that provides important new information to illuminate what has been primarily clinical reports of nuclear CXCR4.
Collapse
Affiliation(s)
- Ayesha S. Don-Salu-Hewage
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, PRC
| | - Kathleen M. McAndrews
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Mahandranauth A. Chetram
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Michelle R. Dawson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Danaya A. Bethea
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Cimona V. Hinton
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
36
|
Cavallaro S. CXCR4/CXCL12 in non-small-cell lung cancer metastasis to the brain. Int J Mol Sci 2013; 14:1713-27. [PMID: 23322021 PMCID: PMC3565343 DOI: 10.3390/ijms14011713] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 01/02/2023] Open
Abstract
Lung cancer represents the leading cause of cancer-related mortality throughout the world. Patients die of local progression, disseminated disease, or both. At least one third of the people with lung cancer develop brain metastases at some point during their disease, even often before the diagnosis of lung cancer is made. The high rate of brain metastasis makes lung cancer the most common type of tumor to spread to the brain. It is critical to understand the biologic basis of brain metastases to develop novel diagnostic and therapeutic approaches. This review will focus on the emerging data supporting the involvement of the chemokine CXCL12 and its receptor CXCR4 in the brain metastatic evolution of non-small-cell lung cancer (NSCLC) and the pharmacological tools that may be used to interfere with this signaling axis.
Collapse
Affiliation(s)
- Sebastiano Cavallaro
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Via Paolo Gaifami, 18, Catania 95125, Italy.
| |
Collapse
|
37
|
Masoud MS, Anwar SS, Afzal MZ, Mehmood A, Khan SN, Riazuddin S. Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. J Transl Med 2012; 10:243. [PMID: 23217165 PMCID: PMC3543338 DOI: 10.1186/1479-5876-10-243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/28/2012] [Indexed: 01/09/2023] Open
Abstract
Background Ischemia is the major cause of acute kidney injury (AKI), associated with high mortality and morbidity. Mesenchymal stem cells (MSCs) have multilineage differentiation potential and can be a potent therapeutic option for the cure of AKI. Methods MSCs were cultured in four groups SNAP (S-nitroso N-acetyl penicillamine), SNAP + Methylene Blue (MB), MB and a control for in vitro analysis. Cultured MSCs were pre-conditioned with either SNAP (100 μM) or MB (1 μM) or both for 6 hours. Renal ischemia was induced in four groups (as in in vitro study) of rats by clamping the left renal padicle for 45 minutes and then different pre-conditioned stem cells were transplanted. Results We report that pre-conditioning of MSCs with SNAP enhances their proliferation, survival and engraftment in ischemic kidney. Rat MSCs pre-conditioned with SNAP decreased cell apoptosis and increased proliferation and cytoprotective genes’ expression in vitro. Our in vivo data showed enhanced survival and engraftment, proliferation, reduction in fibrosis, significant improvement in renal function and higher expression of pro-survival and pro-angiogenic factors in ischemic renal tissue in SNAP pre-conditioned group of animals. Cytoprotective effects of SNAP pre-conditioning were abrogated by MB, an inhibitor of nitric oxide synthase (NOS) and guanylate cyclase. Conclusion The results of these studies demonstrate that SNAP pre-conditioning might be useful to enhance therapeutic potential of MSCs in attenuating renal ischemia reperfusion injury.
Collapse
Affiliation(s)
- Muhammad Shareef Masoud
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | | | | | | | | |
Collapse
|
38
|
Dai X, Mao Z, Huang J, Xie S, Zhang H. The CXCL12/CXCR4 autocrine loop increases the metastatic potential of non-small cell lung cancer in vitro. Oncol Lett 2012; 5:277-282. [PMID: 23255935 DOI: 10.3892/ol.2012.960] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/25/2012] [Indexed: 01/23/2023] Open
Abstract
The CXCL12/CXCR4 endocrine axis has been demonstrated to play a pivotal role in organ-specific metastasis of many different types of tumors, but the precise role of the CXCL12/CXCR4 autocrine loop remains poorly understood. In this study, we constructed a functional CXCL12/CXCR4 autocrine loop in A549 cells using a gene transfection technique to evaluate its effect on the metastasis of non-small cell lung cancer (NSCLC). Our results demonstrated that the CXCL12/CXCR4 autocrine loop significantly promoted the motility, proliferation and invasiveness of the A549 cells, suggesting a key role of the CXCL12/CXCR4 autocrine loop in NSCLC metastasis. In addition, these findings suggest that targeted therapies directed against CXCR4 should consider the CXCL12 expression status of the NSCLC to be treated, since tumors with autocrine overexpression of CXCL12 may be more suitable for the application of chemokine-based anti-cancer therapies.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | | | | | | | | |
Collapse
|
39
|
Hsu YH, Wei CC, Shieh DB, Chan CH, Chang MS. Anti-IL-20 monoclonal antibody alleviates inflammation in oral cancer and suppresses tumor growth. Mol Cancer Res 2012; 10:1430-9. [PMID: 23002091 DOI: 10.1158/1541-7786.mcr-12-0276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interleukin-20 (IL-20) is a proinflammatory cytokine involved in rheumatoid arthritis, atherosclerosis, and osteoporosis. However, little is known about the role of IL-20 in oral cancer. We explored the function of IL-20 in the tumor progression of oral cancer. IL-20 expression levels in tumorous and nontumorous oral tissue specimens from 40 patients with four different stages oral cancer were analyzed with immunohistochemistry (IHC) staining and quantitative real-time PCR (qRT-PCR). Expression of IL-20 and its receptor subunits was higher in clinical oral tumor tissue than in nontumorous oral tissue. The role of IL-20 was examined in two oral cancer cell lines (OC-3 and OEC-M1). In vitro, IL-20 promoted TNF-α, IL-1β, MCP-1, CCR4, and CXCR4 and increased proliferation, migration, reactive oxygen species (ROS) production, and colony formation of oral cancer cells via activated STAT3 and AKT/JNK/ERK signals. To evaluate the therapeutic potential of anti-IL-20 monoclonal antibody 7E for treating oral cancer, an ex vivo tumor growth model was used. In vivo, 7E reduced tumor growth and inflammation in oral cancer cells. In conclusion, IL-20 promoted oral tumor growth, migration, and tumor-associated inflammation. Therefore, IL-20 may be a novel target for treating oral cancer, and anti-IL-20 monoclonal antibody 7E may be a feasible therapeutic.
Collapse
Affiliation(s)
- Yu-Hsiang Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Expression and function of CXCR4 in human salivary gland cancers. Clin Exp Metastasis 2012; 30:133-42. [PMID: 22847686 DOI: 10.1007/s10585-012-9518-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 07/09/2012] [Indexed: 01/06/2023]
Abstract
Salivary gland cancers (SGCs) frequently metastasize to cervical lymph nodes and distant organs. Currently, the mechanisms responsible for the metastatic behavior of SGC cells are not fully understood. We previously demonstrated that the stromal cell-derived factor-1 (SDF-1; also known as CXCL12)/CXCR4 system is involved in the establishment of metastasis in oral squamous cell carcinoma. In the present study, we investigated the role of CXCR4 in the metastatic behavior of SGCs. We examined the expression of CXCR4 mRNA and protein in human SGC cell lines by quantitative RT-PCR and western blotting, respectively. The expression of CXCR4 mRNA and protein were frequently upregulated in 5 out of 6 SGC cell lines. Functional CXCR4 expression was demonstrated by the ability of these SGC cell lines to migrate toward an SDF-1 gradient. SDF-1 rapidly activated extracellular signal-regulated kinase (ERK)1/2 in SGC cell lines. Immunohistochemical analysis revealed that CXCR4 protein expression was detected in either the nucleus or cytoplasm of cancer cells in 16 out of 20 tissues of adenoid cystic carcinoma (ACC) and in 4 out of 6 tissues of mucoepidermoid carcinoma, which are representative of SGC. Furthermore, ACC cell lines exhibited dramatic metastasis to the lung following intravenous inoculation, whereas AMD3100, a CXCR4 antagonist, significantly inhibited lung metastasis of the cells, ameliorated body weight loss and improved the survival rate of tumor-bearing nude mice. These results indicate that CXCR4 expression contributes to the metastatic potential of SGCs.
Collapse
|
41
|
Albert S, Hourseau M, Halimi C, Serova M, Descatoire V, Barry B, Couvelard A, Riveiro ME, Tijeras-Raballand A, de Gramont A, Raymond E, Faivre S. Prognostic value of the chemokine receptor CXCR4 and epithelial-to-mesenchymal transition in patients with squamous cell carcinoma of the mobile tongue. Oral Oncol 2012; 48:1263-71. [PMID: 22776129 DOI: 10.1016/j.oraloncology.2012.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the expression and the prognostic value of chemokine receptor 4 (CXCR4), its cognate ligand the CXCL12, and markers of epithelial-to-mesenchymal transition (EMT) in squamous cell carcinoma (SCC) of the mobile tongue. PATIENTS AND METHODS Patients with primary SCC of the mobile tongue who underwent surgery in our center were screened retrospectively. Patients without prior treatment, who had pre-surgery TNM staging and available tumor samples, were eligible. Protein expression of CXCL12, CXCR4, CA9, E-cadherin, and vimentin was determined by immunohistochemical staining, scored, and correlated with clinical and pathological parameters and overall survival. Multivariate and Cox proportional hazards analyses were performed. RESULTS Among 160 patients treated and screened, 47 were analyzed. CXCR4 and CXCL12 expression was high in tumor cells. CXCR4 expression in primary tumor samples was significantly higher in patients with high-grade tumors, lymph node metastases, and microscopic nerve invasion (p ≤ 0.05). There was a non-significant trend towards a correlation between high CXCL12 expression and pathologic tumor stage (p=0.07). Tumors with high CXCR4 expression correlated with poor overall survival (hazard ratio=3.6, 95% confidence interval 1.3-9.7; p=0.011), notably in the CXCR4(high)/vimentin-positive subgroup. Vimentin-positive tumors, characterizing EMT, were associated with lower survival (hazard ratio=4.5, 95% confidence interval 1.6-12.3; p=0.0086). Multivariate analysis confirmed vimentin (but not CXCR4) expression as an independent prognostic factor of poor overall survival (p=0.016). CONCLUSION Our results suggest that CXCR4 is a marker of tumor aggressiveness and vimentin is an important and independent prognostic factor in patients with SCC of the mobile tongue.
Collapse
Affiliation(s)
- Sébastien Albert
- INSERM U728, RayLab, and Departments of Medical Oncology, Beaujon University Hospital (AP-HP - Paris 7 Diderot), Clichy, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Clatot F, Picquenot JM, Choussy O, Gouérant S, Moldovan C, Schultheis D, Cornic M, François A, Blot E, Laberge-Le-Couteulx S. Intratumoural level of SDF-1 correlates with survival in head and neck squamous cell carcinoma. Oral Oncol 2011; 47:1062-8. [PMID: 21840752 DOI: 10.1016/j.oraloncology.2011.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/13/2011] [Accepted: 07/20/2011] [Indexed: 12/13/2022]
Abstract
The SDF-1/CXCR4 pathway has been suggested to play a role in the metastatic dissemination of various tumours. We assessed the prognostic impact of SDF-1 and CXCR4 expression in head and neck squamous cell carcinoma (HNSCC). Seventy-one HNSCC samples collected at the time of initial diagnosis were retrospectively analysed. SDF-1 and CXCR4 expression levels were measured using real-time RT-PCR and correlated to survival. After a median follow-up of 45 months, 25 patients (35%) died of cancer (group D), and 46 patients (65%) were alive or dead without evidence of HSNCC evolution (group A). The median level of CXCR4 expression was 0.33 and 0.29 in groups A and D, respectively (P=0.93), showing no correlation with recurrence or survival. By contrast, the median level of SDF-1 expression was significantly different in the A and D groups (2.41 vs 1.16, respectively, P=0.018). Using the median level as a cut-off, patients with low SDF-1 had poorer metastasis-free (P=0.026), disease-free (P=0.006) and overall specific survival rates (P=0.002). The prognostic value of SDF-1 was confirmed by a multivariate analysis. In this series of 71 HNSCC patients, the SDF-1 expression level correlated significantly with metastatic evolution and overall survival.
Collapse
Affiliation(s)
- Florian Clatot
- Department of Medical Oncology, Centre Henri Becquerel, 1 rue d'Amiens, 76038 Rouen cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hoon DSB, Ferris R, Tanaka R, Chong KK, Alix-Panabières C, Pantel K. Molecular mechanisms of metastasis. J Surg Oncol 2011; 103:508-17. [PMID: 21480243 DOI: 10.1002/jso.21690] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism of metastasis is a complex set of events that build upon each other to achieve successful growth in organ sites beyond the primary tumor. The cumulative events for metastasis of different cancers have both common and specific cancer specific events. This review discusses several key factors in different cancers that are responsible in metastasis, which includes epigenetic regulation of tumor suppressor genes, functional activity of tumor-related chemokine receptors, and circulating tumor cells.
Collapse
Affiliation(s)
- Dave S B Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California 90404, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Wolff HA, Rolke D, Rave-Fränk M, Schirmer M, Eicheler W, Doerfler A, Hille A, Hess CF, Matthias C, Rödel RMW, Christiansen H. Analysis of chemokine and chemokine receptor expression in squamous cell carcinoma of the head and neck (SCCHN) cell lines. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:145-154. [PMID: 21085979 PMCID: PMC3040826 DOI: 10.1007/s00411-010-0341-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
The purpose of this work was to analyze chemokine and chemokine receptor expression in untreated and in irradiated squamous cell carcinoma of the head and neck (SCCHN) tumor cell lines, aiming at the establishment of assays to test for the relevance of chemokine and chemokine receptor expression in the response of SCCHN to radiotherapy and radiochemotherapy. Five low passage and 10 established SCCHN lines, as well as two normal cell lines, were irradiated at 2 Gy or sham-irradiated, and harvested between 1 and 48 h after treatment. For chemokines with CC and CXC structural motifs and their receptors, transcript levels of target and reference genes were quantified relatively by real-time PCR. In addition, CXCL1 and CXCL12 protein expression was analyzed by ELISA. A substantial variation in chemokine and chemokine receptor expression between SCCHN was detected. Practically, all cell lines expressed CCL5 and CCL20, while CCL2 was expressed in normal cells and in some of the tumor cell lines. CXCL1, CXCL2, CXCL3, CXCL10, and CXCL11 were expressed in the vast majority of the cell lines, while the expression of CXCL9 and CXCL12 was restricted to fibroblasts and few tumor cell lines. None of the analyzed cell lines expressed the chemokines CCL3, CCL4, or CCL19. Of the receptors, transcript expression of CCR1, CCR2, CCR3, CCR5, CCR7, CCXR2, and CCXR3 was not detected, and CCR6, CXCR1, and CXCR4 expression was restricted to few tumor cells. Radiation caused up- and down-regulation with respect to chemokine expressions, while for chemokine receptor expressions down-regulations were prevailing. CXCL1 and CXCL12 protein expression corresponded well with the mRNA expression. We conclude that the substantial variation in chemokine and chemokine receptor expression between SCCHN offer opportunities for the establishment of assays to test for the relevance of chemokine and chemokine receptor expression in the response of SCCHN to radiotherapy and radiochemotherapy.
Collapse
MESH Headings
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/radiotherapy
- Cell Line, Tumor
- Chemokines/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/radiation effects
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/radiotherapy
- Humans
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Chemokine/genetics
- Reproducibility of Results
Collapse
Affiliation(s)
- Hendrik A. Wolff
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - David Rolke
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Margret Rave-Fränk
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Markus Schirmer
- Department of Pharmacology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Wolfgang Eicheler
- Department of Radiation Oncology, OncoRay-Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annegret Doerfler
- Department of Radiation Oncology, OncoRay-Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrea Hille
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Clemens F. Hess
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christoph Matthias
- Department of Otorhinolaryngology-Head and Neck Surgery, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Ralph M. W. Rödel
- Department of Otorhinolaryngology-Head and Neck Surgery, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Hans Christiansen
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| |
Collapse
|
45
|
Increased expression of vascular endothelial growth factor-C and nuclear CXCR4 in hepatocellular carcinoma is correlated with lymph node metastasis and poor outcome. Cancer J 2011; 15:519-25. [PMID: 20010172 DOI: 10.1097/ppo.0b013e3181c6aa6b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Lymph node metastasis (LNM) is a chief cause of morbidity and mortality in patients with hepatocellular carcinoma (HCC) after hepatectomy. The aim of this study was to investigate the relationship between the expression of CXCR4 and vascular endothelial cell growth factor (VEGF)-C and the clinicopathological features of HCC with LNM. METHODS Immunohistochemical staining for CXCR4 and VEGF-C was performed on tissue microarrays that were constructed using tumor specimens from patients with HCC with (N = 123) or without (N = 145) LNM. The relationship between the clinicopathological features of HCC and the expression of CXCR4 and VEGF-C was analyzed using the Pearson chi(2) test, logistical regression analysis, and receiver operating characteristic analysis. RESULTS Nuclear CXCR4 expression and VEGF-C expression were positively correlated with LNM and poor outcome in HCC. Moreover, nuclear CXCR4 expression was positively correlated with VEGF-C expression (correlation coefficient 0.256). Receiver operating characteristic analysis revealed that both factors were predictive of HCC LNM {CXCR4: area under the curve, 0.695 [95% confidence interval (CI), 0.630-0.759; VEGF-C: area under the curve, 0.629 (95% CI, 0.562-0.695]}. Patients with tumors exhibiting high nuclear CXCR4 expression or high VEGF-C expression had significantly poorer overall survival than those with low tumor expression of the corresponding factors. Multivariate analysis showed that UICC T stage [odds ratio (OR), 1.615, 95% CI, 1.306-1.997], nuclear CXCR4 expression (OR, 3.998; 95% CI, 2.706-5.907), and VEGF-C expression (OR, 1.903; 95% CI, 1.203-3.011) were independent risk factors for developing HCC LNM. DISCUSSION These findings suggest that nuclear CXCR4 expression and VEGF-C expression can be used to identify patients with HCC at high risk for developing LNM.
Collapse
|
46
|
Terasaki M, Sugita Y, Arakawa F, Okada Y, Ohshima K, Shigemori M. CXCL12/CXCR4 signaling in malignant brain tumors: a potential pharmacological therapeutic target. Brain Tumor Pathol 2011; 28:89-97. [DOI: 10.1007/s10014-010-0013-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 11/30/2022]
|
47
|
Liu X, Kolokythas A, Wang J, Huang H, Zhou X. Gene Expression Signatures of Lymph Node Metastasis in Oral Cancer: Molecular Characteristics and Clinical Significances. CURRENT CANCER THERAPY REVIEWS 2010; 6:294-307. [PMID: 21709736 PMCID: PMC3122885 DOI: 10.2174/157339410793358066] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Even though lymph node metastasis accounts for the vast majority of cancer death in patients with oral cancer (OC), the molecular mechanisms of lymph node metastasis remain elusive. Genome-wide microarray analyses and functional studies in vitro and in vivo, along with detailed clinical observations, have identified a number of molecules that may contribute to lymph node metastasis. These include lymphangionenic cytokines, cell adhesion molecules, basement membrane-interacting molecules, matrix enzymes and relevant downstream signaling pathways. However, defined gene signatures from different studies are highly variable, which hinders their translation to clinically relevant applications. To date, none of the identified signatures or molecular biomarkers has been successfully implemented as a diagnostic or prognostic tool applicable to routine clinical practice. In this review, we will first introduce the significance of lymph node metastasis in OC, and clinical/experimental evidences that support the underlying molecular mechanisms. We will then provide a comprehensive review and integrative analysis of the existing gene expression studies that aim to identify the metastasis-related signatures in OC. Finally, the remaining challenges will be discussed and our insights on future directions will be provided.
Collapse
Affiliation(s)
- Xiqiang Liu
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL
- Research Institute & the Affiliated Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Antonia Kolokythas
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Illinois at Chicago, Chicago, IL
| | - Jianguang Wang
- Department of Oral and Maxillofacial Surgery, the Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongzhang Huang
- Research Institute & the Affiliated Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Zhou
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL
- Research Institute & the Affiliated Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Graduate College, and UIC Cancer Center, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
48
|
Palma-Nicolás JP, López E, López-Colomé AM. Thrombin stimulates RPE cell motility by PKC-zeta- and NF-kappaB-dependent gene expression of MCP-1 and CINC-1/GRO chemokines. J Cell Biochem 2010; 110:948-67. [PMID: 20564194 DOI: 10.1002/jcb.22608] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal pigment epithelial cells (RPE) are the major cell type involved in the pathogenesis of proliferative vitreoretinopathy (PVR), which involves the epithelial-mesenchymal transition, proliferation, and directional migration of transformed RPE cells to the vitreous upon RPE exposure to serum components, thrombin among them. Although the aqueous humor and vitreous of PVR patients contain high levels of chemokines, their possible involvement in PVR development has not been explored. We here analyzed the effect of thrombin on chemokine gene expression and its correlation with RPE cell migration using rat RPE cells in culture as a model system. We demonstrated that thrombin induces RPE cell migration through the dose-dependent stimulation of MCP1 and GRO expression/release, and the autocrine activation of CXCR-2 and CCR-2 chemokine receptors. Whereas inhibition of CXCR2 by Sb-225002 and of CCR2 by Rs-504393 partially prevented hirudin-sensitive cell migration, the joint inhibition of these receptors abolished thrombin effect, suggesting the contribution of distinct but coincident mechanisms. Thrombin effects were not modified by Ro-32-0432 inhibition of conventional/novel PKC isoenzymes or by the MAPkinase pathway inhibitor U0126. MCP1 and GRO expression/secretion, and cell migration were completely prevented by the inhibitory PKC-zeta pseudosubstrate and by the nuclear factor-kappa B (NF-kappaB) inhibitor BAY11-7082, but not by wortmannin inhibition of PI3K. Results show that signaling pathways leading to RPE cell migration differ from the MEK-ERK-PI3K-mediated promotion RPE of cell proliferation, both of which concur at the activation of PKC-zeta.
Collapse
Affiliation(s)
- José Prisco Palma-Nicolás
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Coyoacan, México, DF
| | | | | |
Collapse
|
49
|
Blockade of CXCR4 in oral squamous cell carcinoma inhibits lymph node metastases. Eur J Cancer 2010; 47:452-9. [PMID: 20965717 DOI: 10.1016/j.ejca.2010.09.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (OSCC). In this study, we investigated whether the blockade of CXCR4 inhibits lymph node metastasis in B88 OSCC cells. These cells harbour a functional CXCR4 and have the potential to metastasise to the lymph node in vivo. Following introduction of a vector that expresses short hairpin small interfering RNA (shRNA) against CXCR4, we isolated three clones (shCXCR4-16, -17 and -21) that showed decreased expression of CXCR4 mRNA. These clones also had reduced CXCR4 protein levels and showed impairments in calcium flux and cell migration in response to SDF-1. These cells were orthotopically inoculated into the masseter muscle of nude mice. Lymph node metastases, loss in body weight and tumour volumes were significantly inhibited in mice inoculated with shCXCR4-17 cells compared to mice inoculated with control cells. SDF-1-induced migration of B88 cells was significantly inhibited in vitro by the treatment with 1,1'-[1,4-phenylenebis(methylene)]bis-1,4,8,11-tetraazacyclotetradecane octahydrochloride (AMD3100), a CXCR4 antagonist. Subcutaneous administration of AMD3100 significantly inhibited the lymph node metastases of B88 cells when they were orthotopically inoculated into the masseter muscle of nude mice. Moreover, the enhanced production of interleukin (IL)-6 and IL-8 in response to SDF-1 was inhibited by shRNA against CXCR4 or by treatment with AMD3100. These results suggest that blockade of CXCR4 may be a potent anti-metastatic therapy against lymph node metastases in cases of CXCR4-related OSCC.
Collapse
|
50
|
Jung DW, Che ZM, Kim J, Kim K, Kim KY, Williams D, Kim J. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int J Cancer 2010; 127:332-44. [PMID: 19937793 DOI: 10.1002/ijc.25060] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent studies have shown that stromal fibroblasts have a more profound influence on the initiation and progression of carcinoma than was previously appreciated. This study aimed at investigating the reciprocal relationship between cancer cells and their associated fibroblasts at both the molecular and cellular level in oral squamous cell carcinoma (OSCC). To identify key molecular regulators expressed by carcinoma-associated fibroblasts (CAF) that promote cancer cell invasion, microarrays were performed by comparing cocultured OSCC cells and CAF with monoculture controls. Microarray and real-time PCR analysis identified marked upregulation of the chemokine (C-C motif) ligand 7 (CCL7) in cocultured CAF. ELISA showed an elevated level of CCL7 secretion from CAF stimulated by coculture with OSCC cells. CCL7 promoted the invasion and migration of OSCC cells, and the invasiveness was inhibited by treatment with CCL7 neutralizing antibody. OSCC cells were shown to express CCR1, CCR2 and CCR3, receptors for CCL7, by RT-PCR. In addition, treatment with anti-CCR1 or anti-CCR3 antibody inhibited CCL7-induced OSCC cell migration, implicating that CCL7 promotes cancer cell migration through CCR1 and CCR3 on OSCC cells. Cytokine antibody array analysis of the supernatant from OSCC cell culture revealed that interleukin-1alpha was an inducer of CCL7 secretion by CAF. This study confirms the reciprocal relationship of the molecular crosstalk regulating the invasion of OSCC and describes new potential targets for future therapy.
Collapse
Affiliation(s)
- Da-Woon Jung
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|