1
|
Zhao W, Wang W, Xiao Y, Cui F. c-Jun regulates flotillin 2 transcription to benefit viral accumulation in insect vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103894. [PMID: 36535580 DOI: 10.1016/j.ibmb.2022.103894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in viral infection in host cells. In addition to triggering immune reactions against pathogens, the JNK signaling pathway has also been found to benefit viral infection. Our previous work showed that JNK activation facilitated rice stripe virus (RSV) accumulation in the insect vector small brown planthopper, but the underlying mechanisms remain elusive. Here, we revealed a link between JNK activation and the transcriptional upregulation of the plasma membrane protein flotillin 2, which mediates RSV cell entry. c-Jun, a downstream substrate of JNKs, was identified as a transcription factor that targets the promoter of flotillin 2 at three binding sites. Phosphorylated c-Jun, especially at the serine 63 site, promoted the transcriptional activity of c-Jun on flotillin 2. JNK activation or inhibition affected c-Jun phosphorylation status and flotillin 2 expression. In the midguts of planthoppers, RSV infection significantly increased flotillin 2 expression and the phosphorylation level of JNKs and c-Jun. Manipulation of JNK status impacted viral acquisition in midgut cells. These findings reveal a new regulatory mechanism of the JNK signaling pathway and shed light on the virus-supportive effect of this pathway.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
The Role of Copper in the Regulation of Ferroportin Expression in Macrophages. Cells 2021; 10:cells10092259. [PMID: 34571908 PMCID: PMC8469096 DOI: 10.3390/cells10092259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
The critical function of ferroportin (Fpn) in maintaining iron homeostasis requires complex and multilevel control of its expression. Besides iron-dependent cellular and systemic control of Fpn expression, other metals also seem to be involved in regulating the Fpn gene. Here, we found that copper loading significantly enhanced Fpn transcription in an Nrf2-dependent manner in primary bone-marrow-derived macrophages (BMDMs). However, prolonged copper loading resulted in decreased Fpn protein abundance. Moreover, CuCl2 treatment induced Fpn expression in RAW 264.7 macrophages at both the mRNA and protein level. These data suggest that cell-type-specific regulations have an impact on Fpn protein stability after copper loading. Transcriptional suppression of Fpn after lipopolysaccharide (LPS) treatment contributes to increased iron storage inside macrophages and may result in anemia of inflammation. Here, we observed that in both primary BMDMs and RAW 264.7 macrophages, LPS treatment significantly decreased Fpn mRNA levels, but concomitant CuCl2 stimulation counteracted the transcriptional suppression of Fpn and restored its expression to the control level. Overall, we show that copper loading significantly enhances Fpn transcription in macrophages, while Fpn protein abundance in response to CuCl2 treatment, depending on macrophage type and factors specific to the macrophage population, can influence Fpn regulation in response to copper loading.
Collapse
|
3
|
Abstract
Flotillins 1 and 2 are two ubiquitous, highly conserved homologous proteins that assemble to form heterotetramers at the cytoplasmic face of the plasma membrane in cholesterol- and sphingolipid-enriched domains. Flotillin heterotetramers can assemble into large oligomers to form molecular scaffolds that regulate the clustering of at the plasma membrane and activity of several receptors. Moreover, flotillins are upregulated in many invasive carcinomas and also in sarcoma, and this is associated with poor prognosis and metastasis formation. When upregulated, flotillins promote plasma membrane invagination and induce an endocytic pathway that allows the targeting of cargo proteins in the late endosomal compartment in which flotillins accumulate. These late endosomes are not degradative, and participate in the recycling and secretion of protein cargos. The cargos of this Upregulated Flotillin–Induced Trafficking (UFIT) pathway include molecules involved in signaling, adhesion, and extracellular matrix remodeling, thus favoring the acquisition of an invasive cellular behavior leading to metastasis formation. Thus, flotillin presence from the plasma membrane to the late endosomal compartment influences the activity, and even modifies the trafficking and fate of key protein cargos, favoring the development of diseases, for instance tumors. This review summarizes the current knowledge on flotillins and their role in cancer development focusing on their function in cellular membrane remodeling and vesicular trafficking regulation.
Collapse
|
4
|
Moerke C, Jaco I, Dewitz C, Müller T, Jacobsen AV, Gautheron J, Fritsch J, Schmitz J, Bräsen JH, Günther C, Murphy JM, Kunzendorf U, Meier P, Krautwald S. The anticonvulsive Phenhydan ® suppresses extrinsic cell death. Cell Death Differ 2019; 26:1631-1645. [PMID: 30442947 PMCID: PMC6748113 DOI: 10.1038/s41418-018-0232-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/27/2022] Open
Abstract
Different forms of regulated cell death-like apoptosis and necroptosis contribute to the pathophysiology of clinical conditions including ischemia-reperfusion injury, myocardial infarction, sepsis, and multiple sclerosis. In particular, the kinase activity of the receptor-interacting serine/threonine protein kinase 1 (RIPK1) is crucial for cell fate in inflammation and cell death. However, despite its involvement in pathological conditions, no pharmacologic inhibitor of RIPK1-mediated cell death is currently in clinical use. Herein, we screened a collection of clinical compounds to assess their ability to modulate RIPK1-mediated cell death. Our small-scale screen identified the anti-epilepsy drug Phenhydan® as a potent inhibitor of death receptor-induced necroptosis and apoptosis. Accordingly, Phenhydan® blocked activation of necrosome formation/activation as well as death receptor-induced NF-κB signaling by influencing the membrane function of cells, such as lipid raft formation, thus exerting an inhibitory effect on pathophysiologic cell death processes. By targeting death receptor signaling, the already FDA-approved Phenhydan® may provide new therapeutic strategies for inflammation-driven diseases caused by aberrant cell death.
Collapse
Affiliation(s)
- Caroline Moerke
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Isabel Jaco
- Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Christin Dewitz
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Tammo Müller
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Annette V Jacobsen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jérémie Gautheron
- Université Pierre et Marie Curie, UMR_S 938, Inserm, 75012, Paris, France
| | - Jürgen Fritsch
- Institute for Clinical Microbiology and Hygiene, University of Regensburg, 93053, Regensburg, Germany
| | - Jessica Schmitz
- Department of Pathology, University of Hannover, 30625, Hannover, Germany
| | - Jan Hinrich Bräsen
- Department of Pathology, University of Hannover, 30625, Hannover, Germany
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University, 91052, Erlangen, Germany
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ulrich Kunzendorf
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Pascal Meier
- Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany.
| |
Collapse
|
5
|
Cai BH, Chao CF, Huang HC, Lee HY, Kannagi R, Chen JY. Roles of p53 Family Structure and Function in Non-Canonical Response Element Binding and Activation. Int J Mol Sci 2019; 20:ijms20153681. [PMID: 31357595 PMCID: PMC6696488 DOI: 10.3390/ijms20153681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
The p53 canonical consensus sequence is a 10-bp repeat of PuPuPuC(A/T)(A/T)GPyPyPy, separated by a spacer with up to 13 bases. C(A/T)(A/T)G is the core sequence and purine (Pu) and pyrimidine (Py) bases comprise the flanking sequence. However, in the p53 noncanonical sequences, there are many variations, such as length of consensus sequence, variance of core sequence or flanking sequence, and variance in number of bases making up the spacer or AT gap composition. In comparison to p53, the p53 family members p63 and p73 have been found to have more tolerance to bind and activate several of these noncanonical sequences. The p53 protein forms monomers, dimers, and tetramers, and its nonspecific binding domain is well-defined; however, those for p63 or p73 are still not fully understood. Study of p63 and p73 structure to determine the monomers, dimers or tetramers to bind and regulate noncanonical sequence is a new challenge which is crucial to obtaining a complete picture of structure and function in order to understand how p63 and p73 regulate genes differently from p53. In this review, we will summarize the rules of p53 family non-canonical sequences, especially focusing on the structure of p53 family members in the regulation of specific target genes. In addition, we will compare different software programs for prediction of p53 family responsive elements containing parameters with canonical or non-canonical sequences.
Collapse
Affiliation(s)
- Bi-He Cai
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Faye Chao
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsueh-Yi Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Jang-Yi Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
6
|
McNamara RP, Caro-Vegas CP, Costantini LM, Landis JT, Griffith JD, Damania BA, Dittmer DP. Large-scale, cross-flow based isolation of highly pure and endocytosis-competent extracellular vesicles. J Extracell Vesicles 2018; 7:1541396. [PMID: 30533204 PMCID: PMC6282418 DOI: 10.1080/20013078.2018.1541396] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
Isolation of extracellular vesicles (EVs) from cell culture supernatant or plasma can be accomplished in a variety of ways. Common measures to quantify relative success are: concentration of the EVs, purity from non-EVs associated protein, size homogeneity and functionality of the final product. Here, we present an industrial-scale workflow for isolating highly pure and functional EVs using cross-flow based filtration coupled with high-molecular weight Capto Core size exclusion. Through this combination, EVs loss is kept to a minimum. It outperforms other isolation procedures based on a number of biochemical and biophysical assays. Moreover, EVs isolated through this method can be further concentrated down or directly immunopurified to obtain discreet populations of EVs. From our results, we propose that cross-flow/Capto Core isolation is a robust method of purifying highly concentrated, homogenous, and functionally active EVs from industrial-scale input volumes with few contaminants relative to other methods.
Collapse
Affiliation(s)
- Ryan P. McNamara
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA
| | - Carolina P. Caro-Vegas
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA
| | - Lindsey M. Costantini
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA
| | - Justin T. Landis
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA
| | - Blossom A. Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Molecular cloning, cellular expression and characterization of Arabian camel (Camelus dromedarius) endoplasmin. Int J Biol Macromol 2018; 117:574-585. [DOI: 10.1016/j.ijbiomac.2018.05.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/24/2022]
|
8
|
Han B, Yang N, Pu H, Wang T. Quantitative Proteomics and Cytology of Rice Pollen Sterol-Rich Membrane Domains Reveals Pre-established Cell Polarity Cues in Mature Pollen. J Proteome Res 2018; 17:1532-1546. [PMID: 29508613 DOI: 10.1021/acs.jproteome.7b00852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bing Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Pu
- Bruker Daltonics Inc. (China), Beijing 100081, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
microRNA-802 inhibits epithelial-mesenchymal transition through targeting flotillin-2 in human prostate cancer. Biosci Rep 2017; 37:BSR20160521. [PMID: 28188157 PMCID: PMC5350603 DOI: 10.1042/bsr20160521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/26/2022] Open
Abstract
miRNAs are a class of non-coding RNAs that exert critical roles in various biological processes. The aim of the present study was to identify the functional roles of miR-802 in regulating epithelial-mesenchymal transition (EMT) in prostate cancer (PCa). miR-802 expression was detected in 73 pairs of PCa samples and PCa cell lines (PC3 and DU145 cells) by qRT-PCR. Cell proliferation was detected using MTT assay, and cell apoptosis was evaluated using flow cytometry. Transwell assay was conducted to investigate cell migration and invasion. Expression analysis of a set of EMT markers was performed to explore whether miR-802 is involved in EMT program. Xenograft model was established to investigate the function of miR-802 in carcinogenesis in vivo The direct regulation of Flotillin-2 (Flot2) by miR-802 was identified using luciferase reporter assay. miR-802 was remarkably down-regulated in PCa tissues and cell lines. Gain-of-function trails showed that miR-802 serves as an 'oncosuppressor' in PCa through inhibiting cell proliferation and promoting cell apoptosis in vitro Overexpression of miR-802 significantly suppressed in vivo PCa tumor growth. Luciferase reporter analysis identified Flot2 as a direct target of miR-802 in PCa cells. Overexpressed miR-802 significantly suppressed EMT, migration and invasion in PCa cells by regulating Flot2. We identified miR-802 as a novel tumor suppressor in PCa progression and elucidated a novel mechanism of the miR-802/Flot2 axis in the regulation of EMT, which may be a potential therapeutic target.
Collapse
|
10
|
Molecular pathogenicity of novel sucrase-isomaltase mutations found in congenital sucrase-isomaltase deficiency patients. Biochim Biophys Acta Mol Basis Dis 2017; 1863:817-826. [PMID: 28062276 DOI: 10.1016/j.bbadis.2016.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/15/2016] [Accepted: 12/30/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Congenital sucrase-isomaltase deficiency (CSID) is a genetic disorder associated with mutations in the sucrase-isomaltase (SI) gene. The diagnosis of congenital diarrheal disorders like CSID is difficult due to unspecific symptoms and usually requires invasive biopsy sampling of the intestine. Sequencing of the SI gene and molecular analysis of the resulting potentially pathogenic SI protein variants may facilitate a diagnosis in the future. This study aimed to categorize SI mutations based on their functional consequences. METHODS cDNAs encoding 13 SI mutants were expressed in COS-1 cells. The molecular pathogenicity of the resulting SI mutants was defined by analyzing their biosynthesis, cellular localization, structure and enzymatic functions. RESULTS Three biosynthetic phenotypes for the novel SI mutations were identified. The first biosynthetic phenotype was defined by mutants that are intracellularly transported in a fashion similar to wild type SI and with normal, but varying, levels of enzymatic activity. The second biosynthetic phenotype was defined by mutants with delayed maturation and trafficking kinetics and reduced activity. The third group of mutants is entirely transport incompetent and functionally inactive. CONCLUSIONS The current study unraveled CSID as a multifaceted malabsorption disorder that comprises three major classes of functional and trafficking mutants of SI and established a gradient of mild to severe functional deficits in the enzymatic functions of the enzyme. GENERAL SIGNIFICANCE This novel concept and the existence of mild consequences in a number of SI mutants strongly propose that CSID is an underdiagnosed and a more common intestinal disease than currently known.
Collapse
|
11
|
Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling. Neuroscience 2016; 328:201-9. [PMID: 27155148 DOI: 10.1016/j.neuroscience.2016.04.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 01/19/2023]
Abstract
Epidemiological investigations have shown that Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been indicated that the cholesterol concentration in the brain of AD patients is higher than that in normal people. In this study, we investigated the effects of cholesterol concentrations, 0, as the control, 3.125, 12.5, and 25μM, on cholesterol metabolism, neuron survival, AD-related protein expressions, and cell morphology and apoptosis using SH-SY5Y human neuroblastoma cells. We observed that expressions of cholesterol hydroxylase (Cyp46), flotillin-2 (a marker of lipid raft content), and truncated tyrosine kinase B (TrkBtc) increased, while expressions of brain-derived neurotrophic factor (BDNF) and full-length TrkB (TrkBfl) decreased as the concentration of cholesterol loading increased. Down-regulation of the PI3K-Akt-glycogen synthase kinase (GSK)-3β cascade and cell apoptosis were also observed at higher concentrations of cholesterol, along with elevated levels of β-amyloid (Aβ), β-secretase (BACE), and reactive oxygen species (ROS). In conclusion, we found that cholesterol overload in neuronal cells imbalanced the cholesterol homeostasis and increased the protein expressions causing cell apoptosis, which illustrates the neurodegenerative pathology of abnormally elevated cholesterol concentrations found in AD patients.
Collapse
|
12
|
Flot-2 Expression Correlates with EGFR Levels and Poor Prognosis in Surgically Resected Non-Small Cell Lung Cancer. PLoS One 2015; 10:e0132190. [PMID: 26161893 PMCID: PMC4498790 DOI: 10.1371/journal.pone.0132190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/10/2015] [Indexed: 11/29/2022] Open
Abstract
We previously reported that expression of Flotillin 2 (Flot-2), a protein isolated from caveolae/lipid raft domains, increased significantly in nasopharyngeal carcinoma (NPC) compared with normal tissues. Signal transduction through epidermal growth factor receptors (EGFR) and Flot-2 play an important role in cancer development, but their precise role in lung cancer has not been investigated. In this study, we have investigated the correlation between the expression of Flot-2 and EGFR, which increase significantly in non-small cell lung cancer (NSCLC) patients (n=352) compared with non-cancer tissues. Additionally, patients with advanced stages of NSCLC had higher positive expression of Flot-2 and EGFR than patients with early stages. NSCLC patients with increased expression of Flot-2 and EGFR had significantly less overall survival rates than patients with less expression of Flot-2 and EGFR. Taken together, our data suggest that increased expression of Flot-2 and EGFR in NSCLC patients is inversely proportional to the disease prognosis and that increased expression of Flot-2 associated with increased EGFR may serve as a biomarker to predict poor disease prognosis.
Collapse
|
13
|
Bodin S, Planchon D, Rios Morris E, Comunale F, Gauthier-Rouvière C. Flotillins in intercellular adhesion - from cellular physiology to human diseases. J Cell Sci 2014; 127:5139-47. [PMID: 25413346 DOI: 10.1242/jcs.159764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Flotillin 1 and 2 are ubiquitous and highly conserved proteins. They were initially discovered in 1997 as being associated with specific caveolin-independent cholesterol- and glycosphingolipid-enriched membrane microdomains and as being expressed during axon regeneration. Flotillins have a role in a large number of physiopathological processes, mainly through their function in membrane receptor clustering and in the regulation of clathrin-independent endocytosis. In this Commentary, we summarize the research performed so far on the role of flotillins in cell-cell adhesion. Recent studies have demonstrated that flotillins directly regulate the formation of cadherin complexes. Indeed, flotillin microdomains are required for the dynamic association and stabilization of cadherins at cell-cell junctions and also for cadherin signaling. Moreover, because flotillins regulate endocytosis and also the actin cytoskeleton, they could have an indirect role in the assembly and stabilization of cadherin complexes. Because it has also recently been shown that flotillins are overexpressed during neurodegenerative diseases and in human cancers, where their upregulation is associated with metastasis formation and poor prognosis, understanding to what extent flotillin upregulation participates in the development of such pathologies is thus of particular interest, as well as how, at the molecular level, it might affect cell adhesion processes.
Collapse
Affiliation(s)
- Stéphane Bodin
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Damien Planchon
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Eduardo Rios Morris
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Franck Comunale
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Cécile Gauthier-Rouvière
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
14
|
Cao K, Xie D, Cao P, Zou Q, Lu C, Xiao S, Zhou J, Peng X. SiRNA-Mediated Flotillin-2 (Flot2) Downregulation Inhibits Cell Proliferation, Migration, and Invasion in Gastric Carcinoma Cells. Oncol Res 2014; 21:271-9. [DOI: 10.3727/096504014x13946737557031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Forkhead transcription factor FOXF1 is a novel target gene of the p53 family and regulates cancer cell migration and invasiveness. Oncogene 2013; 33:4837-46. [PMID: 24186199 DOI: 10.1038/onc.2013.427] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 07/12/2013] [Accepted: 08/09/2013] [Indexed: 12/15/2022]
Abstract
p53 is an established tumor suppressor that can activate the transcription of multiple target genes. Recent evidence suggests that p53 may contribute to the regulation of cell invasion and migration. In this study, we show that the forkhead box transcription factor FOXF1 is a novel target of the p53 family because FOXF1 is upregulated by p53, TAp73 and TAp63. We show that FOXF1 is induced upon DNA damage in a p53-dependent manner. Furthermore, we identified a response element located within the FOXF1 gene that is responsive to wild-type p53, TAp73β and TAp63γ. The ectopic expression of FOXF1 inhibited cancer cell invasion and migration, whereas the inactivation of FOXF1 stimulated cell invasion and migration. We also show that FOXF1 regulates the transcriptional activity of E-cadherin (CDH1) by acting on its FOXF1 consensus binding site located upstream of the E-cadherin gene. Collectively, our results show that FOXF1 is a p53 family target gene, and our data suggest that FOXF1 and p53 form a portion of a regulatory transcriptional network that appears to have an important role in cancer cell invasion and migration.
Collapse
|
16
|
Zhu Z, Wang J, Sun Z, Sun X, Wang Z, Xu H. Flotillin2 expression correlates with HER2 levels and poor prognosis in gastric cancer. PLoS One 2013; 8:e62365. [PMID: 23658725 PMCID: PMC3642190 DOI: 10.1371/journal.pone.0062365] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/20/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Flotillin gene is known as a tumor promoter or suppressor, depending on the tumor type or tumor stage. We aimed to investigate the clinical significance of flotillin2 protein expression in gastric cancer. METHODS We examined flotillin2 and erbB2 levels in tissue microarray of 282 gastric cancer samples and analyzed the association between flotillin2 levels, clinicopathologic factors and prognosis. The regulation of erbB2 by flotillin2 was examined with flotillin2 siRNA-transfected gastric cancer cells. RESULTS Flotillin2 partially co-localized with erbB2 at the plasma membrane as detected by confocal microscopy, levels of erbB2 were reduced after flotillin knockdown in SGC-7901 cancer cells, and the expression of flotillin2 was positively correlated with that of erbB2. In non-neoplastic gastric mucosa, flotillin2 was not expressed in the epithelial compartment. In gastric cancer, positive staining of flotillin2 was shown in 129 (45.7%) of 282 cases, also, it was significantly associated with a Lauren grade, histologic type, lymphovascular invasion and tumor location. Moreover, survival analysis showed that flotillin2 expression was an independent prognostic factor of poor survival (p<0.001). CONCLUSIONS These results indicate that a positive correlation exists between flotillin2 and erbB2 expression levels, flotillin2 maybe involved in the stabilization of erbB2 at the plasma membrane, flotillin2 is significantly correlated with cancer progression and poor prognosis in gastric cancer.
Collapse
Affiliation(s)
- Zhi Zhu
- Department of Surgical Oncology, Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jinou Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhe Sun
- Department of Surgical Oncology, Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xuren Sun
- Department of Digestion, The First Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology, Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huimian Xu
- Department of Surgical Oncology, Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
17
|
Banning A, Ockenga W, Finger F, Siebrasse P, Tikkanen R. Transcriptional regulation of flotillins by the extracellularly regulated kinases and retinoid X receptor complexes. PLoS One 2012; 7:e45514. [PMID: 23029064 PMCID: PMC3445523 DOI: 10.1371/journal.pone.0045514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/21/2012] [Indexed: 11/25/2022] Open
Abstract
Flotillin-1 and flotillin-2 are important regulators of signal transduction pathways such as growth factor signaling. Flotillin expression is increased under pathological conditions such as neurodegenerative disorders and cancer. Despite their importance for signal transduction, very little is known about the transcriptional regulation of flotillins. Here, we analyzed the expression of flotillins at transcriptional level and identified flotillins as downstream targets of the mitogen activated kinases ERK1/2. The promoter activity of flotillins was increased upon growth factor stimulation in a MAPK dependent manner. Overexpression of serum response factor or early growth response gene 1 resulted in increased flotillin mRNA and protein expression. Furthermore, both promoter activity and expression of endogenous flotillins were increased upon treatment with retinoic acid or by overexpression of the retinoid X receptor and its binding partners RARα and PPARγ. Our data indicate that the expression of flotillins, which can be detected in all cultured cells, is fine-tuned in response to various external stimuli. This regulation may be critical for the outcome of signaling cascades in which flotillins are known to be involved.
Collapse
Affiliation(s)
- Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - Wymke Ockenga
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - Fabian Finger
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - Philipp Siebrasse
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
18
|
Glycohydrolases β-hexosaminidase and β-galactosidase are associated with lipid microdomains of Jurkat T-lymphocytes. Biochimie 2012; 94:684-94. [DOI: 10.1016/j.biochi.2011.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/21/2011] [Indexed: 11/21/2022]
|
19
|
Sasaki Y, Negishi H, Idogawa M, Yokota I, Koyama R, Kusano M, Suzuki H, Fujita M, Maruyama R, Toyota M, Saito T, Tokino T. p53 negatively regulates the hepatoma growth factor HDGF. Cancer Res 2011; 71:7038-47. [PMID: 22006999 DOI: 10.1158/0008-5472.can-11-1053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatoma-derived growth factor (HDGF) is a secreted heparin-binding growth factor that has been implicated in cancer development and progression. Here, we report that HDGF is a critical target for transcriptional repression by the tumor suppressor p53. Endogenous HDGF expression was decreased in cancer cells with introduction of wild-type p53, which also downregulated HDGF expression after DNA damage. In support of the likelihood that HDGF is a critical driver of cancer cell growth, addition of neutralizing HDGF antibodies to culture media was sufficient to block cell growth, migration, and invasion. Similarly, these effects were elicited by conditioned culture medium from p53-expressing cells, and they could be reversed by the addition of recombinant human HDGF. Interestingly, we found that HDGF was overexpressed also in primary gastric, breast, and lung cancer tissues harboring mutant p53 genes. Mechanistic investigations revealed that p53 repressed HDGF transcription by altering HDAC-dependent chromatin remodeling. Taken together, our results reveal a new pathway in which loss of p53 function contributes to the aggressive pathobiological potential of human cancers by elevating HDGF expression.
Collapse
Affiliation(s)
- Yasushi Sasaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Soluble expression, purification, and characterization of recombinant human flotillin-2 (reggie-1) in Escherichia coli. Mol Biol Rep 2010; 38:2091-8. [PMID: 20857209 DOI: 10.1007/s11033-010-0335-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
Large scale production of recombinant human flotillin-2 (reggie-1) is desirable for structural and biochemical studies. However, as the major lipid rafts specific hydrophobic protein, flotillin-2 was difficult to be expressed as soluble and functional form in prokaryotic system. In this study, we first cloned and expressed human flotillin-2 in Escherichia coli with five different fusion tags: poly-histidine, glutathione S-transferase (GST), thioredoxin (TRX), N-Utilization substance (NusA) and maltose binding protein (MBP). We screened the expression level and solubility of the five flotillin-2 fusion proteins, the best MBP tagged flotillin-2 was then large scale produced. The optimized purification procedure included two steps of chromatography: Ni-NTA affinity chromatography and anion exchange chromatography. The typical yield was 36.0 mg soluble and functional recombinant flotillin-2 from 1 L of culture medium with purity above 97%. The activity of recombinant flotillin-2 was verified by pull-down assay with flotillin-1, showing that the purified recombinant flotillin-2 can specifically interact with flotillin-1. The circular dichroism (CD) spectroscopy showed that recombinant flotillin-2 had a very stable secondary structure dominated by α-helix, β-turn and random structure.
Collapse
|
21
|
Pasmant E, Vidaud D, Harrison M, Upadhyaya M. Different sized somatic NF1 locus rearrangements in neurofibromatosis 1-associated malignant peripheral nerve sheath tumors. J Neurooncol 2010; 102:341-6. [PMID: 20686819 DOI: 10.1007/s11060-010-0328-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/21/2010] [Indexed: 11/30/2022]
Abstract
Neurofibromatosis type 1 (NF1) patients are at increased risk of developing both benign (neurofibromas) and malignant (malignant peripheral nerve sheath tumors, MPNST) tumors. Molecular data on tumor progression are scarce, and few studies have compared the NF1 locus copy number in these two tumor types. To further explore the role of such NF1 locus rearrangements in NF1 tumorigenesis, and the likely disruption to the associated genes, the NF1 gene region was analyzed in NF1-associated tumors. DNA from three MPNSTs and one neurofibroma, excised from three unrelated NF1 patients, were analyzed using an NF1 region customized array-based comparative genomic hybridization. The somatic NF1 inactivation mutational mechanisms associated with MPNSTs appear to be different from those in benign neurofibromas. Interestingly, the MPNST-associated deletion breakpoints did not involve the paralogous repetitive sequences that are involved in most germline NF1 deletions. The somatic smallest common region of deletion overlap, however, was restricted to approximately the same ~2.2-Mb interval that encompassed most of the genes deleted in NF1 recurrent constitutional deletions. A number of genes in addition to NF1 on 17q (centromere to 17q24.2) may be involved in MPNST development. A larger study is warranted to confirm these findings. As NF1 patients with such germline NF1 deletions do exhibit increased risk of developing MPNST, these present findings emphasize the likely role of at least some of these NF1 flanking genes in MPNST pathobiology.
Collapse
Affiliation(s)
- Eric Pasmant
- UMR745 INSERM, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France.
| | | | | | | |
Collapse
|
22
|
Stuermer CA. The reggie/flotillin connection to growth. Trends Cell Biol 2010; 20:6-13. [DOI: 10.1016/j.tcb.2009.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/09/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
|
23
|
Yogi A, Callera GE, Tostes R, Touyz RM. Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 2009; 296:R201-7. [DOI: 10.1152/ajpregu.90602.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin-7 (TRPM7) channels have recently been identified to be regulated by vasoactive agents acting through G protein-coupled receptors in vascular smooth muscle cells (VSMC). However, downstream targets and functional responses remain unclear. We investigated the subcellular localization of TRPM7 in VSMCs and questioned the role of TRPM7 in proinflammatory signaling by bradykinin. VSMCs from Wistar-Kyoto rats were studied. Cell fractionation by sucrose gradient and differential centrifugation demonstrated that in bradykinin-stimulated cells, TRPM7 localized in fractions corresponding to caveolae. Immunofluorescence confocal microscopy revealed that TRPM7 distributes along the cell membrane, that it has a reticular-type intracellular distribution, and that it colocalizes with flotillin-2, a marker of lipid rafts. Bradykinin increased expression of calpain, a TRPM7 target, and stimulated its cytosol/membrane translocation, an effect blocked by 2-APB (TRPM7 inhibitor) and U-73122 (phospholipase C inhibitor), but not by chelerythrine (PKC inhibitor). Expression of proinflammatory mediators VCAM-1 and cyclooxygenase-2 (COX-2) was time-dependently increased by bradykinin. This effect was blocked by Hoe-140 (B2 receptor blocker) and 2-APB. Our data demonstrate that in bradykinin-stimulated VSMCs: 1) TRPM7 is upregulated, 2) TRPM7 associates with cholesterol-rich microdomains, and 3) calpain and proinflammatory mediators VCAM-1 and COX2 are regulated, in part, via TRPM7- and phospholipase C-dependent pathways through B2 receptors. These findings identify a novel signaling pathway for bradykinin, which involves TRPM7. Such phenomena may play a role in bradykinin/B2 receptor-mediated inflammatory responses in vascular cells.
Collapse
|
24
|
Sasaki Y, Negishi H, Koyama R, Anbo N, Ohori K, Idogawa M, Mita H, Toyota M, Imai K, Shinomura Y, Tokino T. p53 Family Members Regulate the Expression of the Apolipoprotein D Gene. J Biol Chem 2009; 284:872-83. [DOI: 10.1074/jbc.m807185200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|