1
|
Vardas V, Tolios A, Christopoulou A, Georgoulias V, Xagara A, Koinis F, Kotsakis A, Kallergi G. Immune Checkpoint and EMT-Related Molecules in Circulating Tumor Cells (CTCs) from Triple Negative Breast Cancer Patients and Their Clinical Impact. Cancers (Basel) 2023; 15:1974. [PMID: 37046635 PMCID: PMC10093450 DOI: 10.3390/cancers15071974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. There are few targeted therapies for these patients, leading to an unmet need for new biomarkers. The present study aimed to investigate the expression of PD-L1, CTLA-4, GLU, and VIM in CTCs of TNBC patients. Ninety-five patients were enrolled in this study: sixty-four TNBC and thirty-one luminal. Of these patients, 60 were in the early stage, while 35 had metastatic disease. Protein expression was identified by immunofluorescence staining experiments and VyCAP analysis. All the examined proteins were upregulated in TNBC patients. The expression of the GLU+VIM+CK+ phenotype was higher (50%) in metastatic TNBC compared to early TNBC patients (17%) (p = 0.005). Among all the BC patients, a significant correlation was found between PD-L1+CD45-CK+ and CTLA-4+CD45-CK+ phenotypes (Spearman test, p = 0.024), implying an important role of dual inhibition in BC. Finally, the phenotypes GLU+VIM+CK+ and PD-L1+CD45-CK+ were associated with shorter OS in TNBC patients (OS: log-rank p = 0.048, HR = 2.9, OS: log-rank p < 0.001, HR = 8.7, respectively). Thus, PD-L1, CTLA-4, GLU, and VIM constitute significant biomarkers in TNBC associated with patients' outcome, providing new therapeutic targets for this difficult breast cancer subtype.
Collapse
Affiliation(s)
- Vasileios Vardas
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece
| | - Anastasios Tolios
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece
| | | | | | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece
| | - Filippos Koinis
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece
- Department of Medical Oncology, University General Hospital of Larissa, GR-41110 Larissa, Greece
| | - Athanasios Kotsakis
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece
- Department of Medical Oncology, University General Hospital of Larissa, GR-41110 Larissa, Greece
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
2
|
PARP-1 Expression and BRCA1 Mutations in Breast Cancer Patients' CTCs. Cancers (Basel) 2022; 14:cancers14071731. [PMID: 35406503 PMCID: PMC8996866 DOI: 10.3390/cancers14071731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Recent estimates have shown that approx. 70% of individuals with BRCA1 mutations will develop breast cancer by the age of 70. To make matters worse, breast cancer patients with BRCA1 mutations are more likely to have the more aggressive triple-negative breast cancer. PARPs, belong to a family of nuclear enzymes, which are involved in many cellular processes, including DNA repair. PARP inhibitors have been approved for the treatment of BRCA-mutated breast cancer. The aim of the study was the determination of PARP-1 expression in the context of the presence of BRCA1 mutations in circulating tumor cells of breast cancer patients. PARP-1 (nuclear) expression and BRCA1 mutations were mainly detected in triple negative breast cancer patients, and the latter were correlated with decreased survival. Our data suggest that PARP-1, in conjunction with BRCA1, could potentially be used as (a) biomarker(s) for patients’ stratification. Abstract BRCA1 and PARP are involved in DNA damage repair pathways. BRCA1 mutations have been linked to higher likelihood of triple negative breast cancer (TNBC). The aim of the study was to determine PARP-1 expression and BRCA1 mutations in circulating tumor cells (CTCs) of BC patients. Fifty patients were enrolled: 23 luminal and 27 TNBC. PARP expression in CTCs was identified by immunofluorescence. Genotyping was performed by PCR-Sanger sequencing in the same samples. PARP-1 expression was higher in luminal (61%) and early BC (54%), compared to TNBC (41%) and metastatic (33%) patients. In addition, PARP-1 distribution was mostly cytoplasmic in luminal patients (p = 0.024), whereas it was mostly nuclear in TNBC patients. In cytokeratin (CK)-positive patients, those with the CK+PARP+ phenotype had longer overall survival (OS, log-rank p = 0.046). Overall, nine mutations were detected; M1 and M2 were completely new and M4, M7 and M8 were characterized as pathogenic. M7 and M8 were predominantly found in metastatic TNBC patients (p = 0.014 and p = 0.002). Thus, PARP-1 expression and increased mutagenic burden in TNBC patients’ CTCs, could be used as an indicator to stratify patients regarding therapeutic approaches.
Collapse
|
3
|
Ntzifa A, Londra D, Rampias T, Kotsakis A, Georgoulias V, Lianidou E. DNA Methylation Analysis in Plasma Cell-Free DNA and Paired CTCs of NSCLC Patients before and after Osimertinib Treatment. Cancers (Basel) 2021; 13:cancers13235974. [PMID: 34885084 PMCID: PMC8656722 DOI: 10.3390/cancers13235974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Osimertinib has been an effective second-line treatment in EGFR mutant NSCLC patients; however, resistance inevitably occurs. DNA methylation has been previously implicated in NSCLC progression and often in therapy resistance, however its distinct role in osimertinib resistance is not elucidated as yet. In the present study, we directly compared DNA methylation of nine selected genes (RASSF1A, RASSF10, APC, WIF-1, BRMS1, SLFN11, RARβ, SHISA3, and FOXA1) in plasma-cfDNA and paired CTCs of NSCLC patients who were longitudinally monitored during osimertinib treatment. Peripheral blood (PB) from 42 NSCLC patients was obtained at two time points: (a) baseline: before treatment with osimertinib and (b) at progression of disease (PD). DNA methylation of the selected genes was detected in plasma-cfDNA (n = 80) and in paired CTCs (n = 74). Direct comparison of DNA methylation of six genes between plasma-cfDNA and paired CTC samples (n = 70) revealed a low concordance, indicating that CTCs and cfDNA give complementary information. DNA methylation analysis of plasma-cfDNA and CTCs indicated that when at least one of these genes was methylated there was a statistically significant increase at PD compared to baseline (p = 0.031). For the first time, DNA methylation analysis in plasma-cfDNA and paired CTCs of NSCLC patients during osimertinib therapy indicated that DNA methylation of these genes could be a possible resistance mechanism.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
| | - Dora Londra
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
| | - Theodoros Rampias
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Athanasios Kotsakis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Vassilis Georgoulias
- Department of Medical Oncology, Hellenic Oncology Research Group (HORG), 11471 Athens, Greece;
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
- Correspondence: ; Tel.: +30-210-727-4311
| |
Collapse
|
4
|
Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics 2021; 13:pharmaceutics13111879. [PMID: 34834295 PMCID: PMC8619417 DOI: 10.3390/pharmaceutics13111879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial–mesenchymal transition, and migration of cancer cells).
Collapse
|
5
|
Palanca-Ballester C, Rodriguez-Casanova A, Torres S, Calabuig-Fariñas S, Exposito F, Serrano D, Redin E, Valencia K, Jantus-Lewintre E, Diaz-Lagares A, Montuenga L, Sandoval J, Calvo A. Cancer Epigenetic Biomarkers in Liquid Biopsy for High Incidence Malignancies. Cancers (Basel) 2021; 13:cancers13123016. [PMID: 34208598 PMCID: PMC8233712 DOI: 10.3390/cancers13123016] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Early alterations in cancer include the deregulation of epigenetic events such as changes in DNA methylation and abnormal levels of non-coding (nc)RNAs. Although these changes can be identified in tumors, alternative sources of samples may offer advantages over tissue biopsies. Because tumors shed DNA, RNA, and proteins, biological fluids containing these molecules can accurately reflect alterations found in cancer cells, not only coming from the primary tumor, but also from metastasis and from the tumor microenvironment (TME). Depending on the type of cancer, biological fluids encompass blood, urine, cerebrospinal fluid, and saliva, among others. Such samples are named with the general term "liquid biopsy" (LB). With the advent of ultrasensitive technologies during the last decade, the identification of actionable genetic alterations (i.e., mutations) in LB is a common practice to decide whether or not targeted therapy should be applied. Likewise, the analysis of global or specific epigenetic alterations may also be important as biomarkers for diagnosis, prognosis, and even for cancer drug response. Several commercial kits that assess the DNA promoter methylation of single genes or gene sets are available, with some of them being tested as biomarkers for diagnosis in clinical trials. From the tumors with highest incidence, we can stress the relevance of DNA methylation changes in the following genes found in LB: SHOX2 (for lung cancer); RASSF1A, RARB2, and GSTP1 (for lung, breast, genitourinary and colon cancers); and SEPT9 (for colon cancer). Moreover, multi-cancer high-throughput methylation-based tests are now commercially available. Increased levels of the microRNA miR21 and several miRNA- and long ncRNA-signatures can also be indicative biomarkers in LB. Therefore, epigenetic biomarkers are attractive and may have a clinical value in cancer. Nonetheless, validation, standardization, and demonstration of an added value over the common clinical practice are issues needed to be addressed in the transfer of this knowledge from "bench to bedside".
Collapse
Affiliation(s)
- Cora Palanca-Ballester
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- Roche-CHUS Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Torres
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Silvia Calabuig-Fariñas
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Francisco Exposito
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Diego Serrano
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Eloisa Jantus-Lewintre
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
| | - Luis Montuenga
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
- Correspondence: (J.S.); (A.C.)
| | - Alfonso Calvo
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (J.S.); (A.C.)
| |
Collapse
|
6
|
Chemi F, Mohan S, Guevara T, Clipson A, Rothwell DG, Dive C. Early Dissemination of Circulating Tumor Cells: Biological and Clinical Insights. Front Oncol 2021; 11:672195. [PMID: 34026650 PMCID: PMC8138033 DOI: 10.3389/fonc.2021.672195] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) play a causal role in the development of metastasis, the major cause of cancer-associated mortality worldwide. In the past decade, the development of powerful cellular and molecular technologies has led to a better understanding of the molecular characteristics and timing of dissemination of CTCs during cancer progression. For instance, genotypic and phenotypic characterization of CTCs, at the single cell level, has shown that CTCs are heterogenous, disseminate early and could represent only a minor subpopulation of the primary tumor responsible for disease relapse. While the impact of molecular profiling of CTCs has not yet been translated to the clinic, CTC enumeration has been widely used as a prognostic biomarker to monitor treatment response and to predict disease relapse. However, previous studies have revealed a major challenge: the low abundance of CTCs in the bloodstream of patients with cancer, especially in early stage disease where the identification and characterization of subsequently "lethal" cells has potentially the greatest clinical relevance. The CTC field is rapidly evolving with development of new technologies to improve the sensitivity of CTC detection, enumeration, isolation, and molecular profiling. Here we examine the technical and analytical validity of CTC technologies, we summarize current data on the biology of CTCs that disseminate early and review CTC-based clinical applications.
Collapse
Affiliation(s)
- Francesca Chemi
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Macclesfield, United Kingdom
| | | | | | | | | | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Macclesfield, United Kingdom
| |
Collapse
|
7
|
Abstract
Despite high mortality rates, molecular understanding of metastasis remains limited. It can be regulated by both pro- and anti-metastasis genes. The metastasis suppressor, breast cancer metastasis suppressor 1 (BRMS1), has been positively correlated with patient outcomes, but molecular functions are still being characterized. BRMS1 has been implicated in focal adhesion kinase (FAK), epidermal growth factor receptor (EGFR), and NF-κB signaling pathways. We review evidence that BRMS1 regulates these vast signaling pathways through chromatin remodeling as a member of mSin3 histone deacetylase complexes.
Collapse
|
8
|
Chen H, Su Z, Li R, Zhang N, Guo H, Bai F. Single-cell DNA methylome analysis of circulating tumor cells. Chin J Cancer Res 2021; 33:391-404. [PMID: 34321835 PMCID: PMC8286897 DOI: 10.21147/j.issn.1000-9604.2021.03.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Objective Previous investigations of circulating tumor cells (CTCs) have mainly focused on their genomic or transcriptomic features, leaving their epigenetic landscape relatively uncharacterized. Here, we investigated the genome-wide DNA methylome of CTCs with a view to understanding the epigenetic regulatory mechanisms underlying cancer metastasis. Methods We evaluated single-cell DNA methylome and copy number alteration (CNA) in 196 single cells, including 107 CTCs collected from 17 cancer patients covering six different cancer types. Our single-cell bisulfite sequencing (scBS-seq) covered on average 11.78% of all CpG dinucleotides and accurately deduced the CNA patterns at 500 kb resolution. Results We report distinct subclonal structures and different evolutionary histories of CTCs inferred from CNA and DNA methylation profiles. Furthermore, we demonstrate potential tumor origin classification based on the tissue-specific DNA methylation profiles of CTCs. Conclusions Our work provides a comprehensive survey of genome-wide DNA methylome in single CTCs and reveals 5-methylcytosine (5-mC) heterogeneity in CTCs, addressing the potential epigenetic regulatory mechanisms underlying cancer metastasis and facilitating the future clinical application of CTCs.
Collapse
Affiliation(s)
- Hengyu Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhe Su
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruoyan Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Zhang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Translational Cancer Research Center, First Hospital, Peking University, Beijing 100871, China
| | - Hua Guo
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.,Translational Cancer Research Center, First Hospital, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Zhao L, Wu X, Zheng J, Dong D. DNA methylome profiling of circulating tumor cells in lung cancer at single base-pair resolution. Oncogene 2021; 40:1884-1895. [PMID: 33564067 PMCID: PMC7946637 DOI: 10.1038/s41388-021-01657-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
DNA methylation plays a pivotal role in regulating cellular processes, and altered DNA methylation pattern is a general hallmark of cancer. However, DNA methylome in circulating tumor cells (CTCs) is still a mystery due to the lack of proper analytical techniques. We introduced an efficient workflow, LCM-µWGBS, which can efficiently profile the DNA methylation of microdissected CTC samples. LCM-µWGBS combines the laser capture microdissection (LCM)-based CTC capture method and whole-genome bisulfite sequencing in very small CTC population (µWGBS) to gain insight into the DNA methylation landscape of CTCs. We herein profiled the DNA methylome of CTCs from lung cancer patients. Deriving from a comprehensive analysis of CTC methylome, a unique "CTC DNA methylation signature" that is distinct from primary lung cancer tissues was identified. Further analysis showed that promoter hypermethylation of epithelial genes is a hallmark of stable epithelial-mesenchymal transition process. Moreover, it has been suggested that CTCs are endowed with a stemness-related feature during dissemination and metastasis. This work constitutes a unique DNA methylation analysis of CTCs at single base-pair resolution, which might facilitate to propose noninvasive CTC DNA methylation biomarkers contributing to clinical diagnosis.
Collapse
Affiliation(s)
- Lei Zhao
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.413389.4Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China ,grid.22069.3f0000 0004 0369 6365Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaohong Wu
- Department of General Surgery, Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200 Jiangsu China
| | - Junnian Zheng
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.413389.4Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Dong
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.413389.4Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Casalino L, Verde P. Multifaceted Roles of DNA Methylation in Neoplastic Transformation, from Tumor Suppressors to EMT and Metastasis. Genes (Basel) 2020; 11:E922. [PMID: 32806509 PMCID: PMC7463745 DOI: 10.3390/genes11080922] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Among the major mechanisms involved in tumorigenesis, DNA methylation is an important epigenetic modification impacting both genomic stability and gene expression. Methylation of promoter-proximal CpG islands (CGIs) and transcriptional silencing of tumor suppressors represent the best characterized epigenetic changes in neoplastic cells. The global cancer-associated effects of DNA hypomethylation influence chromatin architecture and reactivation of repetitive elements. Moreover, recent analyses of cancer cell methylomes highlight the role of the DNA hypomethylation of super-enhancer regions critically controlling the expression of key oncogenic players. We will first summarize some basic aspects of DNA methylation in tumorigenesis, along with the role of dysregulated DNA methyltransferases and TET (Ten-Eleven Translocation)-family methylcytosine dioxygenases. We will then examine the potential contribution of epimutations to causality and heritability of cancer. By reviewing some representative genes subjected to hypermethylation-mediated silencing, we will survey their oncosuppressor functions and roles as biomarkers in various types of cancer. Epithelial-to-mesenchymal transition (EMT) and the gain of stem-like properties are critically involved in cancer cell dissemination, metastasis, and therapeutic resistance. However, the driver vs passenger roles of epigenetic changes, such as DNA methylation in EMT, are still poorly understood. Therefore, we will focus our attention on several aspects of DNA methylation in control of EMT and metastasis suppressors, including both protein-coding and noncoding genes.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80100 Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80100 Naples, Italy
| |
Collapse
|
11
|
Bao-Caamano A, Rodriguez-Casanova A, Diaz-Lagares A. Epigenetics of Circulating Tumor Cells in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:117-134. [PMID: 32304083 DOI: 10.1007/978-3-030-35805-1_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid biopsy based on the analysis of circulating tumor cells (CTCs) has emerged as an important field of research. Molecular characterization of CTCs can provide insights into cancer biology and biomarkers for the clinic, representing a non-invasive powerful tool for monitoring breast cancer metastasis and predict the therapeutic response. Epigenetic mechanisms play a key role in the control of gene expression and their alteration contributes to cancer development and progression. These epigenetic modifications in CTCs have been described mainly related to modifications of the DNA methylation pattern and changes in the expression profile of noncoding RNAs. Here we summarize the recent findings on the epigenetic characterization of CTCs in breast cancer and their clinical value as tumor biomarkers, and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
12
|
de Ruijter TC, van der Heide F, Smits KM, Aarts MJ, van Engeland M, Heijnen VCG. Prognostic DNA methylation markers for hormone receptor breast cancer: a systematic review. Breast Cancer Res 2020; 22:13. [PMID: 32005275 PMCID: PMC6993426 DOI: 10.1186/s13058-020-1250-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In patients with hormone receptor-positive breast cancer, differentiating between patients with a low and a high risk of recurrence is an ongoing challenge. In current practice, prognostic clinical parameters are used for risk prediction. DNA methylation markers have been proven to be of additional prognostic value in several cancer types. Numerous prognostic DNA methylation markers for breast cancer have been published in the literature. However, to date, none of these markers are used in clinical practice. METHODS We conducted a systematic review of PubMed and EMBASE to assess the number and level of evidence of published DNA methylation markers for hormone receptor-positive breast cancer. To obtain an overview of the reporting quality of the included studies, all were scored according to the REMARK criteria that were established as reporting guidelines for prognostic biomarker studies. RESULTS A total of 74 studies were identified reporting on 87 different DNA methylation markers. Assessment of the REMARK criteria showed variation in reporting quality of the studies. Eighteen single markers and one marker panel were studied in multiple independent populations. Hypermethylation of the markers RASSF1, BRCA, PITX2, CDH1, RARB, PCDH10 and PGR, and the marker panel GSTP1, RASSF1 and RARB showed a statistically significant correlation with poor disease outcome that was confirmed in at least one other, independent study. CONCLUSION This systematic review provides an overview on published prognostic DNA methylation markers for hormone receptor-positive breast cancer and identifies eight markers that have been independently validated. Analysis of the reporting quality of included studies suggests that future research on this topic would benefit from standardised reporting guidelines.
Collapse
Affiliation(s)
- Tim C. de Ruijter
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Frank van der Heide
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Kim M. Smits
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Maureen J. Aarts
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Manon van Engeland
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Vivianne C. G. Heijnen
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
13
|
Du Y, Yang F, Lv D, Zhang Q, Yuan X. MiR-147 inhibits cyclic mechanical stretch-induced apoptosis in L6 myoblasts via ameliorating endoplasmic reticulum stress by targeting BRMS1. Cell Stress Chaperones 2019; 24:1151-1161. [PMID: 31628639 PMCID: PMC6882977 DOI: 10.1007/s12192-019-01037-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Abstract
Functional orthopedic treatment is effective for the correction of malformation. Studies demonstrated myoblasts undergo proliferation and apoptosis on certain stretch conditions. MicroRNAs (miRNAs) function in RNA silencing and post-transcriptional regulation of gene expression, and participate in various biological processes, including proliferation and apoptosis. One hypothesis suggested that miRNA was involved into the procedure via suppressing its target genes then triggered endoplasmic reticulum stress-induced apoptosis. Therefore, miRNAs play important roles in the regulation of the proliferation and apoptosis of myoblasts. In our study, the miR-147 has been explored. A cyclic mechanical stretch model was established to observe the features of rat L6 myoblasts. The detection of mRNA and protein levels was performed by qRT-PCR and western blot. L6 cell proliferation/apoptosis was checked by CCK-8 assay, DNA fragmentation assay, and caspase-3 activity assay. MiRNA transfections were performed as per the manufacturer's suggestions: (1) cyclic mechanical stretch induced apoptosis of L6 myoblasts and inhibition of miR-147; (2) miR-147 attenuated cyclic mechanical stretch-induced apoptosis of L6 myoblasts; (3) miR-147 attenuated cyclic mechanical stretch-induced L6 myoblast endoplasmic reticulum stress; (4) BRMS1 was a direct target of miR-147 in L6 myoblasts; (5) miR-147/BRMS1 axis participated in the regulation of cyclic mechanical stress on L6 myoblasts. MiR-147 attenuates endoplasmic reticulum stress by targeting BRMS1 to inhibit cyclic mechanical stretch-induced apoptosis of L6 myoblasts.
Collapse
Affiliation(s)
- Yanxiao Du
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Stomatology, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| | - Feng Yang
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Stomatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Di Lv
- Department of Stomatology, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| | - Qiang Zhang
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiao Yuan
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
14
|
Xiong J, Tu Y, Feng Z, Li D, Yang Z, Huang Q, Li Z, Cao Y, Jie Z. Epigenetics mechanisms mediate the miR-125a/BRMS1 axis to regulate invasion and metastasis in gastric cancer. Onco Targets Ther 2019; 12:7513-7525. [PMID: 31571904 PMCID: PMC6753057 DOI: 10.2147/ott.s210376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Altered expression of breast cancer metastasis suppressor 1 (BRMS1), is a tumor suppressor, which is found in many types of cancers, including gastric cancer (GC), but the mechanism by which BRMS1 inhibits invasion and metastasis in GC is unknown. The aim of the study was to investigate the molecular mechanisms of miR-125a/BRMS1 in GC. Materials and methods The expression of BRMS1 and miR-125a were detected by quantitative real-time PCR (qRT-PCR) and analyzed by bioinformatics. BSP and MSP were used to detecte the methylation status of miR-125a and BRMS1 which was treated by 5-Aza or not. Western Blot and qRT-PCR were used to analyze the expression of BRMS1 and EZH2. Transwell was performed to explore the invasion and metastasis ability of GC cells. The nude mice were used for the tumor formation assay. Results BRMS1 may be regulated by copy number variation (CNV), methylation and miR-125a-5p. As one of the essential components of PRC2, EZH2 is an important regulatory factor resulting in the low expression of miR-125a. An epigenetic mechanism mediates the miR-125a/BRMS1 axis to inhibit the invasion and metastasis of GC cells. In vivo experiments, it is also showed that BRMS1 is involved in invasion and metastasis but not the proliferation in GC. Conclusion These studies shed light on the mechanism of BRMS1 inhibition of GC invasion and metastasis and the development of new drugs targeting the miR-125a/BRMS1 axis, which will be a promising therapeutic strategy for GC and other human cancers.
Collapse
Affiliation(s)
- Jianbo Xiong
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yi Tu
- Department of Pathology, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zongfeng Feng
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Daojiang Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, People's Republic of China
| | - Zhouwen Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Qiuxia Huang
- Department of Nursing, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yi Cao
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
15
|
Plch J, Hrabeta J, Eckschlager T. KDM5 demethylases and their role in cancer cell chemoresistance. Int J Cancer 2018; 144:221-231. [PMID: 30246379 DOI: 10.1002/ijc.31881] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022]
Abstract
Histone methylation is important in the regulation of genes expression, and thus its dysregulation has been observed in various cancers. KDM5 enzymes are capable of removing tri- and di- methyl marks from lysine 4 on histone H3 (H3K4) which makes them potential players in the downregulation of tumor suppressors, but could also suggest that their activity repress oncogenes. Depending on the methylation site, their effect on transcription can be either activating or repressing. There is emerging evidence for deregulation of KDM5A/B/C/D and important phenotypic consequences in various types of cancer. It has been suggested that the KDM5 family of demethylases plays a role in the appearance of drug tolerance. Drug resistance remains a challenge to successful cancer treatment. This review summarizes recent advances in understanding the functions of KDM5 histone demethylases in cancer chemoresistance and potential therapeutic targeting of these enzymes, which seems to prevent the emergence of a drug-resistant population.
Collapse
Affiliation(s)
- Johana Plch
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty and University Hospital Motol, Prague, Czech Republic
| | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty and University Hospital Motol, Prague, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
16
|
Lee JH, Jeong H, Choi JW, Oh HE, Kim YS. Liquid biopsy prediction of axillary lymph node metastasis, cancer recurrence, and patient survival in breast cancer: A meta-analysis. Medicine (Baltimore) 2018; 97:e12862. [PMID: 30334995 PMCID: PMC6211877 DOI: 10.1097/md.0000000000012862] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Liquid biopsies using circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) have been developed for early cancer detection and patient monitoring. To investigate the clinical usefulness of ctDNA aberrations and cfDNA levels in patients with breast cancer (BC), we conducted a meta-analysis of 69 published studies on 5736 patients with BC. METHODS The relevant publications were identified by searching PubMed and Embase databases. The effect sizes of outcome parameters were pooled using a random-effects model. RESULTS The ctDNA mutation rates of TP53, PIK3CA, and ESR1 were approximately 38%, 27%, and 32%, respectively. High levels of cfDNA were associated with BCs rather than with healthy controls. However, these detection rates were not satisfactory for BC screening. Although the precise mechanisms have been unknown, high cfDNA levels were significantly associated with axillary lymph node metastasis (odds ratio [OR] = 2.148, P = .030). The ctDNA mutations were significantly associated with cancer recurrence (OR = 3.793, P < .001), short disease-free survival (univariate hazard ratio [HR] = 5.180, P = .026; multivariate HR = 3.605, P = .001), and progression-free survival (HR = 1.311, P = .013) rates, and poor overall survival outcomes (HR = 2.425, P = .007). CONCLUSION This meta-analysis demonstrates that ctDNA mutation status predicts disease recurrence and unfavorable survival outcomes, while cfDNA levels can be predictive of axillary lymph node metastasis in patients with BC.
Collapse
|
17
|
Zhang Y, Yang Y, Zhang F, Liao X, Shao Z, Li D. Epigenetic silencing of RNF144A expression in breast cancer cells through promoter hypermethylation and MBD4. Cancer Med 2018; 7:1317-1325. [PMID: 29473320 PMCID: PMC5911569 DOI: 10.1002/cam4.1324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence shows that ring finger protein 144A (RNF144A), a poorly characterized member of the Ring-between-Ring (RBR) family of E3 ubiquitin ligases, is a potential tumor suppressor gene. However, its regulatory mechanism in breast cancer remains undefined. Here, we report that RNF144A promoter contains a putative CpG island and the methylation levels of RNF144A promoter are higher in primary breast tumors than those in normal breast tissues. Consistently, RNF144A promoter methylation levels are associated with its transcriptional silencing in breast cancer cells, and treatment with DNA methylation inhibitor 5-Aza-2-deoxycytidine (AZA) reactivates RNF144A expression in cells with RNF144A promoter hypermethylation. Furthermore, genetic knockdown or pharmacological inhibition of endogenous methyl-CpG-binding domain 4 (MBD4) results in increased RNF144A expression. These findings suggest that RNF144A is epigenetically silenced in breast cancer cells by promoter hypermethylation and MBD4.
Collapse
Affiliation(s)
- Ye Zhang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yin‐Long Yang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Fang‐Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiao‐Hong Liao
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhi‐Min Shao
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Da‐Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
18
|
Mastoraki S, Strati A, Tzanikou E, Chimonidou M, Politaki E, Voutsina A, Psyrri A, Georgoulias V, Lianidou E. ESR1 Methylation: A Liquid Biopsy-Based Epigenetic Assay for the Follow-up of Patients with Metastatic Breast Cancer Receiving Endocrine Treatment. Clin Cancer Res 2017; 24:1500-1510. [PMID: 29284708 DOI: 10.1158/1078-0432.ccr-17-1181] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/29/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Liquid biopsy provides real-time monitoring of tumor evolution and response to therapy through analysis of circulating tumor cells (CTCs) and plasma-circulating tumor DNA (ctDNA). ESR1 epigenetic silencing potentially affects response to endocrine treatment. We evaluated ESR1 methylation in CTCs and paired plasma ctDNA. We evaluated ESR1 methylation in CTCs and paired plasma ctDNA as a potential biomarker for response to everolimus/exemestane treatment.Experimental Design: A highly sensitive and specific real-time MSP assay for ESR1 methylation was developed and validated in (i) 65 primary breast tumors formalin-fixed paraffin-embedded (FFPE), (ii) EpCAM+ CTC fractions (122 patients and 30 healthy donors; HD), (iii) plasma ctDNA (108 patients and 30HD), and (iv) in CTCs (CellSearch) and in paired plasma ctDNA for 58 patients with breast cancer. ESR1 methylation status was investigated in CTCs isolated from serial peripheral blood samples of 19 patients with ER+/HER2- advanced breast cancer receiving everolimus/exemestane.Results:ESR1 methylation was detected in: (i) 25/65 (38.5%) FFPEs, (ii) EpCAM+ CTC fractions: 26/112 (23.3%) patients and 1/30 (3.3%) HD, and (iii) plasma ctDNA: 8/108 (7.4%) patients and 1/30 (3.3%) HD. ESR1 methylation was highly concordant in 58 paired DNA samples, isolated from CTCs (CellSearch) and corresponding plasma. In serial peripheral blood samples of patients treated with everolimus/exemestane, ESR1 methylation was observed in 10/36 (27.8%) CTC-positive samples, and was associated with lack of response to treatment (P = 0.023, Fisher exact test).Conclusions: We report for the first time the detection of ESR1 methylation in CTCs and a high concordance with paired plasma ctDNA. ESR1 methylation in CTCs was associated with lack of response to everolimus/exemestane regimen. ESR1 methylation should be further evaluated as a potential liquid biopsy-based biomarker. Clin Cancer Res; 24(6); 1500-10. ©2017 AACR.
Collapse
Affiliation(s)
- Sophia Mastoraki
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Areti Strati
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Eleni Tzanikou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Maria Chimonidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | | | | | - Amanda Psyrri
- Oncology Unit, 2nd Department of Internal Medicine-Propaedeutic, Attikon University Hospital, Haidari, Greece
| | | | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece.
| |
Collapse
|
19
|
Chang Y, Tolani B, Nie X, Zhi X, Hu M, He B. Review of the clinical applications and technological advances of circulating tumor DNA in cancer monitoring. Ther Clin Risk Manag 2017; 13:1363-1374. [PMID: 29066904 PMCID: PMC5644666 DOI: 10.2147/tcrm.s141991] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) released by tumor cells, termed ctDNA, closely reflects the heterogeneity of primary cancers and their metastases. As a noninvasive, real-time monitoring biomarker, ctDNA is a promising tool for detecting driver gene mutations, assessing tumor burden and acquired resistance, and early diagnosis. However, isolation and enrichment of cfDNA is a big challenge due to the high degree of DNA fragmentation and its relatively low abundance in the bloodstream. This review aims to provide insights into the recent technological advances in acquisition of optimal quality cfDNA, the use of preservatives, isolation methods, processing timelines, and detection techniques. It also describes clinical applications of ctDNA in cancer patient management.
Collapse
Affiliation(s)
- Yi Chang
- Department of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Xiuhong Nie
- Department of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiuyi Zhi
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mu Hu
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
20
|
Benezeder T, Tiran V, Treitler AAN, Suppan C, Rossmann C, Stoeger H, Cote RJ, Datar RH, Balic M, Dandachi N. Multigene methylation analysis of enriched circulating tumor cells associates with poor progression-free survival in metastatic breast cancer patients. Oncotarget 2017; 8:92483-92496. [PMID: 29190932 PMCID: PMC5696198 DOI: 10.18632/oncotarget.21426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022] Open
Abstract
Blood-based biomarkers such as circulating tumor cells (CTCs) provide dynamic real-time assessment of molecular tumor characteristics beyond the primary tumor. The aim of this study was to evaluate the feasibility of a size-based microfilter to assess multigene methylation analysis of enriched CTCs in a prospective proof-of principle study. We examined the quantitative methylation status of nine genes (AKR1B1, BMP6, CST6, HOXB4, HIST1H3C, ITIH5, NEUROD1, RASSF1, SOX17) in enriched CTCs from metastatic breast cancer patients. Feasibility and clinical performance testing were assessed in a test set consisting of 37 patients and 25 healthy controls. With established cut-off values from the healthy control group, methylation of enriched CTCs was detected in at least one gene in 18/37 patients (48.6%), while 97.8% of all control samples were unmethylated. Patients with CTCs unmethylated for CST6, ITIH5, or RASSF1 showed significantly longer PFS compared to patients with corresponding enriched methylated CTCs. This proof-of-principle study shows the feasibility of a size-based microfilter to enrich and analyze multigene methylation profile of CTCs from metastatic breast cancer patients. For the first time, we report that multigene methylation analysis of enriched CTCs provides prognostic information in metastatic breast cancer patients.
Collapse
Affiliation(s)
- Theresa Benezeder
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Verena Tiran
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Alexandra A N Treitler
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Christoph Suppan
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Christopher Rossmann
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Herbert Stoeger
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Richard J Cote
- University of Miami Miller School of Medicine, Department of Pathology, Miami, Florida, U.S.A
| | - Ram H Datar
- University of Miami Miller School of Medicine, Department of Pathology, Miami, Florida, U.S.A
| | - Marija Balic
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria.,Medical University of Graz, Research Unit Circulating Tumor Cells and Cancer Stem Cells, Graz, Austria
| | - Nadia Dandachi
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria.,Medical University of Graz, Research Unit Epigenetic and Genetic Cancer Biomarkers, Division of Oncology, Graz, Austria
| |
Collapse
|
21
|
Mohan S, Chemi F, Brady G. Challenges and unanswered questions for the next decade of circulating tumour cell research in lung cancer. Transl Lung Cancer Res 2017; 6:454-472. [PMID: 28904889 DOI: 10.21037/tlcr.2017.06.04] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since blood borne circulating tumour cells (CTCs) initially shed from the primary tumour can seed and initiate metastasis at distant sites a better understanding of the biology of CTCs and their dissemination could provide valuable information that could guide therapeutic intervention and real time monitoring of disease progression. Although CTC enumeration has provided a reliable prognostic readout for a number of cancers, including lung cancer, the precise clinical utility of CTCs remains to be established. The rarity of CTCs together with the vanishingly small amounts of nucleic acids present in a single cell as well as cell to cell heterogeneity has stimulated the development of a wide range of powerful cellular and molecular methodologies applied to CTCs. These technical developments are now enabling researchers to focus on understanding the biology of CTCs and their clinical utility as a predictive and pharmacodynamics markers. This review summarises recent advances in the field of CTC research with focus on technical and biological challenges as well the progress made towards clinical utility of characterisation of CTCs with emphasis on studies in lung cancer.
Collapse
Affiliation(s)
- Sumitra Mohan
- Clinical and Experimental Pharmacology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Francesca Chemi
- Clinical and Experimental Pharmacology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Ged Brady
- Clinical and Experimental Pharmacology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Strati A, Koutsodontis G, Papaxoinis G, Angelidis I, Zavridou M, Economopoulou P, Kotsantis I, Avgeris M, Mazel M, Perisanidis C, Sasaki C, Alix-Panabières C, Lianidou E, Psyrri A. Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Ann Oncol 2017; 28:1923-1933. [DOI: 10.1093/annonc/mdx206] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
23
|
Chimonidou M, Strati A, Malamos N, Kouneli S, Georgoulias V, Lianidou E. Direct comparison study of DNA methylation markers in EpCAM-positive circulating tumour cells, corresponding circulating tumour DNA, and paired primary tumours in breast cancer. Oncotarget 2017; 8:72054-72068. [PMID: 29069768 PMCID: PMC5641111 DOI: 10.18632/oncotarget.18679] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/29/2017] [Indexed: 01/06/2023] Open
Abstract
Circulating Tumour Cells (CTCs) and circulating tumour DNA (ctDNA) represent a non-invasive liquid biopsy approach for the follow-up and therapy management of cancer patients. We evaluated whether DNA methylation status in CTCs and ctDNA is comparable and whether it reflects the status of primary tumours. We compared the methylation status of three genes, SOX17, CST6 and BRMS1 in primary tumours, corresponding CTCs and ctDNA in 153 breast cancer patients and healthy individuals, by using real time methylation specific PCR. We report a clear association between the EpCAM-positive CTC-fraction and ctDNA for SOX17 promoter methylation both for patients with early (P = 0.001) and metastatic breast cancer (P = 0.046) but not for CST6 and BRMS1. In early breast cancer, SOX17 promoter methylation in the EpCAM-positive CTC-fraction was associated with CK-19 mRNA expression (P = 0.006) and worse overall survival (OS) (P = 0.044). In the metastatic setting SOX17 promoter methylation in ctDNA was highly correlated with CK-19 (P = 0.04) and worse OS (Ρ = 0.016). SOX17 methylation status in CTCs and ctDNA was comparable and was associated with CK-19 expression but was not reflecting the status of primary tumours in breast cancer. DNA methylation analysis of SOX17 in CTCs and matched ctDNA provides significant prognostic value.
Collapse
Affiliation(s)
- Maria Chimonidou
- Analysis of Circulating Tumour Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Areti Strati
- Analysis of Circulating Tumour Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Nikos Malamos
- Department of Pathology, Oncology Unit, Helena Venizelou Hospital, Athens, Greece
| | - Sophia Kouneli
- Department of Pathology, Oncology Unit, Helena Venizelou Hospital, Athens, Greece
| | - Vassilis Georgoulias
- Laboratory of Tumour Cell Biology, Medical School, University of Crete, Heraklion, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumour Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
24
|
Panagopoulou M, Lambropoulou M, Balgkouranidou I, Nena E, Karaglani M, Nicolaidou C, Asimaki A, Konstantinidis T, Constantinidis TC, Kolios G, Kakolyris S, Agorastos T, Chatzaki E. Gene promoter methylation and protein expression of BRMS1 in uterine cervix in relation to high-risk human papilloma virus infection and cancer. Tumour Biol 2017; 39:1010428317697557. [PMID: 28381193 DOI: 10.1177/1010428317697557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cervical cancer is strongly related to certain high-risk types of human papilloma virus infection. Breast cancer metastasis suppressor 1 (BRMS1) is a tumor suppressor gene, its expression being regulated by DNA promoter methylation in several types of cancers. This study aims to evaluate the methylation status of BRMS1 promoter in relation to high-risk types of human papilloma virus infection and the development of pre-cancerous lesions and describe the pattern of BRMS1 protein expression in normal, high-risk types of human papilloma virus-infected pre-cancerous and malignant cervical epithelium. We compared the methylation status of BRMS1 in cervical smears of 64 women with no infection by high-risk types of human papilloma virus to 70 women with proven high-risk types of human papilloma virus infection, using real-time methylation-specific polymerase chain reaction. The expression of BRMS1 protein was described by immunohistochemistry in biopsies from cervical cancer, pre-cancerous lesions, and normal cervices. Methylation of BRMS1 promoter was detected in 37.5% of women with no high-risk types of human papilloma virus infection and was less frequent in smears with high-risk types of human papilloma virus (11.4%) and in women with pathological histology (cervical intraepithelial neoplasia) (11.9%). Methylation was detected also in HeLa cervical cancer cells. Immunohistochemistry revealed nuclear BRMS1 protein staining in normal high-risk types of human papilloma virus-free cervix, in cervical intraepithelial neoplasias, and in malignant tissues, where staining was occasionally also cytoplasmic. In cancer, expression was stronger in the more differentiated cancer blasts. In conclusion, BRMS1 promoter methylation and aberrant protein expression seem to be related to high-risk types of human papilloma virus-induced carcinogenesis in uterine cervix and is worthy of further investigation.
Collapse
Affiliation(s)
- Maria Panagopoulou
- 1 Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Lambropoulou
- 2 Laboratory of Histology-Embryology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Balgkouranidou
- 1 Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.,3 Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Evangelia Nena
- 4 Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Makrina Karaglani
- 1 Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Nicolaidou
- 2 Laboratory of Histology-Embryology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anthi Asimaki
- 5 Fourth University Clinic of Obstetrics and Gynecology, Hippokrateion Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theocharis Konstantinidis
- 4 Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodoros C Constantinidis
- 4 Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- 1 Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stylianos Kakolyris
- 3 Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodoros Agorastos
- 5 Fourth University Clinic of Obstetrics and Gynecology, Hippokrateion Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ekaterini Chatzaki
- 1 Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
25
|
Circulating tumor cells: clinical validity and utility. Int J Clin Oncol 2017; 22:421-430. [PMID: 28238187 DOI: 10.1007/s10147-017-1105-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/17/2022]
Abstract
Circulating tumor cells (CTCs) are rare tumor cells and have been investigated as diagnostic, prognostic and predictive biomarkers in many types of cancer. Although CTCs are not currently used in clinical practice, CTC studies have accumulated a high level of clinical validity, especially in breast, lung, prostate and colorectal cancers. In this review, we present an overview of the current clinical validity of CTCs in metastatic and non-metastatic disease, and the main concepts and studies investigating the clinical utility of CTCs. In particular, this review will focus on breast, lung, colorectal and prostate cancer. Three major topics concerning the clinical utility of CTC are discussed-(1) treatment based on CTCs used as liquid biopsy, (2) treatment based on CTC count or CTC variations, and (3) treatment based on CTC biomarker expression. A summary of published or ongoing phase II and III trials is also presented.
Collapse
|
26
|
Tadimety A, Syed A, Nie Y, Long CR, Kready KM, Zhang JXJ. Liquid biopsy on chip: a paradigm shift towards the understanding of cancer metastasis. Integr Biol (Camb) 2017; 9:22-49. [DOI: 10.1039/c6ib00202a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Amogha Tadimety
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
| | - Abeer Syed
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
| | - Yuan Nie
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
| | - Christina R. Long
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
| | - Kasia M. Kready
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
| | - John X. J. Zhang
- Thayer School of Engineering at Dartmouth College, Hanover NH, 03755, USA
- Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon NH, 03766, USA
| |
Collapse
|
27
|
Analysis of DNA methylation in single circulating tumor cells. Oncogene 2017; 36:3223-3231. [PMID: 28068321 DOI: 10.1038/onc.2016.480] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 01/01/2023]
Abstract
Direct analysis of circulating tumor cells (CTCs) can inform on molecular mechanisms underlying systemic spread. Here we investigated promoter methylation of three genes regulating epithelial-to-mesenchymal transition (EMT), a key mechanism enabling epithelial tumor cells to disseminate and metastasize. For this, we developed a single-cell protocol based on agarose-embedded bisulfite treatment, which allows investigating DNA methylation of multiple loci via a multiplex PCR (multiplexed-scAEBS). We established our assay for the simultaneous analysis of three EMT-associated genes miR-200c/141, miR-200b/a/429 and CDH1 in single cells. The assay was validated in solitary cells of GM14667, MDA-MB-231 and MCF-7 cell lines, achieving a DNA amplification efficiency of 70% with methylation patterns identical to the respective bulk DNA. Then we applied multiplexed-scAEBS to 159 single CTCs from 11 patients with metastatic breast and six with metastatic castration-resistant prostate cancer, isolated via CellSearch (EpCAMpos/CKpos/CD45neg/DAPIpos) and subsequent FACS sorting. In contrast to CD45pos white blood cells isolated and processed by the identical approach, we observed in the isolated CTCs methylation patterns resembling more those of epithelial-like cells. Methylation at the promoter of microRNA-200 family was significantly higher in prostate CTCs. Data from our single-cell analysis revealed an epigenetic heterogeneity among CTCs and indicates tumor-specific active epigenetic regulation of EMT-associated genes during blood-borne dissemination.
Collapse
|
28
|
Development and validation of a multiplex methylation specific PCR-coupled liquid bead array for liquid biopsy analysis. Clin Chim Acta 2016; 461:156-64. [DOI: 10.1016/j.cca.2016.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/06/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
|
29
|
Murlidhar V, Rivera-Báez L, Nagrath S. Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4450-63. [PMID: 27436104 DOI: 10.1002/smll.201601394] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/30/2016] [Indexed: 05/21/2023]
Abstract
The study of circulating tumor cells (CTCs) has been made possible by many technological advances in their isolation. Their isolation has seen many fronts, but each technology brings forth a new set of challenges to overcome. Microfluidics has been a key player in the capture of CTCs and their downstream analysis, with the aim of shedding light into their clinical application in cancer and metastasis. Researchers have taken diverging paths to isolate such cells from blood, ranging from affinity-based isolation targeting surface antigens expressed on CTCs, to label-free isolation taking advantage of the size differences between CTCs and other blood cells. For both major groups, many microfluidic technologies have reported high sensitivity and specificity for capturing CTCs. However, the question remains as to the superiority among these two isolation techniques, specifically to identify different CTC populations. This review highlights the key aspects of affinity and label-free microfluidic CTC technologies, and discusses which of these two would be the highest benefactor for the study of CTCs.
Collapse
Affiliation(s)
- Vasudha Murlidhar
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street Ann Arbor, MI, 48109, USA
- Biointerfaces Institute (BI), University of Michigan, North Campus Research Complex 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Translational Oncology Program (TOP), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lianette Rivera-Báez
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street Ann Arbor, MI, 48109, USA
- Biointerfaces Institute (BI), University of Michigan, North Campus Research Complex 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Translational Oncology Program (TOP), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street Ann Arbor, MI, 48109, USA
- Biointerfaces Institute (BI), University of Michigan, North Campus Research Complex 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Translational Oncology Program (TOP), University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
30
|
Openshaw MR, Page K, Fernandez-Garcia D, Guttery D, Shaw JA. The role of ctDNA detection and the potential of the liquid biopsy for breast cancer monitoring. Expert Rev Mol Diagn 2016; 16:751-5. [PMID: 27144417 DOI: 10.1080/14737159.2016.1184974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Recent advances in deep amplicon sequencing have enabled rapid assessment of somatic mutations and structural changes in multiple cancer genes in DNA isolated from tumour tissues and circulating cell-free DNA (cfDNA). This cfDNA is under investigation as a 'liquid biopsy' for the real time monitoring of patients with cancer in a growing number of research studies and clinical trials. AREAS COVERED Here we will provide a brief overview of the potential clinical utility of cfDNA profiling for detection and monitoring of patients with breast cancer. The review was conducted in English using PubMed and search terms including 'breast cancer', 'plasma DNA', 'circulating cell free DNA' and 'circulating tumour DNA'. Expert commentary: Liquid biopsies through circulating tumor DNA (ctDNA) enable monitoring of patients with breast cancer. The challenge ahead will be to incorporate cfDNA mutation profiling into routine clinical practice to provide patients with the most appropriate and timely treatment.
Collapse
Affiliation(s)
- Mark Robert Openshaw
- a Department of Cancer Studies , University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary , Leicester , UK
| | - Karen Page
- a Department of Cancer Studies , University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary , Leicester , UK
| | - Daniel Fernandez-Garcia
- a Department of Cancer Studies , University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary , Leicester , UK
| | - David Guttery
- a Department of Cancer Studies , University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary , Leicester , UK
| | - Jacqueline Amanda Shaw
- a Department of Cancer Studies , University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary , Leicester , UK
| |
Collapse
|
31
|
Huang W, Qi CB, Lv SW, Xie M, Feng YQ, Huang WH, Yuan BF. Correction to Determination of DNA and RNA Methylation in Circulating Tumor Cells by Mass Spectrometry. Anal Chem 2016; 88:4581. [PMID: 27046000 DOI: 10.1021/acs.analchem.6b01215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Lianidou ES. Gene expression profiling and DNA methylation analyses of CTCs. Mol Oncol 2016; 10:431-42. [PMID: 26880168 DOI: 10.1016/j.molonc.2016.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 01/26/2023] Open
Abstract
A variety of molecular assays have been developed for CTCs detection and molecular characterization. Molecular assays are based on the nucleic acid analysis in CTCs and are based on total RNA isolation and subsequent mRNA quantification of specific genes, or isolation of genomic DNA that can be for DNA methylation studies and mutation analysis. This review is mainly focused on gene expression and methylation studies in CTCs in various types of cancer.
Collapse
Affiliation(s)
- Evi S Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, 15771, Greece.
| |
Collapse
|
33
|
Bidard FC, Proudhon C, Pierga JY. Circulating tumor cells in breast cancer. Mol Oncol 2016; 10:418-30. [PMID: 26809472 PMCID: PMC5528978 DOI: 10.1016/j.molonc.2016.01.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/12/2015] [Accepted: 01/04/2016] [Indexed: 01/06/2023] Open
Abstract
Over the past decade, technically reliable circulating tumor cell (CTC) detection methods allowed the collection of large datasets of CTC counts in cancer patients. These data can be used either as a dynamic prognostic biomarker or as tumor material for “liquid biopsy”. Breast cancer appears to be the cancer type in which CTC have been the most extensively studied so far, with level‐of‐evidence‐1 studies supporting the clinical validity of CTC count in both early and metastatic stage. This review summarizes and discusses the clinical results obtained in breast cancer patients, the issues faced by the molecular characterization of CTC and the biological findings about cancer biology and metastasis that were obtained from CTC. In metastatic breast cancer, CTC count is a level‐of‐evidence 1 prognostic dynamic biomarker. Several interventional trials are ongoing to demonstrate the clinical utility of CTC detection in metastatic breast cancer. In early breast cancer, CTC count is also a prognostic biomarker, not correlated with the other usual prognostic factors. Molecular characterization of CTC is promising, trials with anti‐HER2 therapy are ongoing.
Collapse
Affiliation(s)
- Francois-Clement Bidard
- Institut Curie, PSL Research University, SiRIC, Laboratory of Circulating Tumor Biomarkers, Paris, France; Institut Curie, PSL Research University, Department of Medical Oncology, Paris, France
| | - Charlotte Proudhon
- Institut Curie, PSL Research University, SiRIC, Laboratory of Circulating Tumor Biomarkers, Paris, France
| | - Jean-Yves Pierga
- Institut Curie, PSL Research University, SiRIC, Laboratory of Circulating Tumor Biomarkers, Paris, France; Institut Curie, PSL Research University, Department of Medical Oncology, Paris, France; Université Paris Descartes, Paris, France.
| |
Collapse
|
34
|
Welch D, Manton C, Hurst D. Breast Cancer Metastasis Suppressor 1 (BRMS1): Robust Biological and Pathological Data, But Still Enigmatic Mechanism of Action. Adv Cancer Res 2016; 132:111-37. [PMID: 27613131 DOI: 10.1016/bs.acr.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metastasis requires coordinated expression of multiple genetic cassettes, often via epigenetic regulation of gene transcription. BRMS1 blocks metastasis, but not orthotopic tumor growth in multiple tumor types, presumably via SIN3 chromatin remodeling complexes. Although there is an abundance of strong data supporting BRMS1 as a metastasis suppressor, the mechanistic data directly connecting molecular pathways with inhibition of particular steps in metastasis are not well defined. In this review, the data for BRMS1-mediated metastasis suppression in multiple tumor types are discussed along with the steps in metastasis that are inhibited.
Collapse
|
35
|
Pixberg CF, Schulz WA, Stoecklein NH, Neves RPL. Characterization of DNA Methylation in Circulating Tumor Cells. Genes (Basel) 2015; 6:1053-75. [PMID: 26506390 PMCID: PMC4690028 DOI: 10.3390/genes6041053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Epigenetics contributes to molecular mechanisms leading to tumor cell transformation and systemic progression of cancer. However, the dynamics of epigenetic remodeling during metastasis remains unexplored. In this context, circulating tumor cells (CTCs) might enable a direct insight into epigenetic mechanisms relevant for metastasis by providing direct access to systemic cancer. CTCs can be used as prognostic markers in cancer patients and are regarded as potential metastatic precursor cells. However, despite substantial technical progress, the detection and molecular characterization of CTCs remain challenging, in particular the analysis of DNA methylation. As recent studies have started to address the epigenetic state of CTCs, we discuss here the potential of such investigations to elucidate mechanisms of metastasis and to develop tumor biomarkers.
Collapse
Affiliation(s)
- Constantin F Pixberg
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Wolfgang A Schulz
- Department of Urology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Rui P L Neves
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
36
|
Kodura MA, Souchelnytskyi S. Breast carcinoma metastasis suppressor gene 1 (BRMS1): update on its role as the suppressor of cancer metastases. Cancer Metastasis Rev 2015; 34:611-8. [DOI: 10.1007/s10555-015-9583-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Ren C, Han C, Fu D, Wang D, Chen H, Chen Y, Shen M. Circulating tumor cells in breast cancer beyond the genotype of primary tumor for tailored therapy. Int J Cancer 2015; 138:1586-600. [PMID: 26178386 DOI: 10.1002/ijc.29679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022]
Abstract
Although TNM staging based on tumor, node lymph status and metastasis status-is the most widely used method in the clinic to classify breast cancer (BC) and assess prognosis, it offers limited information for different BC subgroups. Circulating tumor cells (CTCs) are regarded as minimal residual disease and are proven to have a strong relationship with BC. Detection of ≥5 CTCs per 7.5 mL in peripheral blood predicts poor prognosis in metastatic BC irrespective of other clinical parameters, whereas, in early-stage BC, detection of CK19(+) CTCs are also associated with poor prognosis. Increasing data and clinical trials show that CTCs can improve prognostic accuracy and help tailor treatment for patients with BC. However, heterogeneous CTCs in the process of an epithelial-mesenchymal transition (EMT) in BC makes it a challenge to detect these rare cells. Moreover, the genotypic and phenotypic features of CTCs are different from primary BC tumors. Molecular analysis of CTCs in BC may benefit patients by identifying those amenable to tailored therapy. We propose that CTCs should be used alongside the TNM staging system and the genotype of primary tumor to guide tailored BC diagnosis and treatment.
Collapse
Affiliation(s)
- Chuanli Ren
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Epidemiology and Biostatistics, Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chongxu Han
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Deyuan Fu
- Breast Oncology Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Daxin Wang
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Hui Chen
- Geriatric Medicine Department, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Yong Chen
- Oncology Department, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Ming Shen
- Department of Physical Chemistry, Yangzhou University, Yangzhou, China
| |
Collapse
|
38
|
Liu Y, Tian F, Hu Z, DeLisi C. Evaluation and integration of cancer gene classifiers: identification and ranking of plausible drivers. Sci Rep 2015; 5:10204. [PMID: 25961669 PMCID: PMC4650817 DOI: 10.1038/srep10204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/02/2015] [Indexed: 12/22/2022] Open
Abstract
The number of mutated genes in cancer cells is far larger than the number of mutations that drive cancer. The difficulty this creates for identifying relevant alterations has stimulated the development of various computational approaches to distinguishing drivers from bystanders. We develop and apply an ensemble classifier (EC) machine learning method, which integrates 10 classifiers that are publically available, and apply it to breast and ovarian cancer. In particular we find the following: (1) Using both standard and non-standard metrics, EC almost always outperforms single method classifiers, often by wide margins. (2) Of the 50 highest ranked genes for breast (ovarian) cancer, 34 (30) are associated with other cancers in either the OMIM, CGC or NCG database (P < 10−22). (3) Another 10, for both breast and ovarian cancer, have been identified by GWAS studies. (4) Several of the remaining genes--including a protein kinase that regulates the Fra-1 transcription factor which is overexpressed in ER negative breast cancer cells; and Fyn, which is overexpressed in pancreatic and prostate cancer, among others--are biologically plausible. Biological implications are briefly discussed. Source codes and detailed results are available at http://www.visantnet.org/misi/driver_integration.zip.
Collapse
Affiliation(s)
- Yang Liu
- Bioinformatics Graduate Program, and Department of Biomedical Engineering, Boston. University, 24 Cummington Mall, Boston, MA 02215, USA
| | - Feng Tian
- Bioinformatics Graduate Program, and Department of Biomedical Engineering, Boston. University, 24 Cummington Mall, Boston, MA 02215, USA
| | - Zhenjun Hu
- Bioinformatics Graduate Program, and Department of Biomedical Engineering, Boston. University, 24 Cummington Mall, Boston, MA 02215, USA
| | - Charles DeLisi
- Bioinformatics Graduate Program, and Department of Biomedical Engineering, Boston. University, 24 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
39
|
Xing WJ, Liao XH, Wang N, Zhao DW, Zheng L, Zheng DL, Dong J, Zhang TC. MRTF-A and STAT3 promote MDA-MB-231 cell migration via hypermethylating BRSM1. IUBMB Life 2015; 67:202-17. [PMID: 25854163 DOI: 10.1002/iub.1362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 11/05/2022]
Abstract
Breast cancer is the leading cause of cancer death in women worldwide which is closely related to metastasis. But the exact molecular mechanism of metastasis is still not fully understood. We now report that both MRTF-A and STAT3 play important roles in migration of MDA-MB-231 breast cancer cells. Moreover, MRTF-A and STAT3 synergistically increased MDA-MB-231 cell migration by promoting the expression of migration markers urokinase-type plasminogen activator (uPA) and osteopontin (OPN) and inhibiting the expression of breast cancer metastasis suppressor 1 (BRMS1). Luciferase reporter assays demonstrated that MRTF-A and STAT3 do not affect transcription of the BRMS1 promoter. Instead, we identified a newly molecular mechanism by which MRTF-A and STAT3 synergistically controlled MDA-MB-231 cell migration by recruiting DNMT1 to hypermethylate the promoter of BRMS1 and thus affect the expression of BRMS1. Interestingly, physical interaction between MRTF-A and STAT3 synergistically promotes the transactivity of DNMT1 by binding to the GAS element within the DNMT1 promoter. Our data thus provide important and novel insights into the roles of MRTF-A and STAT3 in regulating MDA-MB-231 cell migration.
Collapse
Affiliation(s)
- Wen-Jing Xing
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell's Journey. CANCER MICROENVIRONMENT 2014; 7:117-31. [PMID: 24938990 DOI: 10.1007/s12307-014-0148-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/08/2014] [Indexed: 12/21/2022]
Abstract
Metastasis is the process of primary tumor cells breaking away and colonizing distant secondary sites. In order for a tumor cell growing in one microenvironment to travel to, and flourish in, a secondary environment, it must survive a series of events termed the metastatic cascade. Before departing the primary tumor, cells acquire genetic and epigenetic changes that endow them with properties not usually associated with related normal differentiated cells. Those cells also induce a subset of bone marrow-derived stem cells to mobilize and establish pre-metastatic niches [1]. Many tumor cells undergo epithelial-to-mesenchymal transition (EMT), where they transiently acquire morphologic changes, reduced requirements for cell-cell contact and become more invasive [2]. Invasive tumor cells eventually enter the circulatory (hematogenous) or lymphatic systems or travel across body cavities. In transit, tumor cells must resist anoikis, survive sheer forces and evade detection by the immune system. For blood-borne metastases, surviving cells then arrest or adhere to endothelial linings before either proliferating or extravasating. Eventually, tumor cells complete the process by proliferating to form a macroscopic mass [3].Up to 90 % of all cancer related morbidity and mortality can be attributed to metastasis. Surgery manages to ablate most primary tumors, especially when combined with chemotherapy and radiation. But if cells have disseminated, survival rates drop precipitously. While multiple parameters of the primary tumor are predictive of local or distant relapse, biopsies remain an imperfect science. The introduction of molecular and other biomarkers [4, 5] continue to improve the accuracy of prognosis. However, the invasive procedure introduces new complications for the patient. Likewise, the heterogeneity of any tumor population [3, 6, 7] means that sampling error (i.e., since it is impractical to examine the entire tumor) necessitates further improvements.In the case of breast cancer, for example, women diagnosed with stage I diseases (i.e., no evidence of invasion through a basement membrane) still have a ~30 % likelihood of developing distant metastases [8]. Many physicians and patients opt for additional chemotherapy in order to "mop up" cells that have disseminated and have the potential to grow into macroscopic metastases. This means that ~ 70 % of patients receive unnecessary therapy, which has undesirable side effects. Therefore, improving prognostic capability is highly desirable.Recent advances allow profiling of primary tumor DNA sequences and gene expression patterns to define a so-called metastatic signature [9-11], which can be predictive of patient outcome. However, the genetic changes that a tumor cell must undergo to survive the initial events of the metastatic cascade and colonize a second location belie a plasticity that may not be adequately captured in a sampling of heterogeneous tumors. In order to tailor or personalize patient treatments, a more accurate assessment of the genetic profile in the metastases is needed. Biopsy of each individual metastasis is not practical, safe, nor particularly cost-effective. In recent years, there has been a resurrection of the notion to do a 'liquid biopsy,' which essentially involves sampling of circulating tumor cells (CTC) and/or cell free nucleic acids (cfDNA, including microRNA (miRNA)) present in blood and lymph [12-16].The rationale for liquid biopsy is that tumors shed cells and/or genetic fragments into the circulation, theoretically making the blood representative of not only the primary tumor but also distant metastases. Logically, one would predict that the proportion of CTC and/or cfDNA would be proportionate to the likelihood of developing metastases [14]. While a linear relationship does not exist, the information within CTC or cfDNA is beginning to show great promise for enabling a global snapshot of the disease. However, the CTC and cfDNA are present at extremely low levels. Nonetheless, newer technologies capture enough material to enrich and sequence the patient's DNA or quantification of some biomarkers.Among the biomarkers showing great promise are metastasis suppressors which, by definition, block a tumor cell's ability to complete the metastatic process without prohibiting primary tumor growth [17]. Since the discovery of the first metastasis suppressor, Nm23, more than 30 have been functionally characterized. They function at various stages of the metastatic cascade, but their mechanisms of action, for the most part, remain ill-defined. Deciphering the molecular interactions of functional metastasis suppressors may provide insights for targeted therapies when these regulators cease to function and result in metastatic disease.In this brief review, we summarize what is known about the various metastasis suppressors and their functions at individual steps of the metastatic cascade (Table 1). Some of the subdivisions are rather arbitrary in nature, since many metastasis suppressors affect more than one step in the metastatic cascade. Nonetheless what emerges is a realization that metastasis suppressors are intimately associated with the microenvironments in which cancer cells find themselves [18].
Collapse
|
41
|
Shiomi-Mouri Y, Kousaka J, Ando T, Tetsuka R, Nakano S, Yoshida M, Fujii K, Akizuki M, Imai T, Fukutomi T, Kobayashi K. Clinical significance of circulating tumor cells (CTCs) with respect to optimal cut-off value and tumor markers in advanced/metastatic breast cancer. Breast Cancer 2014; 23:120-127. [DOI: 10.1007/s12282-014-0539-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/09/2014] [Indexed: 11/24/2022]
|
42
|
Breast cancer metastasis suppressor-1 promoter methylation in cell-free DNA provides prognostic information in non-small cell lung cancer. Br J Cancer 2014; 110:2054-62. [PMID: 24642624 PMCID: PMC3992488 DOI: 10.1038/bjc.2014.104] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/19/2014] [Accepted: 01/23/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Breast-cancer metastasis suppressor 1 (BRMS1) gene encodes for a predominantly nuclear protein that differentially regulates the expression of multiple genes, leading to suppression of metastasis without blocking orthotropic tumour growth. The aim of the present study was to evaluate for the first time the prognostic significance of BRMS1 promoter methylation in cell-free DNA (cfDNA) circulating in plasma of non-small cell lung cancer (NSCLC) patients. Towards this goal, we examined the methylation status of BRMS1 promoter in NSCLC tissues, matched adjacent non-cancerous tissues and corresponding cfDNA as well as in an independent cohort of patients with advanced NSCLC and healthy individuals. METHODS Methylation of BRMS1 promoter was examined in 57 NSCLC tumours and adjacent non-cancerous tissues, in cfDNA isolated from 48 corresponding plasma samples, in cfDNA isolated from plasma of 74 patients with advanced NSCLC and 24 healthy individuals. RESULTS The BRMS1 promoter was highly methylated both in operable NSCLC primary tissues (59.6%) and in corresponding cfDNA (47.9%) but not in cfDNA from healthy individuals (0%), while it was also highly methylated in cfDNA from advanced NSCLC patients (63.5%). In operable NSCLC, Kaplan-Meier estimates were significantly different in favour of patients with non-methylated BRMS1 promoter in cfDNA, concerning both disease-free interval (DFI) (P=0.048) and overall survival (OS) (P=0.007). In advanced NSCLC, OS was significantly different in favour of patients with non-methylated BRMS1 promoter in their cfDNA (P=0.003). Multivariate analysis confirmed that BRMS1 promoter methylation has a statistical significant influence both on operable NSCLC patients' DFI time and OS and on advanced NSCLC patients' PFS and OS. CONCLUSIONS Methylation of BRMS1 promoter in cfDNA isolated from plasma of NSCLC patients provides important prognostic information and merits to be further evaluated as a circulating tumour biomarker.
Collapse
|
43
|
Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol 2014; 11:129-44. [PMID: 24445517 DOI: 10.1038/nrclinonc.2013.253] [Citation(s) in RCA: 464] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growing evidence for intratumour heterogeneity informs us that single-site biopsies fall short of revealing the complete genomic landscape of a tumour. With an expanding repertoire of targeted agents entering the clinic, screening tumours for genomic aberrations is increasingly important, as is interrogating the tumours for resistance mechanisms upon disease progression. Multiple biopsies separated spatially and temporally are impractical, uncomfortable for the patient and not without risk. Here, we describe how circulating tumour cells (CTCs), captured from a minimally invasive blood test-and readily amenable to serial sampling-have the potential to inform intratumour heterogeneity and tumour evolution, although it remains to be determined how useful this will be in the clinic. Technologies for detecting and isolating CTCs include the validated CellSearch(®) system, but other technologies are gaining prominence. We also discuss how recent CTC discoveries map to mechanisms of haematological spread, previously described in preclinical models, including evidence for epithelial-mesenchymal transition, collective cell migration and cells with tumour-initiating capacity within the circulation. Advances in single-cell molecular analysis are enhancing our ability to explore mechanisms of metastasis, and the combination of CTC and cell-free DNA assays are anticipated to provide invaluable blood-borne biomarkers for real-time patient monitoring and treatment stratification.
Collapse
Affiliation(s)
- Matthew G Krebs
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, 550 Wilmslow Road, Manchester M20 4BX, UK
| | - Robert L Metcalf
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, 550 Wilmslow Road, Manchester M20 4BX, UK
| | - Louise Carter
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, 550 Wilmslow Road, Manchester M20 4BX, UK
| | - Ged Brady
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, 550 Wilmslow Road, Manchester M20 4BX, UK
| | - Fiona H Blackhall
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, 550 Wilmslow Road, Manchester M20 4BX, UK
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester and Manchester Cancer Research Centre, 550 Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|