1
|
Ghosh S, Isma J, Ostano P, Mazzeo L, Toniolo A, Das M, White JR, Simon C, Paolo Dotto G. Nuclear lamin A/C phosphorylation by loss of androgen receptor leads to cancer-associated fibroblast activation. Nat Commun 2024; 15:7984. [PMID: 39266569 PMCID: PMC11392952 DOI: 10.1038/s41467-024-52344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Alterations in nuclear structure and function are hallmarks of cancer cells. Little is known about these changes in Cancer-Associated Fibroblasts (CAFs), crucial components of the tumor microenvironment. Loss of the androgen receptor (AR) in human dermal fibroblasts (HDFs), which triggers early steps of CAF activation, leads to nuclear membrane changes and micronuclei formation, independent of cellular senescence. Similar changes occur in established CAFs and are reversed by restoring AR activity. AR associates with nuclear lamin A/C, and its loss causes lamin A/C nucleoplasmic redistribution. AR serves as a bridge between lamin A/C and the protein phosphatase PPP1. Loss of AR decreases lamin-PPP1 association and increases lamin A/C phosphorylation at Ser 301, a characteristic of CAFs. Phosphorylated lamin A/C at Ser 301 binds to the regulatory region of CAF effector genes of the myofibroblast subtype. Expression of a lamin A/C Ser301 phosphomimetic mutant alone can transform normal fibroblasts into tumor-promoting CAFs.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani Campus, Pilani, India.
| | - Jovan Isma
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Luigi Mazzeo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Annagiada Toniolo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Monalisa Das
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Joni R White
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Christian Simon
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - G Paolo Dotto
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
2
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
3
|
Koukoutzeli C, Trapani D, Ascione L, Kotteas E, Marra A, Criscitiello C, Curigliano G. Use of Antibody-Drug Conjugates in the Early Setting of Breast Cancer. Clin Med Insights Oncol 2024; 18:11795549241260418. [PMID: 38894701 PMCID: PMC11185006 DOI: 10.1177/11795549241260418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are anticancer agents with the capacity to selectively deliver their payloads to cancer cells. Antibody-drug conjugates consist of a monoclonal antibody backbone connected by a linker to cytotoxic payloads. Antibody-drug conjugate effect occurs either by directly targeting cancer cells via membrane antigen or through "bystander effect." Antibody-drug conjugates have demonstrated efficacy against various types of tumors, including breast cancer. Ado-trastuzumab emtansine is presently the only approved ADC for the treatment of breast cancer in the early setting, while several ADCs are now approved for metastatic breast cancer. Due to the transformative impact that several ADCs have reported in the setting of advanced breast cancer, researchers are now testing more of such compounds in the early setting, to portend benefits to patients through highly potent anticancer drugs. Ongoing trials hold the potential to transform treatment protocols for early breast cancer in the near future. These trials are aiming at evaluating different treatment modulation approaches, as informed by breast cancer risk of recurrence, including toward treatment de-escalation. Efforts are provided in ongoing clinical trials to identify the patients who will benefit most, to pursue paradigms of precision medicine with the novel ADCs. This review focuses on the potential role of ADCs in early breast cancer, providing an overview of the latest progress in their development and how they are implemented in ongoing clinical trials.
Collapse
Affiliation(s)
- Chrysanthi Koukoutzeli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Liliana Ascione
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Internal Medicine, Sotiria General Hospital and Athens School of Medicine, Athens, Greece
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
4
|
Ghosh S, Isma J, Mazzeo L, Toniolo A, Simon C, Dotto GP. Nuclear lamin A/C phosphorylation by loss of Androgen Receptor is a global determinant of cancer-associated fibroblast activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546870. [PMID: 37425957 PMCID: PMC10327063 DOI: 10.1101/2023.06.28.546870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Alterations of nuclear structure and function, and associated impact on gene transcription, are a hallmark of cancer cells. Little is known of these alterations in Cancer-Associated Fibroblasts (CAFs), a key component of the tumor stroma. Here we show that loss of androgen receptor (AR), which triggers early steps of CAF activation in human dermal fibroblasts (HDFs), leads to nuclear membrane alterations and increased micronuclei formation, which are unlinked from induction of cellular senescence. Similar alterations occur in fully established CAFs, which are overcome by restored AR function. AR associates with nuclear lamin A/C and loss of AR results in a substantially increased lamin A/C nucleoplasmic redistribution. Mechanistically, AR functions as a bridge between lamin A/C with the protein phosphatase PPP1. In parallel with a decreased lamin-PPP1 association, AR loss results in a marked increase of lamin A/C phosphorylation at Ser 301, which is also a feature of CAFs. Phosphorylated lamin A/C at Ser 301 binds to the transcription promoter regulatory region of several CAF effector genes, which are upregulated due to the loss of AR. More directly, expression of a lamin A/C Ser301 phosphomimetic mutant alone is sufficient to convert normal fibroblasts into tumor-promoting CAFs of the myofibroblast subtype, without an impact on senescence. These findings highlight the pivotal role of the AR-lamin A/C-PPP1 axis and lamin A/C phosphorylation at Ser 301 in driving CAF activation.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Personalised Cancer Prevention Unit, ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Jovan Isma
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Luigi Mazzeo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Annagiada Toniolo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Christian Simon
- Personalised Cancer Prevention Unit, ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - G. Paolo Dotto
- Personalised Cancer Prevention Unit, ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- International Cancer Prevention Institute, Epalinges, Switzerland
| |
Collapse
|
5
|
Zhang Q, Liu X, Chen Z, Zhang S. Novel GIRlncRNA Signature for Predicting the Clinical Outcome and Therapeutic Response in NSCLC. Front Pharmacol 2022; 13:937531. [PMID: 35991889 PMCID: PMC9382191 DOI: 10.3389/fphar.2022.937531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Non–small cell lung cancer (NSCLC) is highly malignant with driver somatic mutations and genomic instability. Long non-coding RNAs (lncRNAs) play a vital role in regulating these two aspects. However, the identification of somatic mutation-derived, genomic instability-related lncRNAs (GIRlncRNAs) and their clinical significance in NSCLC remains largely unexplored. Methods: Clinical information, gene mutation, and lncRNA expression data were extracted from TCGA database. GIRlncRNAs were screened by a mutator hypothesis-derived computational frame. Co-expression, GO, and KEGG enrichment analyses were performed to investigate the biological functions. Cox and LASSO regression analyses were performed to create a prognostic risk model based on the GIRlncRNA signature (GIRlncSig). The prediction efficiency of the model was evaluated by using correlation analyses with mutation, driver gene, immune microenvironment contexture, and therapeutic response. The prognostic performance of the model was evaluated by external datasets. A nomogram was established and validated in the testing set and TCGA dataset. Results: A total of 1446 GIRlncRNAs were selected from the screen, and the established GIRlncSig was used to classify patients into high- and low-risk groups. Enrichment analyses showed that GIRlncRNAs were mainly associated with nucleic acid metabolism and DNA damage repair pathways. Cox analyses further identified 19 GIRlncRNAs to construct a GIRlncSig-based risk score model. According to Cox regression and stratification analyses, 14 risk lncRNAs (AC023824.3, AC013287.1, AP000829.1, LINC01611, AC097451.1, AC025419.1, AC079949.2, LINC01600, AC004862.1, AC021594.1, MYRF-AS1, LINC02434, LINC02412, and LINC00337) and five protective lncRNAs (LINC01067, AC012645.1, AL512604.3, AC008278.2, and AC089998.1) were considered powerful predictors. Analyses of the model showed that these GIRlncRNAs were correlated with somatic mutation pattern, immune microenvironment infiltration, immunotherapeutic response, drug sensitivity, and survival of NSCLC patients. The GIRlncSig risk score model demonstrated good predictive performance (AUCs of ROC for 10-year survival was 0.69) and prognostic value in different NSCLC datasets. The nomogram comprising GIRlncSig and tumor stage exhibited improved robustness and feasibility for predicting NSCLC prognosis. Conclusion: The newly identified GIRlncRNAs are powerful biomarkers for clinical outcome and prognosis of NSCLC. Our study highlights that the GIRlncSig-based score model may be a useful tool for risk stratification and management of NSCLC patients, which deserves further evaluation in future prospective studies.
Collapse
Affiliation(s)
- Qiangzhe Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xicheng Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Sihe Zhang, , https://orcid.org/0000-0002-8923-1993
| |
Collapse
|
6
|
Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct Target Ther 2022; 7:93. [PMID: 35318309 PMCID: PMC8941077 DOI: 10.1038/s41392-022-00947-7] [Citation(s) in RCA: 496] [Impact Index Per Article: 248.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Antibody-drug conjugate (ADC) is typically composed of a monoclonal antibody (mAbs) covalently attached to a cytotoxic drug via a chemical linker. It combines both the advantages of highly specific targeting ability and highly potent killing effect to achieve accurate and efficient elimination of cancer cells, which has become one of the hotspots for the research and development of anticancer drugs. Since the first ADC, Mylotarg® (gemtuzumab ozogamicin), was approved in 2000 by the US Food and Drug Administration (FDA), there have been 14 ADCs received market approval so far worldwide. Moreover, over 100 ADC candidates have been investigated in clinical stages at present. This kind of new anti-cancer drugs, known as "biological missiles", is leading a new era of targeted cancer therapy. Herein, we conducted a review of the history and general mechanism of action of ADCs, and then briefly discussed the molecular aspects of key components of ADCs and the mechanisms by which these key factors influence the activities of ADCs. Moreover, we also reviewed the approved ADCs and other promising candidates in phase-3 clinical trials and discuss the current challenges and future perspectives for the development of next generations, which provide insights for the research and development of novel cancer therapeutics using ADCs.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, (Parkville Campus) 381 Royal Parade,, Parkville, VIC, 3052, Australia
- Faculty of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
7
|
Elwakeel E, Weigert A. Breast Cancer CAFs: Spectrum of Phenotypes and Promising Targeting Avenues. Int J Mol Sci 2021; 22:11636. [PMID: 34769066 PMCID: PMC8583860 DOI: 10.3390/ijms222111636] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
Activationof the tumor-associated stroma to support tumor growth is a common feature observed in different cancer entities. This principle is exemplified by cancer-associated fibroblasts (CAFs), which are educated by the tumor to shape its development across all stages. CAFs can alter the extracellular matrix (ECM) and secrete a variety of different molecules. In that manner they have the capability to affect activation, survival, proliferation, and migration of other stromal cells and cancer cell themselves. Alteration of the ECM, desmoplasia, is a common feature of breast cancer, indicating a prominent role for CAFs in shaping tumor development in the mammary gland. In this review, we summarize the multiple roles CAFs play in mammary carcinoma. We discuss experimental and clinical strategies to interfere with CAFs function in breast cancer. Moreover, we highlight the issues arising from CAFs heterogeneity and the need for further research to identify CAFs subpopulation(s) that can be targeted to improve breast cancer therapy.
Collapse
Affiliation(s)
- Eiman Elwakeel
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany;
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany;
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
8
|
Dieters-Castator D, Dantonio PM, Piaseczny M, Zhang G, Liu J, Kuljanin M, Sherman S, Jewer M, Quesnel K, Kang EY, Köbel M, Siegers GM, Leask A, Hess D, Lajoie G, Postovit LM. Embryonic protein NODAL regulates the breast tumor microenvironment by reprogramming cancer-derived secretomes. Neoplasia 2021; 23:375-390. [PMID: 33784590 PMCID: PMC8041663 DOI: 10.1016/j.neo.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an important mediator of breast cancer progression. Cancer-associated fibroblasts constitute a major component of the TME and may originate from tissue-associated fibroblasts or infiltrating mesenchymal stromal cells (MSCs). The mechanisms by which cancer cells activate fibroblasts and recruit MSCs to the TME are largely unknown, but likely include deposition of a pro-tumorigenic secretome. The secreted embryonic protein NODAL is clinically associated with breast cancer stage and promotes tumor growth, metastasis, and vascularization. Herein, we show that NODAL expression correlates with the presence of activated fibroblasts in human triple-negative breast cancers and that it directly induces Cancer-associated fibroblasts phenotypes. We further show that NODAL reprograms cancer cell secretomes by simultaneously altering levels of chemokines (e.g., CXCL1), cytokines (e.g., IL-6) and growth factors (e.g., PDGFRA), leading to alterations in MSC chemotaxis. We therefore demonstrate a hitherto unappreciated mechanism underlying the dynamic regulation of the TME.
Collapse
Affiliation(s)
| | - Paola M Dantonio
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Matt Piaseczny
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Guihua Zhang
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jiahui Liu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Miljan Kuljanin
- Robarts Research Institute, London, ON, Canada; Department of Biochemistry, Western University, London, ON, Canada
| | - Stephen Sherman
- Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Michael Jewer
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Katherine Quesnel
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Eun Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Andrew Leask
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - David Hess
- Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Gilles Lajoie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Lynne-Marie Postovit
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Murakami F, Tsuboi Y, Takahashi Y, Horimoto Y, Mogushi K, Ito T, Emi M, Matsubara D, Shibata T, Saito M, Murakami Y. Short somatic alterations at the site of copy number variation in breast cancer. Cancer Sci 2021; 112:444-453. [PMID: 32860329 PMCID: PMC7780029 DOI: 10.1111/cas.14630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Copy number variation (CNV) is a polymorphism in the human genome involving DNA fragments larger than 1 kb. Copy number variation sites provide hotspots of somatic alterations in cancers. Herein, we examined somatic alterations at sites of CNV in DNA from 20 invasive breast cancers using a Comparative Genomic Hybridization array specifically designed to detect the genome-wide CNV status of approximately 412 000 sites. Somatic copy number alterations (CNAs) were detected in 39.9% of the CNV probes examined. The most frequently altered regions were gains of 1q21-22 (90%), 8q21-24 (85%), 1q44 (85%), and 3q11 (85%) or losses of 16q22-24 (80%). Gene ontology analyses of genes within the CNA fragments revealed that cascades related to transcription and RNA metabolism correlated significantly with human epidermal growth factor receptor 2 positivity and menopausal status. Thirteen of 20 tumors showed CNAs in more than 35% of sites examined and a high prevalence of CNAs correlated significantly with estrogen receptor (ER) negativity, higher nuclear grade (NG), and higher Ki-67 labeling index. Finally, when CNA fragments were categorized according to their size, CNAs smaller than 10 kb correlated significantly with ER positivity and lower NG, whereas CNAs exceeding 10 Mb correlated with higher NG, ER negativity, and a higher Ki-67 labeling index. Most of these findings were confirmed or supported by quantitative PCR of representative DNA fragments in 72 additional breast cancers. These results suggest that most CNAs are caused by gain or loss of large chromosomal fragments and correlate with NG and several malignant features, whereas solitary CNAs of less than 10 kb could be involved in ER-positive breast carcinogenesis.
Collapse
Affiliation(s)
- Fumi Murakami
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
- Department of Breast OncologyJuntendo UniversityTokyoJapan
- JuntendoUniversity Graduate School of MedicineTokyoJapan
| | - Yumi Tsuboi
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yuka Takahashi
- Department of Breast OncologyJuntendo UniversityTokyoJapan
| | | | - Kaoru Mogushi
- JuntendoUniversity Graduate School of MedicineTokyoJapan
| | - Takeshi Ito
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Mitsuru Emi
- University of Hawaii Cancer CenterHonoluluHIUSA
| | - Daisuke Matsubara
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
- Department of PathologyJichiMedical UniversityShimotsukeJapan
| | - Tatsuhiro Shibata
- Laboratory of Molecular MedicineThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Mitsue Saito
- Department of Breast OncologyJuntendo UniversityTokyoJapan
| | - Yoshinori Murakami
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
10
|
Helal M, Mansour S, Khaled R, Bassam L. The role of automated breast ultrasound in the assessment of the local extent of breast cancer. Breast J 2020; 27:113-119. [PMID: 33296949 DOI: 10.1111/tbj.14132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/27/2022]
Abstract
Automated breast ultrasound (ABUS) is a non-invasive advanced ultrasound modality. The degree of extension of the cancer within the breast is very important to choose the appropriate kind of surgery/therapy. In the current work, the aim was to evaluate the role of the ABUS in the assessment of the local extent of the breast cancer before management. This is a prospective analysis that studied 562 female patients with proved breast cancers. Evaluation was in regard of the size, multiplicity, and the stromal invasion (ie, the presence of tumor emboli or tumor masses within the stroma of the breast tissue) around the tumor. Cases were subjected to automated breast ultrasound performed in the axial and coronal planes. ABUS showed high accuracy of assessment of the tumor multiplicity (82.2%) and the stromal involvement (93.5%). There was a statistical significance (P < .001) between the ABUS and the pathology regarding the measurement of the size of the index cancer. In conclusion, ABUS could be used for determination of the intramammary extend of the breast cancer. ABUS provided accurate assessment of the peritumor stromal involvement and multiplicity of the cancer which is required to choose the proper choice of surgery.
Collapse
Affiliation(s)
- Maha Helal
- Radiology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sahar Mansour
- Women's Imaging Unit, Radiology Department, Kasr El Ainy Hospital- Cairo University, Cairo, Egypt
| | - Rana Khaled
- Radiology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Lamia Bassam
- Women's Imaging Unit, Radiology Department, Kasr El Ainy Hospital- Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Katarkar A, Bottoni G, Clocchiatti A, Goruppi S, Bordignon P, Lazzaroni F, Gregnanin I, Ostano P, Neel V, Dotto GP. NOTCH1 gene amplification promotes expansion of Cancer Associated Fibroblast populations in human skin. Nat Commun 2020; 11:5126. [PMID: 33046701 PMCID: PMC7550609 DOI: 10.1038/s41467-020-18919-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) are a key component of the tumor microenvironment. Genomic alterations in these cells remain a point of contention. We report that CAFs from skin squamous cell carcinomas (SCCs) display chromosomal alterations, with heterogeneous NOTCH1 gene amplification and overexpression that also occur, to a lesser extent, in dermal fibroblasts of apparently unaffected skin. The fraction of the latter cells harboring NOTCH1 amplification is expanded by chronic UVA exposure, to which CAFs are resistant. The advantage conferred by NOTCH1 amplification and overexpression can be explained by NOTCH1 ability to block the DNA damage response (DDR) and ensuing growth arrest through suppression of ATM-FOXO3a association and downstream signaling cascade. In an orthotopic model of skin SCC, genetic or pharmacological inhibition of NOTCH1 activity suppresses cancer/stromal cells expansion. Here we show that NOTCH1 gene amplification and increased expression in CAFs are an attractive target for stroma-focused anti-cancer intervention.
Collapse
Affiliation(s)
- Atul Katarkar
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Giulia Bottoni
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA
| | - Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA
| | - Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA
| | - Pino Bordignon
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Francesca Lazzaroni
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Ilaria Gregnanin
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, 13900, Italy
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, 13900, Italy
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - G Paolo Dotto
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland. .,Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA. .,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA. .,International Cancer Prevention Institute, 1066, Epalinges, Switzerland.
| |
Collapse
|
12
|
CSL controls telomere maintenance and genome stability in human dermal fibroblasts. Nat Commun 2019; 10:3884. [PMID: 31467287 PMCID: PMC6715699 DOI: 10.1038/s41467-019-11785-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022] Open
Abstract
Genomic instability is a hallmark of cancer. Whether it also occurs in Cancer Associated Fibroblasts (CAFs) remains to be carefully investigated. Loss of CSL/RBP-Jκ, the effector of canonical NOTCH signaling with intrinsic transcription repressive function, causes conversion of dermal fibroblasts into CAFs. Here, we find that CSL down-modulation triggers DNA damage, telomere loss and chromosome end fusions that also occur in skin Squamous Cell Carcinoma (SCC)-associated CAFs, in which CSL is decreased. Separately from its role in transcription, we show that CSL is part of a multiprotein telomere protective complex, binding directly and with high affinity to telomeric DNA as well as to UPF1 and Ku70/Ku80 proteins and being required for their telomere association. Taken together, the findings point to a central role of CSL in telomere homeostasis with important implications for genomic instability of cancer stromal cells and beyond. Conversion of dermal fibroblasts into Cancer Associated Fibroblasts (CAFs) can play an important role in keratinocyte tumour development. Here the authors reveal that CSL plays a role in maintenance of telomeres and genomic integrity in both dermal fibroblasts and CAFs.
Collapse
|
13
|
Helal MH, Mansour SM, Salaleldin LA, Alkalaawy BM, Salem DS, Mokhtar NM. The impact of contrast-enhanced spectral mammogram (CESM) and three-dimensional breast ultrasound (3DUS) on the characterization of the disease extend in cancer patients. Br J Radiol 2018; 91:20170977. [PMID: 29641226 DOI: 10.1259/bjr.20170977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The main importance of imaging breast cancer is to guide conservative surgeries. In this study, we evaluated the role of contrast-enhanced spectral mammogram (CESM) in correlation with three-dimensional (3D) breast ultrasound in characterizing the extension of the intramammary cancer in view of the: (i) the size of the main tumor, (ii) the multiplicity of the breast cancer, and (iii) the peri-tumoral stromal involvement (i.e. free or intraductal extension of the cancer). METHODS The study is a prospective analysis that included 300 breast masses proved to be malignant. The masses were evaluated for their size, multiplicity and surrounding stromal involvement. Contrast-based mammography performed with low (22-33 kVp) and high (44-49 kVp) energy exposures that were taken after i.v. injection of contrast agent and followed by bilateral 3D breast ultrasound. Operative data were the gold standard reference. RESULTS There was no significant difference between the sizes of the included cancers as measured by CESM and 3D ultrasound and that measured at the pathological analysis. CESM showed higher accuracy (32.7%, n = 98) than 3D ultrasound (24.7%, n = 74) in the size agreement within 5% range. CESM was the most accurate modality (94%, n = 282) in detecting tumor multiplicity, followed by traditional sonomammogram (88%, n = 264), then 3D breast ultrasound (84%, n = 252). Intraductal extension of the breast cancer was best evaluated by the 3D ultrasound with an accuracy value of 98% (n = 294) compared to only 60% (n = 180) by CESM. CONCLUSION CESM is a recommended investigation in breast cancer to increase the accuracy of size measurement and the detection of multiple tumors. The addition of 3D ultrasound can enhance the detection of intraductal extension. Advances in knowledge: Choice of conservative breast surgery vs mastectomy is still a debate. We used an advanced, contrast-based, application of the mammogram: CESM and a non-invasive 3D breast ultrasound in the assessment of the local extension of the breast cancer regarding size, perifocal stromal infiltration and multiplicity to guide the selection of proper management in proved cases of breast cancer.
Collapse
Affiliation(s)
- Maha Hussien Helal
- 1 Department of Radiology, Women's Imaging Unit, National Cancer Institute, Cairo University , Cairo , Egypt
| | - Sahar Mahmoud Mansour
- 2 Department of Radiology, Women's Imaging Unit, Kasr-El Ainy Hospital, Cairo University , Cairo , Egypt
| | - Lamia Adel Salaleldin
- 2 Department of Radiology, Women's Imaging Unit, Kasr-El Ainy Hospital, Cairo University , Cairo , Egypt
| | - Basma Mohamed Alkalaawy
- 2 Department of Radiology, Women's Imaging Unit, Kasr-El Ainy Hospital, Cairo University , Cairo , Egypt
| | - Dorria Saleh Salem
- 2 Department of Radiology, Women's Imaging Unit, Kasr-El Ainy Hospital, Cairo University , Cairo , Egypt
| | | |
Collapse
|
14
|
Stromal cells in breast cancer as a potential therapeutic target. Oncotarget 2018; 9:23761-23779. [PMID: 29805773 PMCID: PMC5955086 DOI: 10.18632/oncotarget.25245] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.
Collapse
|
15
|
Lamprecht S, Sigal-Batikoff I, Shany S, Abu-Freha N, Ling E, Delinasios GJ, Moyal-Atias K, Delinasios JG, Fich A. Teaming Up for Trouble: Cancer Cells, Transforming Growth Factor-β1 Signaling and the Epigenetic Corruption of Stromal Naïve Fibroblasts. Cancers (Basel) 2018; 10:cancers10030061. [PMID: 29495500 PMCID: PMC5876636 DOI: 10.3390/cancers10030061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/28/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-β1 (TGFβ-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFβ-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs—the most abundant cell population of the tumor microenvironment (TME)—as target cells.
Collapse
Affiliation(s)
- Sergio Lamprecht
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Ina Sigal-Batikoff
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Shraga Shany
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
| | - Naim Abu-Freha
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Eduard Ling
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Pediatrics Department B, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - George J Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Keren Moyal-Atias
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - John G Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Alexander Fich
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| |
Collapse
|
16
|
Du H, Che G. Genetic alterations and epigenetic alterations of cancer-associated fibroblasts. Oncol Lett 2016; 13:3-12. [PMID: 28123515 PMCID: PMC5245074 DOI: 10.3892/ol.2016.5451] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/12/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are one major type of component identified in the tumor microenvironment. Studies have focused on the genetic and epigenetic status of CAFs, since they are critical in tumor progression and differ phenotypically and functionally from normal fibroblasts. The present review summarizes the recent achievements in understanding the gene profiles of CAFs and pays special attention to their possible epigenetic alterations. A total of 7 possible genetic alterations and epigenetic changes in CAFs are discussed, including gene differential expression, karyotype analysis, gene copy number variation, loss of heterozygosis, allelic imbalance, microsatellite instability, post-transcriptional control and DNA methylation. These genetic and epigenetic characteristics are hypothesized to provide a deep understanding of CAFs and a perspective on their clinical significance.
Collapse
Affiliation(s)
- Heng Du
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Bianchi-Frias D, Basom R, Delrow JJ, Coleman IM, Dakhova O, Qu X, Fang M, Franco OE, Ericson NG, Bielas JH, Hayward SW, True L, Morrissey C, Brown L, Bhowmick NA, Rowley D, Ittmann M, Nelson PS. Cells Comprising the Prostate Cancer Microenvironment Lack Recurrent Clonal Somatic Genomic Aberrations. Mol Cancer Res 2016; 14:374-84. [PMID: 26753621 DOI: 10.1158/1541-7786.mcr-15-0330] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/15/2015] [Indexed: 01/02/2023]
Abstract
UNLABELLED Prostate cancer-associated stroma (CAS) plays an active role in malignant transformation, tumor progression, and metastasis. Molecular analyses of CAS have demonstrated significant changes in gene expression; however, conflicting evidence exists on whether genomic alterations in benign cells comprising the tumor microenvironment (TME) underlie gene expression changes and oncogenic phenotypes. This study evaluates the nuclear and mitochondrial DNA integrity of prostate carcinoma cells, CAS, matched benign epithelium and benign epithelium-associated stroma by whole-genome copy-number analyses, targeted sequencing of TP53, and FISH. Array comparative genomic hybridization (aCGH) of CAS revealed a copy-neutral diploid genome with only rare and small somatic copy-number aberrations (SCNA). In contrast, several expected recurrent SCNAs were evident in the adjacent prostate carcinoma cells, including gains at 3q, 7p, and 8q, and losses at 8p and 10q. No somatic TP53 mutations were observed in CAS. Mitochondrial DNA (mtDNA) extracted from carcinoma cells and stroma identified 23 somatic mtDNA mutations in neoplastic epithelial cells, but only one mutation in stroma. Finally, genomic analyses identified no SCNAs, LOH, or copy-neutral LOH in cultured cancer-associated fibroblasts, which are known to promote prostate cancer progression in vivo IMPLICATIONS The gene expression changes observed in prostate cancer-adjacent stroma and the attendant contribution of the stroma to the development and progression of prostate cancer are not due to frequent or recurrent genomic alterations in the TME.
Collapse
Affiliation(s)
- Daniella Bianchi-Frias
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jeffrey J Delrow
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Olga Dakhova
- Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Xiaoyu Qu
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Min Fang
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Omar E Franco
- Departments of Urologic Surgery and Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Nolan G Ericson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jason H Bielas
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Simon W Hayward
- Departments of Urologic Surgery and Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Lawrence True
- Department of Pathology, University of Washington, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Lisha Brown
- Department of Urology, University of Washington, Seattle, Washington
| | - Neil A Bhowmick
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - David Rowley
- Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Pathology, University of Washington, Seattle, Washington. Department of Urology, University of Washington, Seattle, Washington. Department of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
18
|
Ronowicz A, Janaszak-Jasiecka A, Skokowski J, Madanecki P, Bartoszewski R, Bałut M, Seroczyńska B, Kochan K, Bogdan A, Butkus M, Pęksa R, Ratajska M, Kuźniacka A, Wasąg B, Gucwa M, Krzyżanowski M, Jaśkiewicz J, Jankowski Z, Forsberg L, Ochocka JR, Limon J, Crowley MR, Buckley PG, Messiaen L, Dumanski JP, Piotrowski A. Concurrent DNA Copy-Number Alterations and Mutations in Genes Related to Maintenance of Genome Stability in Uninvolved Mammary Glandular Tissue from Breast Cancer Patients. Hum Mutat 2015. [PMID: 26219265 DOI: 10.1002/humu.22845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Somatic mosaicism for DNA copy-number alterations (SMC-CNAs) is defined as gain or loss of chromosomal segments in somatic cells within a single organism. As cells harboring SMC-CNAs can undergo clonal expansion, it has been proposed that SMC-CNAs may contribute to the predisposition of these cells to genetic disease including cancer. Herein, the gross genomic alterations (>500 kbp) were characterized in uninvolved mammary glandular tissue from 59 breast cancer patients and matched samples of primary tumors and lymph node metastases. Array-based comparative genomic hybridization showed 10% (6/59) of patients harbored one to 359 large SMC-CNAs (mean: 1,328 kbp; median: 961 kbp) in a substantial portion of glandular tissue cells, distal from the primary tumor site. SMC-CNAs were partially recurrent in tumors, albeit with considerable contribution of stochastic SMC-CNAs indicating genomic destabilization. Targeted resequencing of 301 known predisposition and somatic driver loci revealed mutations and rare variants in genes related to maintenance of genomic integrity: BRCA1 (p.Gln1756Profs*74, p.Arg504Cys), BRCA2 (p.Asn3124Ile), NCOR1 (p.Pro1570Glnfs*45), PALB2 (p.Ser500Pro), and TP53 (p.Arg306*). Co-occurrence of gross SMC-CNAs along with point mutations or rare variants in genes responsible for safeguarding genomic integrity highlights the temporal and spatial neoplastic potential of uninvolved glandular tissue in breast cancer patients.
Collapse
Affiliation(s)
- Anna Ronowicz
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Jarosław Skokowski
- The Central Bank of Tissues and Genetic Specimens, Medical University of Gdansk, Gdansk, Poland.,Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Madanecki
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Magdalena Bałut
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Seroczyńska
- The Central Bank of Tissues and Genetic Specimens, Medical University of Gdansk, Gdansk, Poland
| | - Kinga Kochan
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Adam Bogdan
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Ratajska
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Alina Kuźniacka
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Wasąg
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gucwa
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Krzyżanowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Jaśkiewicz
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Lars Forsberg
- Department of Immunology, Genetics and Pathology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - J Renata Ochocka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Michael R Crowley
- Heflin Center for Genomic Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jan P Dumanski
- Department of Immunology, Genetics and Pathology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
19
|
Ellsworth RE, Toro AL, Blackburn HL, Decewicz A, Deyarmin B, Mamula KA, Costantino NS, Hooke JA, Shriver CD, Ellsworth DL. Molecular Heterogeneity in Primary Breast Carcinomas and Axillary Lymph Node Metastases Assessed by Genomic Fingerprinting Analysis. CANCER GROWTH AND METASTASIS 2015; 8:15-24. [PMID: 26279627 PMCID: PMC4511091 DOI: 10.4137/cgm.s29490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/06/2023]
Abstract
Molecular heterogeneity within primary breast carcinomas and among axillary lymph node (LN) metastases may impact diagnosis and confound treatment. In this study, we used short tandem repeated sequences to assess genomic heterogeneity and to determine hereditary relationships among primary tumor areas and regional metastases from 30 breast cancer patients. We found that primary carcinomas were genetically heterogeneous and sampling multiple areas was necessary to adequately assess genomic variability. LN metastases appeared to originate at different time periods during disease progression from different sites of the primary tumor and the extent of genomic divergence among regional metastases was associated with a less favorable patient outcome (P = 0.009). In conclusion, metastasis is a complex process influenced by primary tumor heterogeneity and variability in the timing of dissemination. Genomic variation in primary breast tumors and regional metastases may negatively impact clinical diagnostics and contribute to therapeutic resistance.
Collapse
Affiliation(s)
| | - Allyson L Toro
- Clinical Breast Care Project, Windber Research Institute, Windber, PA, USA
| | | | - Alisha Decewicz
- Clinical Breast Care Project, Windber Research Institute, Windber, PA, USA
| | - Brenda Deyarmin
- Clinical Breast Care Project, Windber Research Institute, Windber, PA, USA
| | - Kimberly A Mamula
- Clinical Breast Care Project, Windber Research Institute, Windber, PA, USA
| | | | - Jeffrey A Hooke
- Clinical Breast Care Project, Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Craig D Shriver
- Clinical Breast Care Project, Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | |
Collapse
|