1
|
Wu J, Song L, Lu M, Gao Q, Xu S, Zhou P, Ma T. The multifaceted functions of DNA-PKcs: implications for the therapy of human diseases. MedComm (Beijing) 2024; 5:e613. [PMID: 38898995 PMCID: PMC11185949 DOI: 10.1002/mco2.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Liwei Song
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Mingjun Lu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Qing Gao
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Shaofa Xu
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Teng Ma
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
2
|
Mohammedali A, Biernacka K, Barker RM, Holly JMP, Perks CM. The Role of Insulin-like Growth Factor Binding Protein (IGFBP)-2 in DNA Repair and Chemoresistance in Breast Cancer Cells. Cancers (Basel) 2024; 16:2113. [PMID: 38893232 PMCID: PMC11171178 DOI: 10.3390/cancers16112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The role if insulin-like growth factor binding protein-2 (IGFBP-2) in mediating chemoresistance in breast cancer cells has been demonstrated, but the mechanism of action is unclear. This study aimed to further investigate the role of IGFBP-2 in the DNA damage response induced by etoposide in MCF-7, T47D (ER+ve), and MDA-MB-231 (ER-ve) breast cancer cell lines. In the presence or absence of etoposide, IGFBP-2 was silenced using siRNA in the ER-positive cell lines, or exogenous IGFBP-2 was added to the ER-negative MDA-MB-231 cells. Cell number and death were assessed using trypan blue dye exclusion assay, changes in abundance of proteins were monitored using Western blotting of whole cell lysates, and localization and abundance were determined using immunofluorescence and cell fractionation. Results from ER-positive cell lines demonstrated that upon exposure to etoposide, loss of IGFBP-2 enhanced cell death, and this was associated with a reduction in P-DNA-PKcs and an increase in γH2AX. Conversely, with ER-negative cells, the addition of IGFBP-2 in the presence of etoposide resulted in cell survival, an increase in P-DNA-PKcs, and a reduction in γH2AX. In summary, IGFBP-2 is a survival factor for breast cancer cells that is associated with enhancement of the DNA repair mechanism.
Collapse
Affiliation(s)
- Alaa Mohammedali
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Kalina Biernacka
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Rachel M. Barker
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Jeff M. P. Holly
- Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK;
| | - Claire M. Perks
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| |
Collapse
|
3
|
Haga Y, Sakamoto Y, Kajiya K, Kawai H, Oka M, Motoi N, Shirasawa M, Yotsukura M, Watanabe SI, Arai M, Zenkoh J, Shiraishi K, Seki M, Kanai A, Shiraishi Y, Yatabe Y, Matsubara D, Suzuki Y, Noguchi M, Kohno T, Suzuki A. Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma. Nat Commun 2023; 14:8375. [PMID: 38102134 PMCID: PMC10724178 DOI: 10.1038/s41467-023-43732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The mechanism underlying the development of tumors, particularly at early stages, still remains mostly elusive. Here, we report whole-genome long and short read sequencing analysis of 76 lung cancers, focusing on very early-stage lung adenocarcinomas such as adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma. The obtained data is further integrated with bulk and spatial transcriptomic data and epigenomic data. These analyses reveal key events in lung carcinogenesis. Minimal somatic mutations in pivotal driver mutations and essential proliferative factors are the only detectable somatic mutations in the very early-stage of AIS. These initial events are followed by copy number changes and global DNA hypomethylation. Particularly, drastic changes are initiated at the later AIS stage, i.e., in Noguchi type B tumors, wherein cancer cells are exposed to the surrounding microenvironment. This study sheds light on the pathogenesis of lung adenocarcinoma from integrated pathological and molecular viewpoints.
Collapse
Affiliation(s)
- Yasuhiko Haga
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yoshitaka Sakamoto
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Keiko Kajiya
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Hitomi Kawai
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Miho Oka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Ono Pharmaceutical Co., Ltd., Ibaraki, Japan
| | - Noriko Motoi
- Department of Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Pathology, Saitama Cancer Center, 780 Komuro, Ina, Kita-Adachi-gun, Saitama, 362-0806, Japan
| | - Masayuki Shirasawa
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masaya Yotsukura
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Miyuki Arai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Junko Zenkoh
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yasushi Yatabe
- Department of Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| | - Masayuki Noguchi
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Clinical Cancer Research Division, Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
4
|
Murray HC, Miller K, Brzozowski JS, Kahl RGS, Smith ND, Humphrey SJ, Dun MD, Verrills NM. Synergistic Targeting of DNA-PK and KIT Signaling Pathways in KIT Mutant Acute Myeloid Leukemia. Mol Cell Proteomics 2023; 22:100503. [PMID: 36682716 PMCID: PMC9986649 DOI: 10.1016/j.mcpro.2023.100503] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK (DNA-dependent protein kinase), is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 mouse myeloid progenitor cell lines transduced with oncogenic mutant KIT (V560G and D816V) or vector control. Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK in the T2599/T2605/S2608/S2610 cluster in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared with empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Global phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib and M3814 single-agent treatments inhibited extracellular signal-regulated kinase and AKT (RAC-alpha serine/threonine-protein kinase)/MTOR (serine/threonine-protein kinase mTOR) activity, with greater inhibition of both pathways when used in combination. Combined dasatinib and M3814 treatment also synergistically inhibited phosphorylation of the transcriptional regulators MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair and demonstrates that DNA-PK is a promising therapeutic target for KIT mutant cancers.
Collapse
Affiliation(s)
- Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Kasey Miller
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Joshua S Brzozowski
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Richard G S Kahl
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, Advanced Mass Spectrometry Unit, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, and The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia.
| |
Collapse
|
5
|
Mendoza-Munoz PL, Gavande NS, VanderVere-Carozza PS, Pawelczak K, Dynlacht J, Garrett J, Turchi J. Ku-DNA binding inhibitors modulate the DNA damage response in response to DNA double-strand breaks. NAR Cancer 2023; 5:zcad003. [PMID: 36755959 PMCID: PMC9900423 DOI: 10.1093/narcan/zcad003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) plays a critical role in the DNA damage response (DDR) and non-homologous end joining (NHEJ) double-strand break (DSB) repair pathways. Consequently, DNA-PK is a validated therapeutic target for cancer treatment in certain DNA repair-deficient cancers and in combination with ionizing radiation (IR). We have previously reported the discovery and development of a novel class of DNA-PK inhibitors with a unique mechanism of action, blocking the Ku 70/80 heterodimer interaction with DNA. These Ku-DNA binding inhibitors (Ku-DBi's) display nanomolar activity in vitro, inhibit cellular DNA-PK, NHEJ-catalyzed DSB repair and sensitize non-small cell lung cancer (NSCLC) cells to DSB-inducing agents. In this study, we demonstrate that chemical inhibition of the Ku-DNA interaction potentiates the cellular effects of bleomycin and IR via p53 phosphorylation through the activation of the ATM pathway. This response is concomitant with a reduction of DNA-PK catalytic subunit (DNA-PKcs) autophosphorylation at S2056 and a time-dependent increase in H2AX phosphorylation at S139. These results are consistent with Ku-DBi's abrogating DNA-PKcs autophosphorylation to impact DSB repair and DDR signaling through a novel mechanism of action, and thus represent a promising anticancer therapeutic strategy in combination with DNA DSB-inducing agents.
Collapse
Affiliation(s)
- Pamela L Mendoza-Munoz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201-2417, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201-2417, USA
| | | | | | - Joseph R Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joy E Garrett
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- NERx Biosciences. Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Yang L, Lu P, Yang X, Li K, Chen X, Zhou Y, Qu S. Downregulation of annexin A3 promotes ionizing radiation-induced EGFR activation and nuclear translocation and confers radioresistance in nasopharyngeal carcinoma. Exp Cell Res 2022; 418:113292. [PMID: 35850266 DOI: 10.1016/j.yexcr.2022.113292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
Radioresistance currently poses a significant challenge to successful disease control of nasopharyngeal carcinoma (NPC). We previously uncovered that annexin A3 (ANXA3), a calcium-dependent phospholipid binding protein, is underexpressed in radioresistant NPC cells and mouse xenografts. This study aims to further unravel the mechanistic basis underlying ANXA3-mediated radioresistance in NPC. We show that either innate ANXA3 downregulation or short hairpin RNA(shRNA)-based knockdown of ANXA3 confers resistance to ionizing radiation (IR) in NPC both in vitro and in mouse xenograft models in vivo, whereas radiosensitization was observed when ANXA3 was ectopically expressed. Mechanistically, ANXA3 knockdown dramatically enhances IR-induced epidermal growth factor receptor (EGFR) phosphorylation and nuclear translocation, leading to increased post-IR phosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) concomitant with markedly accelerated DNA DSB repair. In addition, pretreatment with cetuximab efficiently abrogated the radioresistant phenotype of ANXA3-low cells as well as the ANXA3 knockdown-induced post-IR EGFR nuclear accumulation, suggesting that EGFR is an essential mediator for ANXA3 depletion-mediated radioprotection in NPC. Collectively, this work reveals for the first time a critical role of ANXA3 in radiation survival and DNA repair mechanism of NPC and provides mechanistic evidence to support ANXA3 as a potential therapeutic target to improve radiocurability for NPC.
Collapse
Affiliation(s)
- Liu Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Xiaohui Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Kaiguo Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Xuxia Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Yufei Zhou
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China; Key Laboratory of High-Incidence Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Autonomous Region, China; Guangxi Clinical Medicine Research Center of Nasopharyngeal Carcinoma, Nanning, 530021, Guangxi Autonomous Region, China.
| |
Collapse
|
7
|
Ansari SMR, Hijazi FS, Souchelnytskyi S. Targeted and systemic insights into the crosstalk between DNA-dependent protein kinase catalytic subunit and receptors of estrogen, progesterone and epidermal growth factor in the context of cancer. Mol Biol Rep 2021; 49:587-594. [PMID: 34731368 DOI: 10.1007/s11033-021-06797-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/01/2021] [Indexed: 01/17/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has emerged as a regulator of carcinogenesis. Increased expression of DNA-PKcs correlates with metastatic cancers. Here we review recently reported crosstalk of DNA-PKcs with estrogen (ER), progesterone (PR) and epidermal growth factor (EGFR) receptors. The reports show an extensive network of functional and direct interactions. Targeted studies focused on specific molecular mechanisms, and a systems biology network analysis shows unbiasedly engagement of various cellular functions. Feedforward regulation between expression and activities of DNA-PKcs and ER, DNA-PKcs-dependent phosphorylation of PR and an impact on PR-dependent transcription, and DNA-PKcs-promoted EGFR-dependent aggressiveness and metastases are examples of the results of targeted studies. Systems biology approach extracted many more genes and proteins engaged by DNA-PKcs in interaction with ER, PR, and EGFR. Examples are such regulators and predictors of breast tumorigenesis as BRCA1, TP53, and 18 genes of the MammaPrint signature. Reviewed here data suggest that the diagnostic value of DNA-PKcs in the context of ER, PR and EGFR signaling is defined by a network signature rather than by single markers. This review summarizes mechanisms of DNA-PKcs interaction with ER, PR, and EGFR, highlights tumor suppressors and oncogenes engaged by DNA-PKcs, and emphasizes the importance of diagnostic network-based signatures.
Collapse
Affiliation(s)
| | | | - Serhiy Souchelnytskyi
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar. .,Oranta CancerDiagnostics AB, 75263, Uppsala, Sweden. .,Lviv State University, Lviv, 79010, Ukraine. .,Bukovinian State Medical University, Chernivtsi, 58000, Ukraine.
| |
Collapse
|
8
|
Fan XJ, Wang YL, Zhao WW, Bai SM, Ma Y, Yin XK, Feng LL, Feng WX, Wang YN, Liu Q, Hung MC, Wan XB. NONO phase separation enhances DNA damage repair by accelerating nuclear EGFR-induced DNA-PK activation. Am J Cancer Res 2021; 11:2838-2852. [PMID: 34249431 PMCID: PMC8263645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/25/2021] [Indexed: 06/13/2023] Open
Abstract
Radioresistance is one of the main causes of cancer treatment failure, which leads to relapse and inferior survival outcome of cancer patients. Liquid-liquid phase separation (LLPS) of proteins is known to be involved in various biological processes, whereas its role in the regulation of radiosensitivity remains largely unknown. In this study, we characterized NONO, an RNA/DNA binding protein with LLPS capacity, as an essential regulator of tumor radioresistance. In vitro assay showed that NONO involved in DNA repair via non-homologous end joining (NHEJ) manner. NONO knockout significantly reduced DNA damage repair and sensitized tumor cells to irradiation in vitro and in vivo. NONO overexpression was correlated with an inferior survival outcome in cancer patients. Mechanically, NONO was associated with nuclear EGFR (nEGFR). Both irradiation and EGF treatment induced nEGFR accumulation, thereby increased the association between NONO and nEGFR. However, NONO was not a substrate of EGFR kinase. Furthermore, NONO promoted DNA damage-induced DNA-PK phosphorylation at T2609 by enhancing the interaction between EGFR and DNA-PK. Importantly, NONO protein formed high concentration LLPS droplets in vitro, and recruited EGFR and DNA-PK. Disruption of NONO droplets with LLPS inhibitor significantly reduced the interaction between EGFR and DNA-PK, and suppressed DNA damage-induced phosphorylation of T2609-DNA-PK. Taken together, LLPS of NONO recruits nuclear EGFR and DNA-PK and enhances their interaction, further increases DNA damage-activated pT2609-DNA-PK and promotes NHEJ-mediated DNA repair, finally leads to tumor radioresistance. NONO phase separation-mediated radioresistance may serve as a novel molecular target to sensitize tumor cell to radiotherapy.
Collapse
Affiliation(s)
- Xin-Juan Fan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Yun-Long Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Wan-Wen Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Shao-Mei Bai
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Yan Ma
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Xin-Ke Yin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Li-Li Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Wei-Xing Feng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian 116044, Liaoning, P. R. China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen UniversityGuangzhou 510060, Guangdong, P. R. China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
- Graduate Institute of Biomedical Sciences and Research Centers for Cancer Biology and Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 413, Taiwan
| | - Xiang-Bo Wan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
- Department of Medical Engineering, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| |
Collapse
|
9
|
Yue X, Bai C, Xie D, Ma T, Zhou PK. DNA-PKcs: A Multi-Faceted Player in DNA Damage Response. Front Genet 2020; 11:607428. [PMID: 33424929 PMCID: PMC7786053 DOI: 10.3389/fgene.2020.607428] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a member of the phosphatidylinositol 3-kinase related kinase family, which can phosphorylate more than 700 substrates. As the core enzyme, DNA-PKcs forms the active DNA-PK holoenzyme with the Ku80/Ku70 heterodimer to play crucial roles in cellular DNA damage response (DDR). Once DNA double strand breaks (DSBs) occur in the cells, DNA-PKcs is promptly recruited into damage sites and activated. DNA-PKcs is auto-phosphorylated and phosphorylated by Ataxia-Telangiectasia Mutated at multiple sites, and phosphorylates other targets, participating in a series of DDR and repair processes, which determine the cells' fates: DSBs NHEJ repair and pathway choice, replication stress response, cell cycle checkpoints, telomeres length maintenance, senescence, autophagy, etc. Due to the special and multi-faceted roles of DNA-PKcs in the cellular responses to DNA damage, it is important to precisely regulate the formation and dynamic of its functional complex and activities for guarding genomic stability. On the other hand, targeting DNA-PKcs has been considered as a promising strategy of exploring novel radiosensitizers and killing agents of cancer cells. Combining DNA-PKcs inhibitors with radiotherapy can effectively enhance the efficacy of radiotherapy, offering more possibilities for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqiao Yue
- School of Public Health, University of South China, Hengyang, China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
10
|
Beyond DNA Repair: DNA-PKcs in Tumor Metastasis, Metabolism and Immunity. Cancers (Basel) 2020; 12:cancers12113389. [PMID: 33207636 PMCID: PMC7698146 DOI: 10.3390/cancers12113389] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key component of the DNA-PK complex that has a well-characterized function in the non-homologous end-joining repair of DNA double-strand breaks. Since its identification, a large body of evidence has demonstrated that DNA-PKcs is frequently overexpressed in cancer, plays a critical role in tumor development and progression, and is associated with poor prognosis of cancer patients. Intriguingly, recent studies have suggested novel functions beyond the canonical role of DNA-PKcs, which has transformed the paradigm of DNA-PKcs in tumorigenesis and has reinvigorated the interest to target DNA-PKcs for cancer treatment. In this review, we update recent advances in DNA-PKcs, in particular the emerging roles in tumor metastasis, metabolic dysregulation, and immune escape. We further discuss the possible molecular basis that underpins the pleiotropism of DNA-PKcs in cancer. Finally, we outline the biomarkers that may predict the therapeutic response to DNA-PKcs inhibitor therapy. Understanding the functional repertoire of DNA-PKcs will provide mechanistic insights of DNA-PKcs in malignancy and, more importantly, may revolutionize the design and utility of DNA-PKcs-based precision cancer therapy.
Collapse
|
11
|
DNA-PK in human malignant disorders: Mechanisms and implications for pharmacological interventions. Pharmacol Ther 2020; 215:107617. [PMID: 32610116 DOI: 10.1016/j.pharmthera.2020.107617] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
The DNA-PK holoenzyme is a fundamental element of the DNA damage response machinery (DDR), which is responsible for cellular genomic stability. Consequently, and predictably, over the last decades since its identification and characterization, numerous pre-clinical and clinical studies reported observations correlating aberrant DNA-PK status and activity with cancer onset, progression and responses to therapeutic modalities. Notably, various studies have established in recent years the role of DNA-PK outside the DDR network, corroborating its role as a pleiotropic complex involved in transcriptional programs that operate biologic processes as epithelial to mesenchymal transition (EMT), hypoxia, metabolism, nuclear receptors signaling and inflammatory responses. In particular tumor entities as prostate cancer, immense research efforts assisted mapping and describing the overall signaling networks regulated by DNA-PK that control metastasis and tumor progression. Correspondingly, DNA-PK emerges as an obvious therapeutic target in cancer and data pertaining to various pharmacological approaches have been published, largely in context of combination with DNA-damaging agents (DDAs) that act by inflicting DNA double strand breaks (DSBs). Currently, new generation inhibitors are tested in clinical trials. Several excellent reviews have been published in recent years covering the biology of DNA-PK and its role in cancer. In the current article we are aiming to systematically describe the main findings on DNA-PK signaling in major cancer types, focusing on both preclinical and clinical reports and present a detailed current status of the DNA-PK inhibitors repertoire.
Collapse
|
12
|
Zhao L, Cai X, Chen D, Ye X, Gao M, Lu L, Su H, Su M, Hou M, Xie C. Therapeutic effect of whole brain radiotherapy on advanced NSCLC between EGFR TKI-naïve and TKI-resistant. Radiat Oncol 2019; 15:3. [PMID: 31892337 PMCID: PMC6938625 DOI: 10.1186/s13014-019-1454-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background The development of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has dramatically improved the prognosis of patients with EGFR-mutant non-small-cell lung cancer (NSCLC). The purpose of this study is to investigate the clinical outcome with or without EGFR-TKI resistance before WBRT and the sequence between EGFT-TKIs and whole brain radiotherapy (WBRT) of EGFR-mutant NSCLC patients who developed multiple brain metastases (BMs). Patients and methods Three hundred forty-four EGFR-mutant NSCLC patients with multiple BMs were reviewed. Enrolled patients were divided into TKI-naïve group and TKI-resistant group. The intracranial progression-free survival (PFS) and overall survival (OS) were analyzed via the Kaplan-Meier method. Results For patients with multiple BMs treated by WBRT, the median intracranial PFS and OS were longer in the TKI-naïve group than those in the TKI-resistant group, but there were no statistically significant between two groups (Intracranial PFS: 7.7 vs. 5.4 months, p = 0.052; OS: 11.2 vs. 9.2 months, p = 0.106). For patients with Lung-molGPA 0–2, no significant differences in median intracranial PFS (6.2 vs. 5.2 months, p = 0.123) and OS (7.8 vs. 6.7 months, p = 0.514) between TKI-naïve and TKI-resistant groups. For patients with Lung-molGPA 2.5–4, intracranial PFS: 12.8 vs. 10.1 months; OS: 23.3 vs. 15.3 months. Conclusions Our study found that there were no difference in intracranial PFS and OS in all patients between the two groups of TKI-naïve and TKI-resistant. But for patients in subgroup of Lung-molGPA 2.5–4, there were a better intracranial PFS and OS in TKI-naïve group.
Collapse
Affiliation(s)
- Lihao Zhao
- Department of Radiation and Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China
| | - Xiaona Cai
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Didi Chen
- Department of Radiation and Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China
| | - Xuxue Ye
- Department of Radiation and Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China
| | - Mengdan Gao
- Department of Radiation and Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China
| | - Lihuai Lu
- Department of Radiation and Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China
| | - Huafang Su
- Department of Radiation and Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China
| | - Meng Su
- Department of Radiation and Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China
| | - Meng Hou
- Department of Radiation and Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China
| | - Congying Xie
- Department of Radiation and Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
13
|
El Bezawy R, Tinelli S, Tortoreto M, Doldi V, Zuco V, Folini M, Stucchi C, Rancati T, Valdagni R, Gandellini P, Zaffaroni N. miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCε and ZEB1 inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:51. [PMID: 30717752 PMCID: PMC6360656 DOI: 10.1186/s13046-019-1060-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/27/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Radiotherapy is one of the main treatment options for non-metastatic prostate cancer (PCa). Although treatment technical optimization has greatly improved local tumor control, a considerable fraction of patients still experience relapse due to the development of resistance. Radioresistance is a complex and still poorly understood phenomenon involving the deregulation of a variety of signaling pathways as a consequence of several genetic and epigenetic abnormalities. In this context, cumulative evidence supports a functional role of microRNAs in affecting radioresistance, suggesting the modulation of their expression as a novel radiosensitizing approach. Here, we investigated for the first time the ability of miR-205 to enhance the radiation response of PCa models. METHODS miR-205 reconstitution by a miRNA mimic in PCa cell lines (DU145 and PC-3) was used to elucidate miR-205 biological role. Radiation response in miRNA-reconstituted and control cells was assessed by clonogenic assay, immunofluorescence-based detection of nuclear γ-H2AX foci and comet assay. RNAi was used to silence the miRNA targets PKCε or ZEB1. In addition, target-protection experiments were carried out using a custom oligonucleotide designed to physically disrupt the pairing between the miR-205 and PKCε. For in vivo experiments, xenografts generated in SCID mice by implanting DU145 cells stably expressing miR-205 were exposed to 5-Gy single dose irradiation using an image-guided animal micro-irradiator. RESULTS miR-205 reconstitution was able to significantly enhance the radiation response of prostate cancer cell lines and xenografts through the impairment of radiation-induced DNA damage repair, as a consequence of PKCε and ZEB1 inhibition. Indeed, phenocopy experiments based on knock-down of either PKCε or ZEB1 reproduced miR-205 radiosensitizing effect, hence confirming a functional role of both targets in the process. At the molecular level, miR-205-induced suppression of PKCε counteracted radioresistance through the impairment of EGFR nuclear translocation and the consequent DNA-PK activation. Consistently, disruption of miR-205-PKCε 3'UTR pairing almost completely abrogated the radiosensitizing effect. CONCLUSIONS Our results uncovered the molecular and cellular mechanisms underlying the radiosensitizing effect of miR-205. These findings support the clinical interest in developing a novel therapeutic approach based on miR-205 reconstitution to increase PCa response to radiotherapy.
Collapse
Affiliation(s)
- Rihan El Bezawy
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Stella Tinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Valentina Doldi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Marco Folini
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Claudio Stucchi
- Medical Physics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Riccardo Valdagni
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy.,Radiation Oncology 1 Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Paolo Gandellini
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
14
|
Zhou Z, Lu H, Zhu S, Gomaa A, Chen Z, Yan J, Washington K, El-Rifai W, Dang C, Peng D. Activation of EGFR-DNA-PKcs pathway by IGFBP2 protects esophageal adenocarcinoma cells from acidic bile salts-induced DNA damage. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:13. [PMID: 30626422 PMCID: PMC6327430 DOI: 10.1186/s13046-018-1021-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
Background The incidence of esophageal adenocarcinoma (EAC) is rising rapidly in the US and Western countries. The development of Barrett’s esophagus (BE) and its progression to EAC have been linked to chronic gastroesophageal reflux disease (GERD). Exposure of BE and EAC cells to acidic bile salts (ABS) in GERD conditions induces high levels of oxidative stress and DNA damage. In this study, we investigated the role of insulin-like growth factor binding protein 2 (IGFBP2) in regulating ABS-induced DNA double-strand breaks. Methods Real-time RT-PCR, western blot, immunohistochemistry, immunofluorescence, co-immunoprecipitation, flow cytometry, and cycloheximide (CHX) chase assays were used in this study. To mimic GERD conditions, a cocktail of acidic bile salts (pH 4) was used in 2D and 3D organotypic culture models. Overexpression and knockdown of IGFBP2 in EAC cells were established to examine the functional and mechanistic roles of IGFBP2 in ABS-induced DNA damage. Results Our results demonstrated high levels of IGFBP2 mRNA and protein in EAC cell lines as compared to precancerous Barrett’s cell lines, and IGFBP2 is frequently overexpressed in EACs (31/57). Treatment of EAC cells with ABS, to mimic GERD conditions, induced high levels of IGFBP2 expression. Knocking down endogenous IGFBP2 in FLO1 cells (with constitutive high levels of IGFBP2) led to a significant increase in DNA double-strand breaks and apoptosis, following transient exposure to ABS. On the other hand, overexpression of exogenous IGFBP2 in OE33 cells (with low endogenous levels of IGFBP2) had a protective effect against ABS-induced double-strand breaks and apoptosis. We found that IGFBP2 is required for ABS-induced nuclear accumulation and phosphorylation of EGFR and DNA-PKcs, which are necessary for DNA damage repair activity. Using co-immunoprecipitation assay, we detected co-localization of IGFBP2 with EGFR and DNA-PKcs, following acidic bile salts treatment. We further demonstrated, using cycloheximide chase assay, that IGFBP2 promotes EGFR protein stability in response to ABS exposure. Conclusions IGFBP2 protects EAC cells against ABS-induced DNA damage and apoptosis through stabilization and activation of EGFR - DNA-PKcs signaling axis. Electronic supplementary material The online version of this article (10.1186/s13046-018-1021-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhangjian Zhou
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta W. Road, Xi'an, 710061, Shaanxi, China.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Ahmed Gomaa
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Jin Yan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Chengxue Dang
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta W. Road, Xi'an, 710061, Shaanxi, China.
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.
| |
Collapse
|
15
|
Hashimoto T, Murata Y, Urushihara Y, Shiga S, Takeda K, Hosoi Y. Severe hypoxia increases expression of ATM and DNA-PKcs and it increases their activities through Src and AMPK signaling pathways. Biochem Biophys Res Commun 2018; 505:13-19. [PMID: 30224064 DOI: 10.1016/j.bbrc.2018.09.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Solid tumors often contain hypoxic regions because an abnormal and inefficient tumor vasculature is unable to supply sufficient oxygen. Tissue hypoxia is generally defined as a low oxygen concentration of less than 2%. It is well known that tumor cells under severe hypoxia, where oxygen concentration is less than 0.1%, show radioresistance. It has been reported that cells under severe hypoxia show different responses from those under mild hypoxia, where oxygen concentration is 0.5-2.0%. In the present study, we investigated the effects of severe hypoxia on expression and activities of ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs), both of which regulate DNA double-strand breaks (DSBs) repair and radiation sensitivity. Signaling pathways for increasing expression and activities of ATM and DNA-PKcs under severe hypoxia were also investigated. METHODS SV40-transformed human fibroblast cell lines, LM217 and LM205, and normal human dermal fibroblasts (NHDF) were used. Cells were cultured at an oxygen concentration of less than 0.05% for 12 or 24 h. Activities and/or expression of ATM, DNA-PKcs, Src, Caveolin-1, EGFR, HIF-1α, PDK1, Akt, AMPKα, and mTOR were estimated by Western blot analyses. RESULTS Severe hypoxia increased expression and activities of ATM, DNA-PKcs, Src, Caveolin-1, EGFR, PDK1, Akt, and AMPKα, and decreased expression and activity of mTOR. A specific Src inhibitor, PP2 suppressed activation of ATM, DNA-PKcs, Caveolin-1, EGFR, and Akt under severe hypoxia. Treatment with siRNA for AMPKα suppressed activation of ATM and DNA-PKcs and increase of ATM expression under severe hypoxia. CONCLUSION Our data show that severe hypoxia increases activities of ATM and DNA-PKcs through Src and AMPK signaling pathways, and that activation of AMPK under hypoxia causes increase of ATM expression. Since ATM and DNA-PKcs play important roles in DSBs repair induced by ionizing radiation, those data provide novel insights on the molecular mechanism of the cellular radioresistance under severe hypoxia.
Collapse
Affiliation(s)
- Takuma Hashimoto
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yasuhiko Murata
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yusuke Urushihara
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Soichiro Shiga
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuya Takeda
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yoshio Hosoi
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
16
|
Dong J, Ren Y, Zhang T, Wang Z, Ling CC, Li GC, He F, Wang C, Wen B. Inactivation of DNA-PK by knockdown DNA-PKcs or NU7441 impairs non-homologous end-joining of radiation-induced double strand break repair. Oncol Rep 2018; 39:912-920. [PMID: 29344644 PMCID: PMC5802037 DOI: 10.3892/or.2018.6217] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in non-homologous end-joining (NHEJ) repair. We investigated the mechanism of NU7441, a highly selective DNA-PK inhibitor, in NHEJ-competent mouse embryonic fibroblast (MEF) cells and NHEJ-deficient cells and explored the feasibility of its application in radiosensitizing nasopharyngeal carcinoma (NPC) cells. We generated wild-type and DNA-PKcs−/− MEF cells. Clonogenic survival assays, flow cytometry, and immunoblotting were performed to study the effect of NU7441 on survival, cell cycle, and DNA repair. NU7441 profoundly radiosensitized wild-type MEF cells and SUNE-1 cells, but not DNA-PKcs−/− MEF cells. NU7441 significantly suppressed radiation-induced DSB repair post-irradiation through unrepaired and lethal DNA damage, the cell cycle arrest. The effect was associated with the activation of cell cycle checkpoints. The present study revealed a mechanism by which inhibition of DNA-PK sensitizes cells to irradiation suggesting that radiotherapy in combination with DNA-PK inhibitor is a promising paradigm for the management of NPC which merits further investigation.
Collapse
Affiliation(s)
- Jun Dong
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yufeng Ren
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tian Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenyu Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Clifton C Ling
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Gloria C Li
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Fuqiu He
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Chengtao Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bixiu Wen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
17
|
Saki M, Makino H, Javvadi P, Tomimatsu N, Ding LH, Clark JE, Gavin E, Takeda K, Andrews J, Saha D, Story MD, Burma S, Nirodi CS. EGFR Mutations Compromise Hypoxia-Associated Radiation Resistance through Impaired Replication Fork-Associated DNA Damage Repair. Mol Cancer Res 2017; 15:1503-1516. [PMID: 28801308 PMCID: PMC5668182 DOI: 10.1158/1541-7786.mcr-17-0136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/29/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
EGFR signaling has been implicated in hypoxia-associated resistance to radiation or chemotherapy. Non-small cell lung carcinomas (NSCLC) with activating L858R or ΔE746-E750 EGFR mutations exhibit elevated EGFR activity and downstream signaling. Here, relative to wild-type (WT) EGFR, mutant (MT) EGFR expression significantly increases radiosensitivity in hypoxic cells. Gene expression profiling in human bronchial epithelial cells (HBEC) revealed that MT-EGFR expression elevated transcripts related to cell cycle and replication in aerobic and hypoxic conditions and downregulated RAD50, a critical component of nonhomologous end joining and homologous recombination DNA repair pathways. NSCLCs and HBEC with MT-EGFR revealed elevated basal and hypoxia-induced γ-H2AX-associated DNA lesions that were coincident with replication protein A in the S-phase nuclei. DNA fiber analysis showed that, relative to WT-EGFR, MT-EGFR NSCLCs harbored significantly higher levels of stalled replication forks and decreased fork velocities in aerobic and hypoxic conditions. EGFR blockade by cetuximab significantly increased radiosensitivity in hypoxic cells, recapitulating MT-EGFR expression and closely resembling synthetic lethality of PARP inhibition.Implications: This study demonstrates that within an altered DNA damage response of hypoxic NSCLC cells, mutant EGFR expression, or EGFR blockade by cetuximab exerts a synthetic lethality effect and significantly compromises radiation resistance in hypoxic tumor cells. Mol Cancer Res; 15(11); 1503-16. ©2017 AACR.
Collapse
Affiliation(s)
- Mohammad Saki
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Haruhiko Makino
- Division of Medical Oncology and Molecular Respirology, Faculty of Medicine Tottori University, Yonago, Tottori, Japan
| | - Prashanthi Javvadi
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nozomi Tomimatsu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jennifer E Clark
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Elaine Gavin
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Kenichi Takeda
- Division of Medical Oncology and Molecular Respirology, Faculty of Medicine Tottori University, Yonago, Tottori, Japan
| | - Joel Andrews
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chaitanya S Nirodi
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, Alabama.
| |
Collapse
|
18
|
Luo J, Pi G, Xiao H, Ye Y, Li Q, Zhao L, Huang H, Luo H, Zhang Q, Wang D, Wang G. Torin2 enhances the radiosensitivity of MCF‑7 breast cancer cells by downregulating the mTOR signaling pathway and ATM phosphorylation. Mol Med Rep 2017; 17:366-373. [PMID: 29115478 DOI: 10.3892/mmr.2017.7848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/23/2017] [Indexed: 11/06/2022] Open
Abstract
Radiotherapy has an important role in the comprehensive treatment of breast cancer. However, the clinical outcome of adjuvant radiotherapy may be limited due to intrinsic radioresistance, it is necessary to explore efficient radiosensitization methods that improve the clinical outcome of patients undergoing radiotherapy. The present study aimed to investigate whether the novel mechanistic target of rapamycin (mTOR) inhibitor Torin2 enhances the radiosensitivity of MCF‑7 breast cancer cells. A Cell Counting Kit‑8 (CCK‑8) assay was performed to measure the effect of Torin2 on cell proliferation, while clonogenic assays were employed to determine the effect of Torin2 in combination with radiation on the proliferation of MCF‑7 cells. The effect of Torin2 and/or radiation on the cell cycle was analyzed using flow cytometry. Furthermore, the protein expression of components of the phosphatidylinositol 3‑kinase/Akt/mTOR pathway, and the expression of proteins involved in DNA damage repair, was measured by western blot analysis. The results demonstrated that Torin2 exhibited a higher potency in MCF‑7 cells, while MDA‑MB‑231 cells were less sensitive to Torin2. Compared with irradiation alone, pretreatment with 20 nM Torin2 followed by irradiation resulted in an increased level of γ‑H2A histone family member X. Radiation induced the activation of the Akt/mTOR signaling pathway and upregulated the expression of phosphorylated (p)‑Akt473 and p‑eukaryotic translation initiation factor 4E binding protein 1 (4EBP1)37/46. Notably, pretreatment with Torin2 attenuated the radiation‑induced activation of the Akt/mTOR signaling pathway. In addition, Torin2 partially blocked the repair of double‑strand breaks induced by radiation by reducing the activation of ataxia telangiectasia‑mutated, and sensitized MCF‑7 cells to radiation. In conclusion, administration of Torin2 prior to irradiation enhanced the radiotherapeutic effect on breast cancer cells in vitro, and these results may provide a foundation for the rational use of combined therapy with irradiation and Torin2 for breast cancer in clinical practice.
Collapse
Affiliation(s)
- Jia Luo
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Guocheng Pi
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - He Xiao
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Yunfei Ye
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Qing Li
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Lianhua Zhao
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Huan Huang
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Hong Luo
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Qin Zhang
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Dong Wang
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Ge Wang
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
19
|
Abramenkovs A, Stenerlöw B. Measurement of DNA-Dependent Protein Kinase Phosphorylation Using Flow Cytometry Provides a Reliable Estimate of DNA Repair Capacity. Radiat Res 2017; 188:597-604. [PMID: 28952912 DOI: 10.1667/rr14693.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Uncontrolled generation of DNA double-strand breaks (DSBs) in cells is regarded as a highly toxic event that threatens cell survival. Radiation-induced DNA DSBs are commonly measured by pulsed-field gel electrophoresis, microscopic evaluation of accumulating DNA damage response proteins (e.g., 53BP1 or γ-H2AX) or flow cytometric analysis of γ-H2AX. The advantage of flow cytometric analysis is that DSB formation and repair can be studied in relationship to cell cycle phase or expression of other proteins. However, γ-H2AX is not able to monitor repair kinetics within the first 60 min postirradiation, a period when most DSBs undergo repair. A key protein in non-homologous end joining repair is the catalytic subunit of DNA-dependent protein kinase. Among several phosphorylation sites of DNA-dependent protein kinase, the threonine at position 2609 (T2609), which is phosphorylated by ataxia telangiectasia mutated (ATM) or DNA-dependent protein kinase catalytic subunit itself, activates the end processing of DSB. Using flow cytometry, we show here that phosphorylation at T2609 is faster in response to DSBs than γ-H2AX. Furthermore, flow cytometric analysis of T2609 resulted in a better representation of fast repair kinetics than analysis of γ-H2AX. In cells with reduced ligase IV activity, and wild-type cells where DNA-dependent protein kinase activity was inhibited, the reduced DSB repair capacity was observed by T2609 evaluation using flow cytometry. In conclusion, flow cytometric evaluation of DNA-dependent protein kinase T2609 can be used as a marker for early DSB repair and gives a better representation of early repair events than analysis of γ-H2AX.
Collapse
Affiliation(s)
- Andris Abramenkovs
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
20
|
El Bezawy R, Cominetti D, Fenderico N, Zuco V, Beretta GL, Dugo M, Arrighetti N, Stucchi C, Rancati T, Valdagni R, Zaffaroni N, Gandellini P. miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis. Cancer Lett 2017; 395:53-62. [DOI: 10.1016/j.canlet.2017.02.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
21
|
Silencing of fused toes homolog enhances cisplatin sensitivity in cervical cancer cells by inhibiting epidermal growth factor receptor-mediated repair of DNA damage. Cancer Chemother Pharmacol 2016; 78:753-62. [DOI: 10.1007/s00280-016-3110-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
|
22
|
Zhao RS, Wang W, Li JP, Liu CM, He L. Gelsolin Promotes Radioresistance in Non-Small Cell Lung Cancer Cells Through Activation of Phosphoinositide 3-Kinase/Akt Signaling. Technol Cancer Res Treat 2016; 16:512-518. [PMID: 27121073 DOI: 10.1177/1533034616643884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gelsolin is an actin-binding protein and acts as an important regulator of cell survival. This study aimed to determine the function of gelsolin in the radioresistance of non-small cell lung cancer cells. We examined the expression of gelsolin in radioresistant A549 and H460 cells and their parental cells. The effects of gelsolin overexpression and knockdown on the clonogenic survival and apoptosis of non-small cell lung cancer cells after irradiation were studied. The involvement of phosphoinositide 3-kinase/Akt signaling in the action of gelsolin was checked. We found that gelsolin was significantly upregulated in radioresistant A549 and H460 cells. Overexpression of gelsolin significantly ( P < .05) increased the number of colonies from irradiated A549 and H460 cells compared to transfection of empty vector. In contrast, knockdown of gelsolin significantly ( P < .05) suppressed colony formation after irradiation. Gelsolin-overexpressing cells displayed reduced apoptosis in response to irradiation, which was coupled with decreased levels of cleaved caspase-3 and poly adenosine diphosphate-ribose polymerase. Ectopic expression of gelsolin significantly ( P < .05) enhanced the phosphorylation of Akt compared to nontransfected cells. Pretreatment with the phosphoinositide 3-kinase inhibitor LY294002 (20 μmol/L) significantly decreased clonogenic survival and enhanced apoptosis in gelsolin-overexpressing A549 and H460 cells after irradiation. Taken together, gelsolin upregulation promotes radioresistance in non-small cell lung cancer cells, at least partially, through activation of phosphoinositide 3-kinase/Akt signaling.
Collapse
Affiliation(s)
- Ru-Sen Zhao
- 1 Department of Oncology, People's Hospital of Linzi District, Binzhou Medical College, Zibo, People's Republic of China
| | - Wei Wang
- 1 Department of Oncology, People's Hospital of Linzi District, Binzhou Medical College, Zibo, People's Republic of China
| | - Jun-Ping Li
- 1 Department of Oncology, People's Hospital of Linzi District, Binzhou Medical College, Zibo, People's Republic of China
| | - Chun-Mei Liu
- 2 Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Liya He
- 3 Department of Oncology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| |
Collapse
|
23
|
Dittmann KH, Rothmund MC, Paasch A, Mayer C, Fehrenbacher B, Schaller M, Frauenstein K, Fritsche E, Haarmann-Stemmann T, Braeuning A, Rodemann HP. The nuclear aryl hydocarbon receptor is involved in regulation of DNA repair and cell survival following treatment with ionizing radiation. Toxicol Lett 2015; 240:122-9. [PMID: 26520184 DOI: 10.1016/j.toxlet.2015.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 01/15/2023]
Abstract
In the present study, we explored the role of the aryl hydrocarbon receptor (AhR) for γ-H2AX associated DNA repair in response to treatment with ionizing radiation. Ionizing radiation was able to stabilize AhR protein and to induce a nuclear translocation in a similar way as described for exposure to aromatic hydrocarbons. A comparable AhR protein stabilization was obtained by treatment with hydroxyl-nonenal-generated by radiation-induced lipid peroxidation. AhR knockdown resulted in significant radio-sensitization of both A549- and HaCaT cells. Under these conditions an increased amount of residual γ-H2AX foci and a delayed decline of γ-H2AX foci was observed. Knockdown of the co-activator ARNT, which is essential for transcriptional activation of AhR target genes, reduced AhR-dependent CYP1A expression in response to irradiation, but was without effect on the amount of residual γ-H2AX foci. Nuclear AhR was found in complex with γ-H2AX, DNA-PK, ATM and Lamin A. AhR and γ-H2AX form together nuclear foci, which disappear during DNA repair. Presence of nuclear AhR protein is associated with ATM activation and chromatin relaxation indicated by acetylation of histone H3. Taken together, we could show, that beyond the function as a transcription factor the nuclear AhR is involved in the regulation of DNA repair. Reduction of nuclear AhR inhibits DNA-double stand repair and radiosensitizes cells. First hints for its molecular mechanism suggest a role during ATM activation and chromatin relaxation, both essential for DNA repair.
Collapse
Affiliation(s)
- K H Dittmann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany.
| | - M C Rothmund
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - A Paasch
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - C Mayer
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - B Fehrenbacher
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - M Schaller
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - K Frauenstein
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - E Fritsche
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - T Haarmann-Stemmann
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - A Braeuning
- Federal Institute for Risk Assessment, Deptartment of Food Safety, Berlin, Germany
| | - H P Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| |
Collapse
|
24
|
Guthrie OW. Localization and distribution of neurons that co-express xeroderma pigmentosum-A and epidermal growth factor receptor within Rosenthal's canal. Acta Histochem 2015; 117:688-95. [PMID: 26493720 DOI: 10.1016/j.acthis.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 12/12/2022]
Abstract
Xeroderma pigmentosum-A (XPA) is a C4-type zinc-finger scaffolding protein that regulates the removal of bulky-helix distorting DNA damage products from the genome. Phosphorylation of serine residues within the XPA protein is associated with improved protection of genomic DNA and cell death resistance. Therefore, kinase signaling is one important mechanism for regulating the protective function of XPA. Previous experiments have shown that spiral ganglion neurons (SGNs) may mobilize XPA as a general stress response to chemical and physical ototoxicants. Therapeutic optimization of XPA via kinase signaling could serve as a means to improve DNA repair capacity within neurons following injury. The kinase signaling activity of the epidermal growth factor receptor (EGFR) has been shown in tumor cell lines to increase the repair of DNA damage products that are primarily repaired by XPA. Such observations suggest that EGFR may regulate the protective function of XPA. However, it is not known whether SGNs in particular or neurons in general could co-express XPA and EGFR. In the current study gene and protein expression of XPA and EGFR were determined from cochlear homogenates. Immunofluorescence assays were then employed to localize neurons expressing both EGFR and XPA within the ganglion. This work was then confirmed with double-immunohistochemistry. Rosenthal's canal served as the reference space in these experiments and design-based stereology was employed in first-order stereology quantification of immunoreactive neurons. The results confirmed that a population of SGNs that constitutively express XPA may also express the EGFR. These results provide the basis for future experiments designed to therapeutically manipulate the EGFR in order to regulate XPA activity and restore gene function in neurons following DNA damage.
Collapse
|
25
|
Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 2015; 12:527-40. [PMID: 26122185 DOI: 10.1038/nrclinonc.2015.120] [Citation(s) in RCA: 414] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The past 20 years have seen dramatic changes in the delivery of radiation therapy, but the impact of radiobiology on the clinic has been far less substantial. A major consideration in the use of radiotherapy has been on how best to exploit differences between the tumour and host tissue characteristics, which in the past has been achieved empirically by radiation-dose fractionation. New advances are uncovering some of the mechanistic processes that underlie this success story. In this Review, we focus on how these processes might be targeted to improve the outcome of radiotherapy at the individual patient level. This approach would seem a more productive avenue of treatment than simply trying to increase the radiation dose delivered to the tumour.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, Room B3-109, Center for Health Sciences, Westwood, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA
| | - William H McBride
- Department of Radiation Oncology, Room B3-109, Center for Health Sciences, Westwood, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA
| |
Collapse
|
26
|
Liu Y, Zhang L, Liu Y, Sun C, Zhang H, Miao G, Di CX, Zhou X, Zhou R, Wang Z. DNA-PKcs deficiency inhibits glioblastoma cell-derived angiogenesis after ionizing radiation. J Cell Physiol 2015; 230:1094-103. [PMID: 25294801 DOI: 10.1002/jcp.24841] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 09/26/2014] [Indexed: 01/31/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a critical role in non-homologous end-joining repair of DNA double-strand breaks (DSB) induced by ionizing radiation (IR). Little is known, however, regarding the relationship between DNA-PKcs and IR-induced angiogenesis; thus, in this study we aimed to further elucidate this relationship. Our findings revealed that lack of DNA-PKcs expression or activity sensitized glioma cells to radiation due to the defective DNA DSB repairs and inhibition of phosphorylated Akt(Ser473) . Moreover, DNA-PKcs deficiency apparently mitigated IR-induced migration, invasion and tube formation of human microvascular endothelial cell (HMEC-1) in conditioned media derived from irradiated DNA-PKcs mutant M059J glioma cells or M059K glioma cells that have inhibited DNA-PKcs kinase activity due to the specific inhibitor NU7026 or siRNA knockdown. Moreover, IR-elevated vascular endothelial growth factor (VEGF) secretion was abrogated by DNA-PKcs suppression. Supplemental VEGF antibody to irradiated-conditioned media was negated enhanced cell motility with a concomitant decrease in phosphorylation of the FAK(Try925) and Src(Try416) . Furthermore, DNA-PKcs suppression was markedly abrogated in IR-induced transcription factor hypoxia inducible factor-1α (HIF-1α) accumulation, which is related to activation of VEGF transcription. These findings, taken together, demonstrate that depletion of DNA-PKcs in glioblastoma cells at least partly suppressed IR-inflicted migration, invasion, and tube formation of HMEC-1 cells, which may be associated with the reduced HIF-1α level and VEGF secretion. Inhibition of DNA-PKcs may be a promising therapeutic approach to enhance radio-therapeutic efficacy for glioblastoma by hindering its angiogenesis.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiation Medicine, Institute of Modern physics, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Involvement of the insulin-like growth factor binding proteins in the cancer cell response to DNA damage. J Cell Commun Signal 2015; 9:167-76. [PMID: 25617051 DOI: 10.1007/s12079-015-0262-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022] Open
Abstract
The complex mechanisms that cells have evolved to meet the challenge of constant exposure to DNA-damaging stimuli, also serve to protect cancer cells from the cytotoxic effects of chemo- and radiotherapy. IGFBPs appear to be involved, directly or indirectly, in some of these protective mechanisms. Activation of p53 is an early response to genotoxic stress, and all six human IGFBP genes have predicted p53 response elements in their promoter and/or intronic regions, at least some of which are functional. IGFBP3 has been extensively characterized as a p53-inducible gene, but in some cases it is suppressed by mutant p53 forms. DNA double-strand breaks (DSBs), induced by radiotherapy and some chemotherapies, potentially lead to apoptotic cell death, senescence, or repair and recovery. DSB damage can be repaired by homologous recombination or non-homologous end-joining (NHEJ), depending on the cell cycle stage, availability of key repair proteins, and other factors. The epidermal growth factor receptor (EGFR) has been implicated in the NHEJ pathway, and EGFR inhibition may inhibit repair, promoting apoptosis and thus improving sensitivity to chemotherapy or radiotherapy. Both IGFBP-3 and IGFBP-6 interact with components of the NHEJ pathway, and IGFBP-3 can facilitate this process through direct interaction with both EGFR and the catalytic subunit of DNA-PK. Cell fate after DNA damage may in part be regulated by the balance between the sphingolipids ceramide and sphingosine-1-phosphate, and IGFBPs can influence the production of both lipids. A better understanding of the involvement of IGFBPs in the DNA damage response in cancer cells may lead to improved methods of sensitizing cancers to DNA-damaging therapies.
Collapse
|
28
|
Activated platelets rescue apoptotic cells via paracrine activation of EGFR and DNA-dependent protein kinase. Cell Death Dis 2014; 5:e1410. [PMID: 25210793 PMCID: PMC4540201 DOI: 10.1038/cddis.2014.373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 12/12/2022]
Abstract
Platelet activation is a frontline response to injury, not only essential for clot formation but also important for tissue repair. Indeed, the reparative influence of platelets has long been exploited therapeutically where application of platelet concentrates expedites wound recovery. Despite this, the mechanisms of platelet-triggered cytoprotection are poorly understood. Here, we show that activated platelets accumulate in the brain to exceptionally high levels following injury and release factors that potently protect neurons from apoptosis. Kinomic microarray and subsequent kinase inhibitor studies showed that platelet-based neuroprotection relies upon paracrine activation of the epidermal growth factor receptor (EGFR) and downstream DNA-dependent protein kinase (DNA-PK). This same anti-apoptotic cascade stimulated by activated platelets also provided chemo-resistance to several cancer cell types. Surprisingly, deep proteomic profiling of the platelet releasate failed to identify any known EGFR ligand, indicating that activated platelets release an atypical activator of the EGFR. This study is the first to formally associate platelet activation to EGFR/DNA-PK – an endogenous cytoprotective cascade.
Collapse
|
29
|
Dual contribution of MAPK and PI3K in epidermal growth factor-induced destabilization of thyroid follicular integrity and invasion of cells into extracellular matrix. Exp Cell Res 2014; 326:210-8. [DOI: 10.1016/j.yexcr.2014.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/18/2014] [Accepted: 04/04/2014] [Indexed: 11/17/2022]
|
30
|
Liccardi G, Hartley JA, Hochhauser D. Importance of EGFR/ERCC1 interaction following radiation-induced DNA damage. Clin Cancer Res 2014; 20:3496-506. [PMID: 24780295 DOI: 10.1158/1078-0432.ccr-13-2695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The epidermal growth factor receptor (EGFR) plays an important role in cellular response to chemotherapy and radiotherapy through modulation of DNA repair. EGFR activates DNA-dependent protein kinase (DNA-PK) stimulating repair of DNA strand breaks (SB) and interstrand crosslinks (ICL). We investigated the role of EGFR in repair of ionizing radiation (IR)-induced SB independently of DNA-PK. EXPERIMENTAL DESIGN The EGFR interactome was investigated via mass spectrometry. IR-induced EGFR-ERCC1 binding was validated biochemically and via proximity ligation assay in different cell lines including the M059K and M059J glioma cell lines, proficient and deficient for the expression of DNAPKcs, respectively. EGFR-ERCC1 functional significance following IR-induced SB was investigated in knockdown experiments with the Comet and γH2AX foci assays. The effect of this interaction was tested with EGFR-ERCC1 knockdown in combination with gefitinib and NU7026 using the MTT and apoptosis assays. RESULTS This study demonstrates that EGFR inhibition further impairs IR-induced DNA repair in cells lacking expression of DNAPKcs or in combination with the DNAPK inhibitor NU7026. Our data suggest a role for EGFR in DNA repair independent of DNAPKcs but dependent on ERCC1. Alkaline comet and γH2AX foci assays in cells depleted of EGFR, ERCC1, or EGFR-ERCC1 expression demonstrated involvement of this interaction in DNA repair. Cellular survival and apoptosis data correlate with levels of residual DNA damage underlying the importance of this complex following SB. CONCLUSION These data emphasize the importance of understanding the various mechanisms by which EGFR modulates DNA repair to optimize targeted therapy for patients with cancer.
Collapse
Affiliation(s)
- Gianmaria Liccardi
- Authors' Affiliation: Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - John A Hartley
- Authors' Affiliation: Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Daniel Hochhauser
- Authors' Affiliation: Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
31
|
DNA-PK: a dynamic enzyme in a versatile DSB repair pathway. DNA Repair (Amst) 2014; 17:21-9. [PMID: 24680878 DOI: 10.1016/j.dnarep.2014.02.020] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 11/23/2022]
Abstract
DNA double stranded breaks (DSBs) are the most cytoxic DNA lesion as the inability to properly repair them can lead to genomic instability and tumorigenesis. The prominent DSB repair pathway in humans is non-homologous end-joining (NHEJ). In the simplest sense, NHEJ mediates the direct re-ligation of the broken DNA molecule. However, NHEJ is a complex and versatile process that can repair DSBs with a variety of damages and ends via the utilization of a significant number of proteins. In this review we will describe the important factors and mechanisms modulating NHEJ with emphasis given to the versatility of this repair process and the DNA-PK complex.
Collapse
|
32
|
Sahlberg SH, Gustafsson AS, Pendekanti PN, Glimelius B, Stenerlöw B. The influence of AKT isoforms on radiation sensitivity and DNA repair in colon cancer cell lines. Tumour Biol 2013; 35:3525-34. [PMID: 24338765 PMCID: PMC3980041 DOI: 10.1007/s13277-013-1465-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/22/2013] [Indexed: 12/11/2022] Open
Abstract
In response to ionizing radiation, several signaling cascades in the cell are activated to repair the DNA breaks, prevent apoptosis, and keep the cells proliferating. AKT is important for survival and proliferation and may also be an activating factor for DNA-PKcs and MRE11, which are essential proteins in the DNA repair process. AKT (PKB) is hyperactivated in several cancers and is associated with resistance to radiotherapy and chemotherapy. There are three AKT isoforms (AKT1, AKT2, and AKT3) with different expression patterns and functions in several cancer tumors. The role of AKT isoforms has been investigated in relation to radiation response and their effects on DNA repair proteins (DNA-PKcs and MRE11) in colon cancer cell lines. The knockout of AKT1 and/or AKT2 affected the radiation sensitivity, and a deficiency of both isoforms impaired the rejoining of radiation-induced DNA double strand breaks. Importantly, the active/phosphorylated forms of AKT and DNA-PKcs associate and exposure to ionizing radiation causes an increase in this interaction. Moreover, an increased expression of both DNA-PKcs and MRE11 was observed when AKT expression was ablated, yet only DNA-PKcs expression influenced AKT phosphorylation. Taken together, these results demonstrate a role for both AKT1 and AKT2 in radiotherapy response in colon cancer cells involving DNA repair capacity through the nonhomologous end joining pathway, thus suggesting that AKT in combination with DNA-PKcs inhibition may be used for radiotherapy sensitizing strategies in colon cancer.
Collapse
Affiliation(s)
| | | | | | - Bengt Glimelius
- Section of Oncology, Department of Radiology, Oncology and Radiation Science, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Bo Stenerlöw
- Biomedical Radiation Sciences, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
33
|
Chatterjee P, Plesca D, Mazumder S, Boutros J, Yannone SM, Almasan A. Defective chromatin recruitment and retention of NHEJ core components in human tumor cells expressing a Cyclin E fragment. Nucleic Acids Res 2013; 41:10157-69. [PMID: 24021630 PMCID: PMC3905870 DOI: 10.1093/nar/gkt812] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exposure to genotoxic agents, such as ionizing radiation (IR), produces double-strand breaks, repaired predominantly in mammalian cells by non-homologous end-joining (NHEJ). Ku70 was identified as an interacting partner of a proteolytic Cyclin E (CycE) fragment, p18CycE. p18CycE endogenous generation during IR-induced apoptosis in leukemic cells and its stable expression in epithelial tumor cells sensitized to IR. γH2AX IR-induced foci (IRIFs) and comet assays indicated ineffective NHEJ DNA repair in p18CycE-expressing cells. DNA pull-down and chromatin recruitment assays revealed that retention of NHEJ factors to double-strand breaks, but not recruitment, was diminished. Similarly, IRIFs of phosphorylated T2609 and S2056-DNA-PKcs and its target S1778-53BP1 were greatly decreased in p18CycE-expressing cells. As a result, DNA-PKcs chromatin association was also increased. 53BP1 IRIFs were suppressed when p18CycE was generated in leukemic cells and in epithelial cells stably expressing p18CycE. Ataxia telangiectasia mutated was activated but not its 53BP1 and MDC1 targets. These data indicate a profound influence of p18CycE on NHEJ through its interference with DNA-PKcs conformation and/or dimerization, which is required for effective DNA repair, making the p18CycE-expressing cells more IR sensitive. These studies provide unique mechanistic insights into NHEJ misregulation in human tumor cells, in which defects in NHEJ core components are rare.
Collapse
Affiliation(s)
- Payel Chatterjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA, School of Biomedical Sciences, Kent State University, Kent, OH 44234, USA, Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
34
|
Detection and repair of ionizing radiation-induced DNA double strand breaks: new developments in nonhomologous end joining. Int J Radiat Oncol Biol Phys 2013; 86:440-9. [PMID: 23433795 DOI: 10.1016/j.ijrobp.2013.01.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/07/2013] [Indexed: 01/13/2023]
Abstract
DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.
Collapse
|