1
|
PELP1 is overexpressed in lung cancer and promotes tumor cell malignancy and resistance to tyrosine kinase inhibitor drug. Pathol Res Pract 2022; 237:154065. [PMID: 35969940 DOI: 10.1016/j.prp.2022.154065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 12/24/2022]
Abstract
Proline, glutamate, and leucine-rich protein 1 (PELP1) are involved in several cancers, but little is known about PELP1 in lung cancer. In this study, PELP1 expression was evaluated in 305 lung cancer (NSCLC) specimens to explore the role of PELP1 in lung cancer. After silencing PELP1, the proliferation, migration, invasion of tumor cells, PELP1 in relation to cell cycle and signaling pathways were evaluated, and whole-genome exons were analyzed. PELP1 is overexpressed in lung cancer, PELP1 expression correlated with squamous carcinoma, smoking, and wild-type EGFR status (all Ps<0.001) but associated with lung cancer-specific survival (P > 0.05). Silencing significantly inhibited lung cancer cell proliferation, migration, and invasion (P < 0.05) and promoted high sensitivity of lung cancer cells to tyrosine kinase inhibitor (TKI) gefitinib. PELP1-silenced cells showed downregulated phosphorylated MAPK, cyclinD1, CDK2, and upregulated RB (P < 0.05) but no change in AKT. In PELP1-silenced lung cancer cells, 140 genes were upregulated, and 143 genes were downregulated. Furthermore, the number of T regulatory cell was higher in lung adenocarcinoma with pelp1 high-expression and pelp1 expression was negatively correlated with CD274 (PDL-1) and CTLA4. Therefore, PELP1 plays an important role in the malignant behavior of NSCLC and could be a potential therapeutic target.
Collapse
|
2
|
Liu J, Liu Z, Li M, Tang W, Pratap UP, Luo Y, Altwegg KA, Li X, Zou Y, Zhu H, Sareddy GR, Viswanadhapalli S, Vadlamudi RK. Interaction of transcription factor AP-2 gamma with proto-oncogene PELP1 promotes tumorigenesis by enhancing RET signaling. Mol Oncol 2021; 15:1146-1161. [PMID: 33269540 PMCID: PMC8024722 DOI: 10.1002/1878-0261.12871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/10/2020] [Accepted: 11/30/2020] [Indexed: 01/15/2023] Open
Abstract
A significant proportion of estrogen receptor-positive (ER+) breast cancer (BC) initially responds to endocrine therapy but eventually evolves into therapy-resistant BC. Transcription factor AP-2 gamma (TFAP2C) is a known regulator of ER activity, and high expression of TFAP2C is associated with a decreased response to endocrine therapies. PELP1 is a nuclear receptor coregulator, commonly overexpressed in BC, and its levels are correlated with poorer survival. In this study, we identified PELP1 as a novel interacting protein of TFAP2C. RNA-seq analysis of PELP1 knockdown BC cells followed by transcription factor motif prediction pointed to TFAP2C being enriched in PELP1-regulated genes. Gene set enrichment analysis (GSEA) revealed that the TFAP2C-PELP1 axis induced a subset of common genes. Reporter gene assays confirmed PELP1 functions as a coactivator of TFAP2C. Mechanistic studies showed that PELP1-mediated changes in histone methylation contributed to increased expression of the TFAP2C target gene RET. Furthermore, the TFAP2C-PELP1 axis promoted the activation of the RET signaling pathway, which contributed to downstream activation of AKT and ERK pathways in ER+ BC cells. Concomitantly, knockdown of PELP1 attenuated these effects mediated by TFAP2C. Overexpression of TFAP2C contributed to increased cell proliferation and therapy resistance in ER+ BC models, while knockdown of PELP1 mitigated these effects. Utilizing ZR75-TFAP2C xenografts with or without PELP1 knockdown, we provided genetic evidence that endogenous PELP1 is essential for TFAP2C-driven BC progression in vivo. Collectively, our studies demonstrated that PELP1 plays a critical role in TFAP2C transcriptional and tumorigenic functions in BC and blocking the PELP1-TFAP2C axis could have utility for treating therapy resistance.
Collapse
Affiliation(s)
- Junhao Liu
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of OncologyXiangya HospitalCentral South UniversityHunanChina
| | - Zexuan Liu
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of OncologyXiangya HospitalCentral South UniversityHunanChina
| | - Mengxing Li
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of Respiratory MedicineXiangya HospitalCentral South UniversityHunanChina
| | - Weiwei Tang
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of Obstetrics and GynecologyAffiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineChina
| | - Uday P. Pratap
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
| | - Yiliao Luo
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of General SurgeryXiangya HospitalCentral South UniversityHunanChina
| | - Kristin A. Altwegg
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| | - Xiaonan Li
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
| | - Yi Zou
- Greehey Children's Cancer Research InstituteUT Health San AntonioTXUSA
| | - Hong Zhu
- Department of OncologyXiangya HospitalCentral South UniversityHunanChina
| | - Gangadhara R. Sareddy
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| | - Suryavathi Viswanadhapalli
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| | - Ratna K. Vadlamudi
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| |
Collapse
|
3
|
Skibinska I, Andrusiewicz M, Soin M, Jendraszak M, Urbaniak P, Jedrzejczak P, Kotwicka M. Increased expression of PELP1 in human sperm is correlated with decreased semen quality. Asian J Androl 2019; 20:425-431. [PMID: 29676290 PMCID: PMC6116689 DOI: 10.4103/aja.aja_11_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein involved in both genomic and nongenomic estrogen signal transduction pathways. To date, the role of PELP1 protein has yet to be characterized in human sperm and has not been associated with sperm parameters. To confirm the presence of PELP1 in human sperm, fresh semen samples were obtained from 178 donors. The study was designed to establish both mRNA and protein presence, and protein cellular localization. Additionally, the number of PELP1-positive spermatozoa was analyzed in men with normal and abnormal semen parameters. Sperm parameters were assessed according to the World Health Organization (WHO) 2010 standards. The presence of PELP1 in spermatozoa was investigated using four precise, independent techniques. The qualitative presence of transcripts and protein was assessed using reverse transcription-polymerase chain reaction (RT-PCR) and western blot protocols, respectively. The cellular localization of PELP1 was investigated by immunocytochemistry. Quantitative analysis of PELP1-positive cells was done by flow cytometry. PELP1 mRNA and protein was confirmed in spermatozoa. Immunocytochemical analysis identified the presence of PELP1 in the midpieces of human sperm irrespective of sperm parameters. Becton Dickinson fluorescence-activated cell sorting (FACSCalibur™) analysis revealed a significantly lower number of PELP1-positive cells in males with normal semen parameters versus abnormal samples (42.78% ± 11.77% vs 61.05% ± 21.70%, respectively; P = 0.014). The assessment of PELP1 may be a time-saving method used to obtain information about sperm quality. The results of our study suggest that PEPL1 may be utilized as an indicator of sperm quality; thereby, PELP1 may be an additional biomarker useful in the evaluation of male infertility.
Collapse
Affiliation(s)
- Izabela Skibinska
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Miroslaw Andrusiewicz
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Michal Soin
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Magdalena Jendraszak
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Paulina Urbaniak
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Piotr Jedrzejczak
- Division of Infertility and Reproductive Endocrinology, Faculty of Medicine I, Poznan University of Medical Sciences, Polna 33, Poznan 60-535, Poland
| | - Malgorzata Kotwicka
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| |
Collapse
|
4
|
Cincin ZB, Kiran B, Baran Y, Cakmakoglu B. Hesperidin promotes programmed cell death by downregulation of nongenomic estrogen receptor signalling pathway in endometrial cancer cells. Biomed Pharmacother 2018; 103:336-345. [PMID: 29665555 DOI: 10.1016/j.biopha.2018.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/20/2023] Open
Abstract
Endometrial carcinoma (EC) is the most common malignant gynecologic tumor in women. EC is thought to be caused by increasing estrogen levels relative to progesterone in the body. Hesperidin (Hsd), a biologically active flavonoid, could be extracted from Citrus species. It has been recently shown that Hsd could exert anticarcinogenic properties in different cancer types. However, the effects of Hsd and its molecular mechanisms on EC remain unclear. In this study, the antiproliferative, apoptotic and genomic effects of Hsd in EC and its underlying mechanisms were identified. We found that Hsd significantly suppressed the proliferation of EC cells in dose and time dependent manner. Mechanistic studies showed that Hsd could contribute apoptosis by inducing externalization of phosphatidyl serine (PS), caspase-3 activity and loss of mitochondrial membrane (MMP). Furthermore, we examined that Hsd could also significantly upregulate the expression of proapoptotic Bax subgroup genes (Bax and Bik) while downregulating the anti-apoptotic protein Bcl-2 in EC cell lines. According to GO enrichment and KEGG pathway analysis of differentially expressed genes in Hsd treated EC cells, we identified that Hsd could promote cell death via downregulation of estrogen receptor I (ESRI) that was directly related to ERK/MAPK pathway. Taken together, our study first showed that Hsd could be an antiestrogenic compound that could modulate nongenomic estrogen receptor signaling through inhibition of EC cell growth. Our findings may provide us a novel growth inhibitory agent for EC treatment after verifying its molecular mechanism with in vivo studies.
Collapse
Affiliation(s)
- Z B Cincin
- Department of Molecular Medicine, Aziz Sancar Institute for Experimental Medicine Research, Istanbul University, Turkey; Department of Genetics and Bioengineering, Nisantasi University, Istanbul, Turkey
| | - B Kiran
- Department of Genetics and Bioengineering, Kastamonu University, Kastamonu, Turkey
| | - Y Baran
- Department of Molecular Biology and Genetics, Izmır Technology of Institute, Izmir, Turkey
| | - B Cakmakoglu
- Department of Molecular Medicine, Aziz Sancar Institute for Experimental Medicine Research, Istanbul University, Turkey.
| |
Collapse
|
5
|
Thakkar R, Sareddy GR, Zhang Q, Wang R, Vadlamudi RK, Brann D. PELP1: a key mediator of oestrogen signalling and actions in the brain. J Neuroendocrinol 2018; 30:10.1111/jne.12484. [PMID: 28485080 PMCID: PMC5785553 DOI: 10.1111/jne.12484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
Abstract
Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) is an oestrogen receptor (ER) coregulator protein identified by our collaborative group. Work from our laboratory and others has shown that PELP1 is a scaffold protein that interacts with ERs and kinase signalling factors, as well as proteins involved in chromatin remodelling and DNA repair. Its role in mediating 17β-oestradiol (E2 ) signalling and actions has been studied in detail in cancer cells, although only recently has attention turned to its role in the brain. In this review, we discuss the tissue, cellular and subcellular localisation of PELP1 in the brain. We also discuss recent evidence from PELP1 forebrain-specific knockout mice demonstrating a critical role of PELP1 in mediating both extranuclear and nuclear ER signalling in the brain, as well as E2 -induced neuroprotection, anti-inflammatory effects and regulation of cognitive function. Finally, the PELP1 interactome and unique gene network regulated by PELP1 in the brain is discussed, especially because it provides new insights into PELP1 biology, protein interactions and mechanisms of action in the brain. As a whole, the findings discussed in the present review indicate that PELP1 functions as a critical ER coregulator in the brain to mediate E2 signalling and actions.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
- Corresponding Author: Dr. Darrell Brann, Regents’ Professor and Vice Chair, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15 Street, CA-4004, Augusta, GA 30912, USA. Phone: 1-706-721-7779
| |
Collapse
|
6
|
Role of Scaffold Protein Proline-, Glutamic Acid-, and Leucine-Rich Protein 1 (PELP1) in the Modulation of Adrenocortical Cancer Cell Growth. Cells 2017; 6:cells6040042. [PMID: 29112114 PMCID: PMC5755500 DOI: 10.3390/cells6040042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
PELP1 acts as an estrogen receptor (ER) coactivator that exerts an essential role in the ER's functions. ER coregulators have a critical role in the progression and response to hormonal treatment of estrogen-dependent tumors. We previously demonstrated that, in adrenocortical carcinoma (ACC), ERα is upregulated and that estradiol activates the IGF-II/IGF1R signaling pathways defining the role of this functional cross-talk in H295R ACC cell proliferation. The aim of this study was to determine if PELP1 is expressed in ACC and may play a role in promoting the interaction between ERα and IGF1R allowing the activation of pathways important for ACC cell growth. The expression of PELP1 was detected by Western blot analysis in ACC tissues and in H295R cells. H295R cell proliferation decrease was assessed by A3-(4,5-Dimethylthiaoly)-2,5-diphenyltetrazolium bromide (MTT) assay and [3H] thymidine incorporation. PELP1 is expressed in ACC tissues and in H295R cells. Moreover, treatment of H295R with E2 or IGF-II induced a multiprotein complex formation consisting of PELP1, IGF1R, ERα, and Src that is involved in ERK1/2 rapid activation. PELP1/ER/IGF1R/c-Src complex identification as part of E2- and IGF-II-dependent signaling in ACC suggests PELP1 is a novel and more efficient potential target to reduce ACC growth.
Collapse
|
7
|
Ramayo-Caldas Y, Renand G, Ballester M, Saintilan R, Rocha D. Multi-breed and multi-trait co-association analysis of meat tenderness and other meat quality traits in three French beef cattle breeds. Genet Sel Evol 2016; 48:37. [PMID: 27107817 PMCID: PMC4842279 DOI: 10.1186/s12711-016-0216-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/13/2016] [Indexed: 01/19/2023] Open
Abstract
Background Studies to identify markers associated with beef tenderness have focused on Warner–Bratzler shear force (WBSF) but the interplay between the genes associated with WBSF has not been explored. We used the association weight matrix (AWM), a systems biology approach, to identify a set of interacting genes that are co-associated with tenderness and other meat quality traits, and shared across the Charolaise, Limousine and Blonde d’Aquitaine beef cattle breeds. Results Genome-wide association studies were performed using ~500K single nucleotide polymorphisms (SNPs) and 17 phenotypes measured on more than 1000 animals for each breed. First, this multi-trait approach was applied separately for each breed across 17 phenotypes and second, between- and across-breed comparisons at the AWM and functional levels were performed. Genetic heterogeneity was observed, and most of the variants that were associated with WBSF segregated within rather than across breeds. We identified 206 common candidate genes associated with WBSF across the three breeds. SNPs in these common genes explained between 28 and 30 % of the phenotypic variance for WBSF. A reduced number of common SNPs mapping to the 206 common genes were identified, suggesting that different mutations may target the same genes in a breed-specific manner. Therefore, it is likely that, depending on allele frequencies and linkage disequilibrium patterns, a SNP that is identified for one breed may not be informative for another unrelated breed. Well-known candidate genes affecting beef tenderness were identified. In addition, some of the 206 common genes are located within previously reported quantitative trait loci for WBSF in several cattle breeds. Moreover, the multi-breed co-association analysis detected new candidate genes, regulators and metabolic pathways that are likely involved in the determination of meat tenderness and other meat quality traits in beef cattle. Conclusions Our results suggest that systems biology approaches that explore associations of correlated traits increase statistical power to identify candidate genes beyond the one-dimensional approach. Further studies on the 206 common genes, their pathways, regulators and interactions will expand our knowledge on the molecular basis of meat tenderness and could lead to the discovery of functional mutations useful for genomic selection in a multi-breed beef cattle context. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0216-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Gilles Renand
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Maria Ballester
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Genètica i Millora Animal, IRTA, 08140, Torre Marimon, Caldes de Montbui, Spain
| | | | - Dominique Rocha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
8
|
Skibinska I, Tomaszewski M, Andrusiewicz M, Urbaniak P, Czarnecka-Klos R, Shadi M, Kotwicki T, Kotwicka M. Expression of Estrogen Receptor Coactivator Proline-, Glutamic Acid- and Leucine-Rich Protein 1 within Paraspinal Muscles in Adolescents with Idiopathic Scoliosis. PLoS One 2016; 11:e0152286. [PMID: 27045366 PMCID: PMC4821488 DOI: 10.1371/journal.pone.0152286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/12/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose The aim of this study was to detect and assess the estrogen receptor (ESR) coactivator PELP1 expression within human paraspinal skeletal muscles in patients suffering from idiopathic scoliosis. Methods During surgical correction of scoliosis the muscle biopsies harvested in 29 females. Presence of PELP1, ESR1 and ESR2 genes transcripts was studied using RT-qPCR technique while immunohistochemistry and western blot methods were used to detect the PEPL1 protein presence. Results PELP1 expression in deep paraspinal muscles revealed higher than in superficial back muscles (p = 0.005). Positive immunohistochemical staining for PELP1 was observed in the nuclei of the paraspinal muscle cells. Western blot revealed PELP1 protein in all samples. No significant difference in PELP1 expression between the convex and the concave scoliosis side (p>0.05) was found. In deep paraspinal back muscles, a significant correlation between the PELP1 expression level on the concave side and the Cobb angle (r = 0.4; p<0.05) was noted as well as between the PELP1 and ESR1 expression level (r = 0.7; p<0.05) while no correlation between PELP1 and ESR2 expression level was found. Conclusion To our knowledge, three techniques for the first time demonstrated the presence of the PELP1 in paraspinal muscles of patients with idiopathic scoliosis. The PELP1 potential regulatory impact on back muscle function is to be further investigated.
Collapse
Affiliation(s)
- Izabela Skibinska
- Department of Cell Biology, Health Sciences Faculty, University of Medical Sciences, Poznan, Poland
| | - Marek Tomaszewski
- Spine Disorders and Pediatric Orthopedics Department, Faculty of Medicine I, University of Medical Sciences, Poznan, Poland
| | - Miroslaw Andrusiewicz
- Department of Cell Biology, Health Sciences Faculty, University of Medical Sciences, Poznan, Poland
| | - Paulina Urbaniak
- Department of Cell Biology, Health Sciences Faculty, University of Medical Sciences, Poznan, Poland
| | - Roza Czarnecka-Klos
- Department of Cell Biology, Health Sciences Faculty, University of Medical Sciences, Poznan, Poland
| | - Milud Shadi
- Spine Disorders and Pediatric Orthopedics Department, Faculty of Medicine I, University of Medical Sciences, Poznan, Poland
| | - Tomasz Kotwicki
- Spine Disorders and Pediatric Orthopedics Department, Faculty of Medicine I, University of Medical Sciences, Poznan, Poland
| | - Malgorzata Kotwicka
- Department of Cell Biology, Health Sciences Faculty, University of Medical Sciences, Poznan, Poland
| |
Collapse
|
9
|
PELP1: Structure, biological function and clinical significance. Gene 2016; 585:128-134. [PMID: 26997260 DOI: 10.1016/j.gene.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 01/10/2023]
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein that functions as a coregulator of several transcription factors and nuclear receptors. Notably, the PELP1 protein has a histone-binding domain, recognizes histone modifications and interacts with several chromatin-modifying complexes. PELP1 serves as a substrate of multitude of kinases, and phosphorylation regulates its functions in various complexes. Further, PELP1 plays essential roles in several pathways including hormonal signaling, cell cycle progression, ribosomal biogenesis, and the DNA damage response. PELP1 expression is upregulated in several cancers, its deregulation contributes to therapy resistance, and it is a prognostic biomarker for breast cancer survival. Recent evidence suggests that PELP1 represents a novel therapeutic target for many hormonal cancers. In this review, we summarized the emerging biological properties and functions of PELP1.
Collapse
|
10
|
Gray SL, Lackey BR, Boone WR. Effects of Panax ginseng, zearalenol, and estradiol on sperm function. J Ginseng Res 2015; 40:251-9. [PMID: 27616901 PMCID: PMC5005360 DOI: 10.1016/j.jgr.2015.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/03/2015] [Accepted: 08/16/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Estrogen signaling pathways are modulated by exogenous factors. Panax ginseng exerts multiple activities in biological systems and is classified as an adaptogen. Zearalenol is a potent mycoestrogen that may be present in herbs and crops arising from contamination or endophytic association. The goal of this study was to investigate the impact of P. ginseng, zearalenol and estradiol in tests on spermatozoal function. METHODS The affinity of these compounds for estrogen receptor (ER)-alpha and beta (ERα and ERβ)-was assessed in receptor binding assays. Functional tests on boar spermatozoa motility, movement and kinematic parameters were conducted using a computer-assisted sperm analyzer. Tests for capacitation, acrosome reaction (AR), and chromatin decondensation in spermatozoa were performed using microscopic analysis. RESULTS Zearalenol-but not estradiol (E2)- or ginseng-treated spermatozoa-decreased the percentage of overall, progressive, and rapid motile cells. Zearalenol also decreased spontaneous AR and increased chromatin decondensation. Ginseng decreased chromatin decondensation in response to calcium ionophore and decreased AR in response to progesterone (P4) and ionophore. CONCLUSION Zearalenol has adverse effects on sperm motility and function by targeting multiple signaling cascades, including P4, E2, and calcium pathways. Ginseng protects against chromatin damage and thus may be beneficial to reproductive fitness.
Collapse
Affiliation(s)
- Sandra L Gray
- Endocrine Physiology Laboratory, Animal and Veterinary Science Department, Clemson University, Clemson, SC, USA
| | - Brett R Lackey
- Endocrine Physiology Laboratory, Animal and Veterinary Science Department, Clemson University, Clemson, SC, USA
| | - William R Boone
- ART Laboratories, Department of Obstetrics and Gynecology, Greenville Health System University Medical Group, Greenville, SC, USA
| |
Collapse
|
11
|
Estrogens Correlate with PELP1 Expression in ER Positive Breast Cancer. PLoS One 2015; 10:e0134351. [PMID: 26247365 PMCID: PMC4527840 DOI: 10.1371/journal.pone.0134351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/09/2015] [Indexed: 11/19/2022] Open
Abstract
The Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) is an estrogen receptor (ER) coactivator and a proto-oncogene known to be deregulated in endocrine cancers. In breast cancer, PELP1 overexpression has been associated with endocrine therapy resistance. Although PELP1 is known to be regulated by estrogens in vitro, its association with estrogen levels within the tissue of breast cancer patients has not previously been assessed. Here, we determined PELP1 mRNA expression levels in paired samples of normal and malignant breast tissue obtained from 32 postmenopausal and 11 premenopausal women. In the total sample set, PELP1 levels were higher in tumors compared to normal breast tissue (P = 0.041). Among postmenopausal women, PELP1 tumor levels correlated positively with estrone (E1) and estradiol (E2) levels in both normal tissue (r = 0.543, P = 0.003 and r = 0.601, P = 0.001, respectively) and plasma (r = 0.392, P = 0.053 and r = 0.403, P = 0.046, respectively). Analyzing all ER+ tumors (n = 26), PELP1 correlated positively with E1 and E2 in tumor tissue (r = 0.562, P = 0.003 and r = 0.411, P = 0.037, respectively) and normal tissue (r = 0.461, P = 0.018 and r = 0.427, P = 0.030, respectively) in addition to plasma E1, E2 and estrone sulphate (E1S) concentrations (r = 0.576, P = 0.003, r = 0.456, P = 0.025 and r = 0.406, P = 0.049, respectively). Finally, PELP1 correlated positively with ER mRNA (ESR1) (r = 0.553, P = 0.026) in ER+ tumors, whereas a negative association between PELP1 and ESR1 (r = -0.733, P = 0.010) was observed in ER- breast tumors. Taken together, tumor PELP1 mRNA expression is associated with estrogen levels in breast cancer, suggesting a potentially important role of PELP1 in ER+ breast cancer growth in vivo.
Collapse
|
12
|
Ravindranathan P, Lange CA, Raj GV. Minireview: Deciphering the Cellular Functions of PELP1. Mol Endocrinol 2015; 29:1222-9. [PMID: 26158753 DOI: 10.1210/me.2015-1049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Preethi Ravindranathan
- Department of Urology (P.R., G.V.R.), University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390; and Departments of Medicine and Pharmacology (C.A.L.), University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota 55455
| | - Carol A Lange
- Department of Urology (P.R., G.V.R.), University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390; and Departments of Medicine and Pharmacology (C.A.L.), University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota 55455
| | - Ganesh V Raj
- Department of Urology (P.R., G.V.R.), University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390; and Departments of Medicine and Pharmacology (C.A.L.), University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota 55455
| |
Collapse
|
13
|
Gray SL, Lackey BR, Boone WR. Impact of kudzu and puerarin on sperm function. Reprod Toxicol 2015; 53:54-62. [PMID: 25828059 DOI: 10.1016/j.reprotox.2015.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/06/2015] [Accepted: 03/20/2015] [Indexed: 11/29/2022]
Abstract
The goal of this study was to investigate the impact of kudzu (Pueraria mirifica) and the isoflavone puerarin in functional toxicological tests on spermatozoa and to assess the affinity of extracts and pure isoflavones for estrogen receptor (ER)-alpha and -beta (ERα, ERβ) in receptor binding assays. Capacitation, acrosome reaction and chromatin decondensation in spermatozoa were analyzed using microscopic analysis. Kudzu, but not puerarin, reduced motility of sperm. Puerarin reduced the percent spontaneous acrosome reaction in spermatozoa. The pathways used by kudzu that affect sperm function are not fully mirrored by puerarin. Puerarin, kudzu and its other phytoestrogenic components displayed preferential affinity for ERβ, however the diverse effects of kudzu and puerarin on sperm function implicate the involvement of multiple signaling systems.
Collapse
Affiliation(s)
- Sandra L Gray
- Endocrine Physiology Laboratory, Animal & Veterinary Science Department, Clemson University, Clemson, SC 29634, United States.
| | - Brett R Lackey
- Endocrine Physiology Laboratory, Animal & Veterinary Science Department, Clemson University, Clemson, SC 29634, United States
| | - William R Boone
- ART Laboratories, Department of Obstetrics & Gynecology, Greenville Health System University Medical Group, Greenville, SC 29605, United States
| |
Collapse
|
14
|
Gonugunta VK, Miao L, Sareddy GR, Ravindranathan P, Vadlamudi R, Raj GV. The social network of PELP1 and its implications in breast and prostate cancers. Endocr Relat Cancer 2014; 21:T79-86. [PMID: 24859989 DOI: 10.1530/erc-13-0502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proline, glutamic acid- and leucine-rich protein 1 (PELP1) is a multi-domain scaffold protein that serves as a platform for various protein-protein interactions between steroid receptors (SRs) and signaling factors and cell cycle, transcriptional, cytoskeletal, and epigenetic remodelers. PELP1 is known to be a coregulator of transcription and participates in the nuclear and extranuclear functions of SRs, ribosome biogenesis, and cell cycle progression. The expression and localization of PELP1 are dysregulated in hormonal cancers including breast and prostate cancers. This review focuses on the interactive functions and therapeutic and prognostic significance of PELP1 in breast and prostate cancers.
Collapse
Affiliation(s)
- Vijay K Gonugunta
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Lu Miao
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Gangadhara R Sareddy
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Preethi Ravindranathan
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Ratna Vadlamudi
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Ganesh V Raj
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
15
|
The histone variant MacroH2A1 regulates target gene expression in part by recruiting the transcriptional coregulator PELP1. Mol Cell Biol 2014; 34:2437-49. [PMID: 24752897 DOI: 10.1128/mcb.01315-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MacroH2A1 is a histone variant harboring an ∼25-kDa carboxyl-terminal macrodomain. Due to its enrichment on the inactive X chromosome, macroH2A1 was thought to play a role in transcriptional repression. However, recent studies have shown that macroH2A1 occupies autosomal chromatin and regulates genes in a context-specific manner. The macrodomain may play a role in the modulation of gene expression outcomes via physical interactions with effector proteins, which may depend on the ability of the macrodomain to bind NAD(+) metabolite ligands. Here, we identify proline, glutamic acid, and leucine-rich protein 1 (PELP1), a chromatin-associated factor and transcriptional coregulator, as a ligand-independent macrodomain-interacting factor. We used chromatin immunoprecipitation coupled with tiling microarrays (ChIP-chip) to determine the genomic localization of PELP1 in MCF-7 human breast cancer cells. We find that PELP1 genomic localization is highly correlated with that of macroH2A1. Additionally, PELP1 positively correlates with heterochromatic chromatin marks and negatively correlates with active transcription marks, much like macroH2A1. MacroH2A1 specifically recruits PELP1 to the promoters of macroH2A1 target genes, but macroH2A1 occupancy occurs independent of PELP1. This recruitment allows macroH2A1 and PELP1 to cooperatively regulate gene expression outcomes.
Collapse
|
16
|
The pattern of proline, glutamic acid, and leucine-rich protein 1 expression in Chinese women with primary breast cancer. Int J Biol Markers 2014; 29:e1-7. [PMID: 24627205 DOI: 10.5301/jbm.5000078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Disparities of biomarkers' expression in breast cancer across different races and ethnicities have been well documented. Proline, glutamic acid, and leucine-rich protein 1 (PELP1), a novel ER coregulator, has been considered as a promising biomarker of breast cancer prognosis; however, the pattern of PELP1 expression in Chinese women with breast cancer has never been investigated. This study aims to provide useful reference on possible racial or ethnic differences of PELP1 expression in breast cancer by exploring the pattern of PELP1 expression in Chinese women with primary breast cancer. METHODS The expression of PELP1 in primary breast cancer samples from 130 Chinese female patients was detected by immunohistochemistry and correlated to other clinicopathological parameters; for comparison, the expression of PELP1 in 26 benign breast fibroadenomas was also examined. RESULTS The overall value of the PELP1 H-score in breast cancer was significantly higher than that in breast fibroadenoma (p<0.001). In our breast cancer patients, the ER/HER-2-positive group had significantly higher PELP1 H-scores than their negative counterparts (p=0.003 for ER and p=0.022 for HER-2); the Ki-67-high group also showed significantly higher PELP1 H-scores than the Ki-67-low group (p=0.008). No significant association between PELP1 H-scores and other clinicopathological parameters was found. Finally, the PELP1 H-score in breast cancers of the luminal B subtype was significantly higher than that in the triple negative subtype (p=0.002). CONCLUSION Overexpression of PELP1 in Chinese women with primary breast cancer appears to be associated with biomarkers of poor outcome; these results are similar to other reports based on Western populations.
Collapse
|
17
|
Girard BJ, Daniel AR, Lange CA, Ostrander JH. PELP1: a review of PELP1 interactions, signaling, and biology. Mol Cell Endocrinol 2014; 382:642-651. [PMID: 23933151 PMCID: PMC3844065 DOI: 10.1016/j.mce.2013.07.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
Proline, glutamic acid, and leucine rich protein 1 (PELP1) is a large multi-domain protein that has been shown to modulate an increasing number of pathways and biological processes. The first reports describing the cloning and characterization of PELP1 showed that it was an estrogen receptor coactivator. PELP1 has now been shown to be a coregulator for a growing number of transcription factors. Furthermore, recent reports have shown that PELP1 is a member of chromatin remodeling complexes. In addition to PELP1 nuclear functions, it has been shown to have cytoplasmic signaling functions as well. In the cytoplasm PELP1 acts as a scaffold molecule and mediates rapid signaling from growth factor and hormone receptors. PELP1 signaling ultimately plays a role in cancer biology by increasing proliferation and metastasis, among other cellular processes. Here we will review (1) the cloning and characterization of PELP1 expression, (2) interacting proteins, (3) PELP1 signaling, and (4) PELP1-mediated biology.
Collapse
Affiliation(s)
- Brian J Girard
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Andrea R Daniel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Julie H Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
18
|
Uversky VN. The alphabet of intrinsic disorder: II. Various roles of glutamic acid in ordered and intrinsically disordered proteins. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e24684. [PMID: 28516010 PMCID: PMC5424795 DOI: 10.4161/idp.24684] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/27/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022]
Abstract
The ability of a protein to fold into unique functional state or to stay intrinsically disordered is encoded in its amino acid sequence. Both ordered and intrinsically disordered proteins (IDPs) are natural polypeptides that use the same arsenal of 20 proteinogenic amino acid residues as their major building blocks. The exceptional structural plasticity of IDPs, their capability to exist as heterogeneous structural ensembles and their wide array of important disorder-based biological functions that complements functional repertoire of ordered proteins are all rooted within the peculiar differential usage of these building blocks by ordered proteins and IDPs. In fact, some residues (so-called disorder-promoting residues) are noticeably more common in IDPs than in sequences of ordered proteins, which, in their turn, are enriched in several order-promoting residues. Furthermore, residues can be arranged according to their “disorder promoting potencies,” which are evaluated based on the relative abundances of various amino acids in ordered and disordered proteins. This review continues a series of publications on the roles of different amino acids in defining the phenomenon of protein intrinsic disorder and concerns glutamic acid, which is the second most disorder-promoting residue.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow, Russia
| |
Collapse
|
19
|
|
20
|
Abstract
Background Proline-, glutamic acid-, and leucine-rich protein (PELP1) is a novel nuclear receptor coregulator with a multitude of functions. PELP1 serves as a scaffolding protein that couples various signaling complexes with nuclear receptors and participates as a transcriptional coregulator. Recent data suggest that PELP1 expression is deregulated in hormonal cancers, and that PELP1 functions as a proto-oncogene; however, the mechanism by which PELP1 promotes oncogenesis remains elusive. Methodology/Principal Findings Using pharmacological inhibitors, confocal microscopy and biochemical assays, we demonstrated that PELP1 is localized in the nucleolus and that PELP1 is associated with the active ribosomal RNA transcription. Cell synchronization studies showed that PELP1 nucleolar localization varies and the greatest amount of nucleolar localization was observed during S and G2 phases. Using pharmacological compounds and CDK site mutants of PELP1, we found that CDK's activity plays an important role on PELP1 nucleolar localization. Depletion of PELP1 by siRNA decreased the expression of pre-rRNA. Reporter gene assays using ribosomal DNA (pHrD) luc-reporter revealed that PELP1WT but not PELP1MT enhanced the expression of reporter. Deletion of nucleolar domains abolished PELP1-mediated activation of the pHrD reporter. ChIP analysis revealed that PELP1 is recruited to the promoter regions of rDNA and is needed for optimal transcription of ribosomal RNA. Conclusions/Significance Collectively, our results suggest that proto-oncogene PELP1 plays a vital role in rDNA transcription. PELP1 modulation of rRNA transcription, a key step in ribosomal biogenesis may have implications in PELP1-mediated oncogenic functions.
Collapse
|
21
|
Significance of ER-Src axis in hormonal therapy resistance. Breast Cancer Res Treat 2010; 130:377-85. [PMID: 21184269 DOI: 10.1007/s10549-010-1312-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
The estrogen receptor (ER) is implicated in the progression of breast cancer. Despite positive effects of hormonal therapy, initial or acquired resistance to endocrine therapies frequently occurs. Recent studies suggested ERα-coregulator PELP1 and growth factor receptor ErbB2/HER2 play an essential role in hormonal therapy responsiveness. Src axis couples ERα with HER2 and PELP1, thus representing a new pathway for targeted therapy resistance. To establish the significance of ER-Src axis in PELP1 and HER2 mediated therapy resistance, we have generated model cells that stably express Src-shRNA under conditions of PELP1, HER2 deregulation. Depletion of Src using shRNA substantially reduced E2 mediated activation of Src and MAPK activation in resistant model cells. Pharmacological inhibition of Src using dasatinib, an orally available inhibitor substantially inhibited the growth of therapy resistant MCF7-PELP1, MCF7-HER2, and MCF7-Tam model cells in proliferation assays. In post-menopausal xenograft based studies, treatment with dasatinib significantly inhibited the growth of therapy resistant cells. IHC analysis revealed that the tumors were ERα positive, and dasatinib treated tumors exhibited alterations in Src and MAPK signaling pathways. Combinatorial therapy of tamoxifen with dasatinib showed better therapeutic effect compared to single agent therapy on the growth of therapy resistant PELP1 driven tumors. The results from our study showed that ER-Src axis play an important role in promoting hormonal resistance by proto-oncogenes such as HER2, PELP1, and blocking this axis prevents the development of hormonal independence in vivo. Since PELP1, HER2, and Src kinase are commonly deregulated in breast cancers, combination therapies using both endocrine agents and dasatinib may have better therapeutic effect by delaying the development of hormonal resistance.
Collapse
|
22
|
Nair BC, Nair SS, Chakravarty D, Challa R, Manavathi B, Yew PR, Kumar R, Tekmal RR, Vadlamudi RK. Cyclin-dependent kinase-mediated phosphorylation plays a critical role in the oncogenic functions of PELP1. Cancer Res 2010; 70:7166-75. [PMID: 20807815 DOI: 10.1158/0008-5472.can-10-0628] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Estrogen receptor (ER) signaling plays an important role in breast cancer progression, and ER functions are influenced by coregulatory proteins. PELP1 (proline-, glutamic acid-, and leucine-rich protein 1) is a nuclear receptor coregulator that plays an important role in ER signaling. Its expression is deregulated in hormonal cancers. We identified PELP1 as a novel cyclin-dependent kinase (CDK) substrate. Using site-directed mutagenesis and in vitro kinase assays, we identified Ser(477) and Ser(991) of PELP1 as CDK phosphorylation sites. Using the PELP1 Ser(991) phospho-specific antibody, we show that PELP1 is hyperphosphorylated during cell cycle progression. Model cells stably expressing the PELP1 mutant that lack CDK sites had defects in estradiol (E2)-mediated cell cycle progression and significantly affected PELP1-mediated oncogenic functions in vivo. Mechanistic studies showed that PELP1 modulates transcription factor E2F1 transactivation functions, that PELP1 is recruited to pRb/E2F target genes, and that PELP1 facilitates ER signaling cross talk with cell cycle machinery. We conclude that PELP1 is a novel substrate of interphase CDKs and that its phosphorylation is important for the proper function of PELP1 in modulating hormone-driven cell cycle progression and also for optimal E2F transactivation function. Because the expression of both PELP1 and CDKs is deregulated in breast tumors, CDK-PELP1 interactions will have implications in breast cancer progression.
Collapse
Affiliation(s)
- Binoj C Nair
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chakravarty D, Tekmal RR, Vadlamudi RK. PELP1: A novel therapeutic target for hormonal cancers. IUBMB Life 2010; 62:162-9. [PMID: 20014005 DOI: 10.1002/iub.287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies implicate that the estrogen receptor (ER) coregulator proline-, glutamic acid-, and leucine-rich protein (PELP) 1 as playing critical roles in ER-genomic, ER-nongenomic, and ER-signaling cross talk with growth factor signaling pathways. PELP1 expression is deregulated in hormonal cancers and recent studies further elucidated the molecular mechanisms by which PELP1 regulates hormone therapy response. Although PELP1 is important for normal functions of the ER, the possibility to target ER-PELP1 axis appears to be an effective strategy for preventing hormonal carcinogenesis and therapy resistance. Thus, PELP1 may be useful as prognostic marker for hormonal cancers and PELP1 signaling may be useful to generate targeted therapeutics to overcome hormonal therapy resistance.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | |
Collapse
|
24
|
Nair SS, Nair BC, Cortez V, Chakravarty D, Metzger E, Schüle R, Brann DW, Tekmal RR, Vadlamudi RK. PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor-alpha target gene activation by regulating lysine demethylase 1 specificity. EMBO Rep 2010; 11:438-44. [PMID: 20448663 DOI: 10.1038/embor.2010.62] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 11/09/2022] Open
Abstract
Histone methylation has a key role in oestrogen receptor (ERalpha)-mediated transactivation of genes. Proline glutamic acid and leucine-rich protein 1 (PELP1) is a new proto-oncogene that functions as an ERalpha co-regulator. In this study, we identified histone lysine demethylase, KDM1, as a new PELP1-interacting protein. These proteins, PELP1 and KDM1, were both recruited to ERalpha target genes, and PELP1 depletion affected the dimethyl histone modifications at ERalpha target genes. Dimethyl-modified histones H3K4 and H3K9 are recognized by PELP1, and PELP1 alters the substrate specificity of KDM1 from H3K4 to H3K9. Effective demethylation of dimethyl H3K9 by KDM1 requires a KDM1-ERalpha-PELP1 functional complex. These results suggest that PELP1 is a reader of H3 methylation marks and has a crucial role in modulating the histone code at the ERalpha target genes.
Collapse
Affiliation(s)
- Sujit S Nair
- Department of Obstetrics and Gynecology, University of Texas Health Science Center in San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Habashy HO, Powe DG, Rakha EA, Ball G, Macmillan RD, Green AR, Ellis IO. The prognostic significance of PELP1 expression in invasive breast cancer with emphasis on the ER-positive luminal-like subtype. Breast Cancer Res Treat 2009; 120:603-12. [PMID: 19495959 DOI: 10.1007/s10549-009-0419-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/02/2009] [Indexed: 11/25/2022]
Abstract
The transcription functions of oestrogen receptors (ER) are influenced by several coregulators such as PELP1 (proline, glutamate and leucine rich protein 1). The aim of the present study, which uses tissue microarrays and immunohistochemistry, is to explore the clinical and biological relevance of PELP1 protein expression in a large series of consecutive patients (1,162 patients) with invasive breast cancers with particular emphasis on its role in the ER-positive/luminal-like class of tumours. Our results showed that increased PELP1 expression is associated with tumours of larger size, higher histological grade, higher mitotic count, and with positive expression of basal cytokeratins (CK) (CK14; P = 0.018 and CK5/6; P = 0.029), P-cadherin (P = 0.002), p53 and MIB1 (P = 0.018). There was an inverse association between PELP1 expression and ER (P = 0.002), progesterone (PgR) (P = 0.004), androgen (AR) receptor (P < 0.001), and luminal CK (CK18; P = 0.027) expression. A significant association between PELP1 expression and shorter breast cancer specific survival (BCSS) (P = 0.002) and disease-free survival (DFI) (P = 0.006) was found. Multivariate Cox hazard analysis showed that PELP1 expression was an independent predictor of shorter BCSS (Hazard ratio (HR) = 1.349, P = 0.006) and shorter DFI (HR = 1.255, P = 0.011). In the ER-positive/luminal-like group (n = 768), PELP1 expression showed similar association with other clinicopathological variables and was an independent predictor of shorter DFI (HR = 1.256, P = 0.036). In conclusion, PELP1 protein expression is an independent prognostic predictor of shorter BCSS and DFI in breast cancer and its elevated expression is positively associated with markers of poor outcome. PELP1 appears to have a potential application in assessing the clinical outcome of patients with ER-positive breast cancer.
Collapse
Affiliation(s)
- Hany Onsy Habashy
- Department of Histopathology, School of Molecular Medical Sciences, Nottingham University Hospitals NHS Trust, University of Nottingham, Hucknall Road, Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Kumar R, Zhang H, Holm C, Vadlamudi RK, Landberg G, Rayala SK. Extranuclear coactivator signaling confers insensitivity to tamoxifen. Clin Cancer Res 2009; 15:4123-30. [PMID: 19470742 DOI: 10.1158/1078-0432.ccr-08-2347] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tamoxifen is one of many standard therapeutic options currently available for estrogen receptor-alpha-positive breast cancer patients. Emerging data have suggested that levels of estrogen receptor coregulatory proteins play a significant role in acquiring resistance to antiestrogen action. It has been suggested that high levels of estrogen receptor coactivators and its mislocalization may enhance the estrogen agonist activity of tamoxifen and contribute to tamoxifen resistance. EXPERIMENTAL DESIGN In an effort to understand the impact of nongenomic signaling and its contribution to hormone resistance in a whole-animal setting, we generated a transgenic mouse expressing a cytoplasmic version of proline-, glutamic acid-, and leucine-rich protein-1 (PELP1) mutant defective in its nuclear translocation (PELP1-cyto) and implanted these mice with tamoxifen pellets to assess its responsiveness. RESULTS We show that mammary glands from these mice developed widespread hyperplasia with increased cell proliferation and enhanced activation of mitogen-activated protein kinase and AKT as early as 12 weeks of age. Treatment with tamoxifen did not inhibit this hyperplasia; instead, such treatment exaggerated hyperplasia with an enhanced degree of alteration, indicative of hypersensitivity to tamoxifen. Analysis of molecular markers in the transgenic mammary glands from the tamoxifen-treated transgenic mice showed higher levels of proliferation markers proliferating cell nuclear antigen and activated mitogen-activated protein kinase than in untreated PELP1-cyto cell-derived mice. We also found that nude mice with MCF-7/PELP1-cyto cell-derived tumor xenografts did not respond to tamoxifen. Using immunohistochemical analysis, we found that 43% of human breast tumor samples had high levels of cytoplasmic PELP1, which shows a positive correlation between tumor grade and proliferation. Patients whose tumors had high levels of cytoplasmic PELP1 exhibited a tendency to respond poorly to tamoxifen compared with patients whose tumors had low levels of cytoplasmic PELP1. CONCLUSIONS These findings suggest that PELP1 localization could be used as a determinant of hormone sensitivity or vulnerability. The establishment of the PELP1-cyto transgenic mouse model is expected to facilitate the development of preclinical approaches for effective intervention of breast tumors using cytoplasmic coregulators and active nongenomic signaling.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biochemistry and Molecular Biology, Institute of Coregulator Biology, The George Washington University Medical Center, Washington, District of Columbia 20037, USA
| | | | | | | | | | | |
Collapse
|
27
|
Brann DW, Zhang QG, Wang RM, Mahesh VB, Vadlamudi RK. PELP1--a novel estrogen receptor-interacting protein. Mol Cell Endocrinol 2008; 290:2-7. [PMID: 18571832 PMCID: PMC2578818 DOI: 10.1016/j.mce.2008.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 02/07/2023]
Abstract
PELP1 (proline-, glutamic acid-, and leucine-rich protein-1) is a novel estrogen receptor (ER)-interacting protein that has been implicated to be important for mediation of both the genomic and nongenomic signaling of 17beta-estradiol (E2). PELP1 contains ten nuclear receptor-interacting boxes (LXXLL motifs), which allow it to interact with ER and other nuclear hormone receptors, a zinc finger, a glutamic acid-rich domain, and two proline-rich domains. The proline-rich regions contain several consensus PXXP motifs, which allow PELP1 to couple the ER with SH3 domain-containing kinase signaling proteins, such as Src and PI3K P85 regulatory subunit. PELP1 is expressed in many different brain regions, including the hippocampus, hypothalamus, and cerebral cortex. Further work has demonstrated that PELP1 is colocalized with ER-alpha in neurons in various brain regions. PELP1 is primarily expressed in neurons, with some expression also observed in glia. Subcellular localization studies revealed that PELP1 is highly localized in the cell nucleus of neurons, with some cytoplasm localization as well, and PELP1 is also localized at synaptic sites. Work in other tissues has demonstrated that PELP1 is critical for nongenomic and genomic signaling by E2, as PELP1 knockdown studies significantly attenuates E2-induced activation of ERK and Akt signaling pathways, and inhibits E2 genomic transcriptional effects on gene expression in breast cancer cells. Preliminary studies in the brain, suggests that similar roles may exist for PELP1 in the brain, but this remains to be established, and further work to characterize the precise roles and functions of PELP1 in the brain are needed.
Collapse
Affiliation(s)
- Darrell W Brann
- Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|