1
|
Liu J, Wang H, Wan H, Yang J, Gao L, Wang Z, Zhang X, Han W, Peng J, Yang L, Hong L. NEK6 dampens FOXO3 nuclear translocation to stabilize C-MYC and promotes subsequent de novo purine synthesis to support ovarian cancer chemoresistance. Cell Death Dis 2024; 15:661. [PMID: 39256367 PMCID: PMC11387829 DOI: 10.1038/s41419-024-07045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
De novo purine synthesis metabolism plays a crucial role in tumor cell survival and malignant progression. However, the specific impact of this metabolic pathway on chemoresistance in ovarian cancer remains unclear. This study aims to elucidate the influence of de novo purine synthesis on chemoresistance in ovarian cancer and its underlying regulatory mechanisms. We analyzed metabolic differences between chemosensitive and chemoresistant ovarian cancer tissues using mass spectrometry-based metabolomics. Cell growth, metabolism, chemoresistance, and DNA damage repair characteristics were assessed in vitro using cell line models. Tumor growth and chemoresistance were assessed in vivo using ovarian cancer xenograft tumors. Intervention of purines and NEK6-mediated purine metabolism on chemoresistance was investigated at multiple levels. Chemoresistant ovarian cancers exhibited higher purine abundance and NEK6 expression. Inhibiting NEK6 led to decreased de novo purine synthesis, resulting in diminished chemoresistance in ovarian cancer cells. Mechanistically, NEK6 directly interacted with FOXO3, contributing to the phosphorylation of FOXO3 at S7 through its kinase activity, thereby inhibiting its nuclear translocation. Nuclear FOXO3 promoted FBXW7 transcription, leading to c-MYC ubiquitination and suppression of de novo purine synthesis. Paeonol, by inhibiting NEK6, suppressed de novo purine synthesis and enhanced chemosensitivity. The NEK6-mediated reprogramming of de novo purine synthesis emerges as a critical pathway influencing chemoresistance in ovarian cancer. Paeonol exhibits the potential to interfere with NEK6, thereby inhibiting chemoresistance.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Haoyu Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Huanzhi Wan
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jiang Yang
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Xiangyang, Hubei, China
| | - Likun Gao
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Zhi Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xiaoyi Zhang
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Wuyue Han
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jiaxin Peng
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Lian Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Li YX, Yan Q, Liu TW, Wang JX, Zhao XF. Lipases are differentially regulated by hormones to maintain free fatty acid homeostasis for insect brain development. BMC Biol 2024; 22:171. [PMID: 39135168 PMCID: PMC11321213 DOI: 10.1186/s12915-024-01973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiao Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Guo J, Wang J, Zhang P, Wen P, Zhang S, Dong X, Dong J. TRIM6 promotes glioma malignant progression by enhancing FOXO3A ubiquitination and degradation. Transl Oncol 2024; 46:101999. [PMID: 38759605 PMCID: PMC11127279 DOI: 10.1016/j.tranon.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
PURPOSE TRIM6, an E3 ubiquitin ligase with tripartite motif, directly targets protein substrates for degradation through ubiquitination. Studies have shown that TRIM6 plays a significant role in tumor development in various human malignancies. Thus, the aim of this study was to investigate the importance of TRIM6 and its associated mechanism in promoting the progression of glioma. METHODS The expression of TRIM6 and its prognostic value in glioma patients were collected from the TCGA and CGGA databases. The effects of TRIM6 on glioma were investigated in vitro by CCK8, colony formation, wound healing, and transwell assays. Co-IP and western blot analysis were used to detect the interaction between TRIM6 and FOXO3A. The effects of TRIM6 were verified in vivo in subcutaneously xenograft models, and tumor size, and immunohistochemical changes were observed. RESULTS Our analysis of TRIM6 expression in glioma tissues revealed a high level of expression, and the heightened expression of TRIM6 showed a positive correlation with the unfavorable prognosis among glioma/GBM patients. Through loss-of-function and gain-of-function experiments, we observed a profound impact on the proliferation, invasion, and migration abilities of glioma cells both in vitro and in vivo upon deletion of TRIM6. Conversely, the overexpression of TRIM6 intensified the malignant characteristics of glioma. Additionally, our findings revealed a significant interaction between TRIM6 and FOXO3A, wherein TRIM6 contributed to the destabilization of FOXO3A protein by promoting its ubiquitination and subsequent degradation. Experiments conducted in the rescue study affirmed that the promotion of glioma cell proliferation, invasion, and migration is facilitated by TRIM6 through the suppression of FOXO3A protein levels. CONCLUSIONS These observations imply that the TRIM6-FOXO3A axis could potentially serve as an innovative focus for intervening in glioma.
Collapse
Affiliation(s)
- Jingpeng Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; Department of Neurosurgery, Fuyang People's Hospital, Fuyang, Anhui 236000, China
| | - Ji Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Peng Zhang
- Department of Neurosurgery, The People's Hospital of Rugao, Nantong, Jiangsu 226500, China
| | - Ping Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shoudan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xuchen Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.
| |
Collapse
|
4
|
Xu M, Zhao Y, Gong M, He Z, Wang W, Li Y, Zhai W, Yu Z. Dehydroevodiamine ameliorates neurological dysfunction after traumatic brain injury in mice via regulating the SIRT1/FOXO3a/Bim pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155321. [PMID: 38237514 DOI: 10.1016/j.phymed.2023.155321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) poses a considerable public health challenge, resulting in mortality, disability, and economic strain. Dehydroevodiamine (DEDM) is a natural compound derived from a traditional Chinese herbal medicine. Prior studies have substantiated the neuroprotective attributes of this compound in the context of TBI. Nevertheless, a comprehensive comprehension of the exact mechanisms responsible for its neuroprotective effects remains elusive. It is imperative to elucidate the precise intrinsic mechanisms underlying the neuroprotective actions of DEDM. PURPOSE The aim of this investigation was to elucidate the mechanism underlying DEDM treatment in TBI utilizing both in vivo and in vitro models. Specifically, our focus was on comprehending the impact of DEDM on the Sirtuin1 (SIRT1) / Forkhead box O3 (FOXO3a) / Bcl-2-like protein 11 (Bim) pathway, a pivotal player in TBI-induced cell death attributed to oxidative stress. STUDY DESIGN AND METHODS We established a TBI mouse model via the weight drop method. Following continuous intraperitoneal administration, we assessed the neurological dysfunction using the Modified Neurological Severity Score (mNSS) and behavioral assay, followed by sample collection. Secondary brain damage in mice was evaluated through Nissl staining, brain water content measurement, Evans blue detection, and Western blot assays. We scrutinized the expression levels of oxidative stress-related indicators and key proteins for apoptosis. The intricate mechanism of DEDM in TBI was further explored through immunofluorescence, Co-immunoprecipitation (Co-IP) assays, real-time quantitative PCR (RT-qPCR), dual-luciferase assays and western blotting. Additionally, we further investigated the specific therapeutic mechanism of DEDM in an oxidative stress cell model. RESULTS The results indicated that DEDM effectively ameliorated oxidative stress and apoptosis post-TBI, mitigating neurological dysfunction and brain injury in mice. DEDM facilitated the deacetylation of FOXO3a by up-regulating the expression of the deacetylase SIRT1, consequently suppressing Bim expression. This mechanism contributed to the alleviation of neurological injury and symptom improvement in TBI-afflicted mice. Remarkably, SIRT1 emerged as a central mediator in the overall treatment mechanism. CONCLUSIONS DEDM exerted significant neuroprotective effects on TBI mice by modulating the SIRT1/FOXO3a/Bim pathway. Our innovative research provides a basis for further exploration of the clinical therapeutic potential of DEDM in the context of TBI.
Collapse
Affiliation(s)
- Min Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yalin Zhao
- School of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine in Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210023, China
| | - Mingjie Gong
- Department of Neurosurgery, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Nantong University, Changshu 215500, Jiangsu Province, China
| | - Ziyang He
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Wenhua Wang
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Yunjuan Li
- School of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine in Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210023, China
| | - Weiwei Zhai
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
5
|
Liu TW, Zhao YM, Jin KY, Wang JX, Zhao XF. KAT8 is upregulated and recruited to the promoter of Atg8 by FOXO to induce H4 acetylation for autophagy under 20-hydroxyecdysone regulation. J Biol Chem 2024; 300:105704. [PMID: 38309506 PMCID: PMC10904276 DOI: 10.1016/j.jbc.2024.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/05/2024] Open
Abstract
Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.
Collapse
Affiliation(s)
- Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
6
|
Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X. FOXO3a in cancer drug resistance. Cancer Lett 2022; 540:215724. [DOI: 10.1016/j.canlet.2022.215724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
|
7
|
Hui PY, Chen YH, Qin J, Jiang XH. PON2 blockade overcomes dexamethasone resistance in acute lymphoblastic leukemia. Hematology 2021; 27:32-42. [PMID: 34957927 DOI: 10.1080/16078454.2021.2009643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES The high frequency of chemotherapy resistance is ultimately responsible for clinical relapse in acute lymphoblastic leukemia (ALL). Nevertheless, the molecular mechanism relevant to glucocorticoid (GC) resistance remains ambiguous. METHODS Quantitative real-time polymerase chain reaction and Western blot were performed to detect the expressions of paraoxonase 2 (PON2), Bcl-2 and Bax. shRNA was used to knockdown PON2 expression in SUP-B15 and REH cell. CCK-8 and flow cytometry assay were conducted to monitor the changes of proliferation and apoptosis in ALL cells. The growth of ALL REH cells in vivo was determined using transplanted tumor model. RESULTS This study was designed to identify GC resistance-associated genes by means of the transcriptome chip from the public Gene Expression Omnibus database, and preliminarily investigation of dexamethasone (DEX)-resistance mechanism in ALL. We disclosed that PON2 expression was elevated in ALL patients and especially higher in DEX-resistance ALL patients. Then, cell apoptosis assay suggested that silencing of PON2 dramatically promoted in DEX-resistant ALL cells apoptosis and the activity of Caspase 3 induced by DEX administration. In xenograft tumor model, PON2 knockdown significantly reduced DEX-resistant ALL cells growth in immunodeficient mice. CONCLUSIONS Collectively, inhibition of PON2 may represent a novel method to restore the sensitivity of treatment-resistant ALL to GC-induced cell death.
Collapse
Affiliation(s)
- Pei-Ye Hui
- Pharmacy Department, Shandong Weifang Maternal and Child Health Hospital, Weifang, People's Republic of China
| | - Yan-Hua Chen
- Pharmacy Department, Rizhao people's Hospital, Rizhao, People's Republic of China
| | - Jing Qin
- Pharmacy Department, Rizhao people's Hospital, Rizhao, People's Republic of China
| | - Xiao-Hua Jiang
- Department of Pediatrics, 970 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Yantai, People's Republic of China
| |
Collapse
|
8
|
Vieri M, Preisinger C, Schemionek M, Salimi A, Patterson JB, Samali A, Brümmendorf TH, Appelmann I, Kharabi Masouleh B. Targeting of BCR-ABL1 and IRE1α induces synthetic lethality in Philadelphia-positive acute lymphoblastic leukemia. Carcinogenesis 2021; 42:272-284. [PMID: 32915195 DOI: 10.1093/carcin/bgaa095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 08/07/2020] [Accepted: 09/09/2020] [Indexed: 11/14/2022] Open
Abstract
BCR-ABL1-positive acute lymphoblastic leukemia (ALL) cell survival is dependent on the inositol-requiring enzyme 1 alpha (IRE1α) branch of the unfolded protein response. In the current study, we have focused on exploring the efficacy of a simultaneous pharmacological inhibition of BCR-ABL1 and IRE1α in Philadelphia-positive (Ph+) ALL using tyrosine kinase inhibitor (TKI) nilotinib and the IRE1α inhibitor MKC-8866. The combination of 0.5 µM nilotinib and 30 µM MKC-8866 in Ph+ ALL cell lines led to a synergistic effect on cell viability. To mimic this dual inhibition on a genetic level, pre-B-cells from conditional Xbp1+/fl mice were transduced with a BCR-ABL1 construct and with either tamoxifen-inducible cre or empty vector. Cells showed a significant sensitization to the effect of TKIs after the induction of the heterozygous deletion. Finally, we performed a phosphoproteomic analysis on Ph+ ALL cell lines treated with the combination of nilotinib and MKC-8866 to identify potential targets involved in their synergistic effect. An enhanced activation of p38 mitogen-activated protein kinase α (p38α MAPK) was identified. In line with this findings, p38 MAPK and, another important endoplasmic reticulum-stress-related kinase, c-Jun N-terminal kinase (JNK) were found to mediate the potentiated cytotoxic effect induced by the combination of MKC-8866 and nilotinib since the targeting of p38 MAPK with its specific inhibitor BIRB-796 or JNK with JNK-in-8 hindered the synergistic effect observed upon treatment with nilotinib and MKC-8866. In conclusion, the identified combined action of nilotinib and MKC-8866 might represent a successful therapeutic strategy in high-risk Ph+ ALL.
Collapse
Affiliation(s)
- Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Aachen, Germany
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research, RWTH Aachen University Medical School, Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Aachen, Germany
| | - Azam Salimi
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Aachen, Germany
| | | | - Afshin Samali
- Apoptosis Research Centre, Galway, Ireland.,Department of Biochemistry, National University of Ireland, Galway, Ireland
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Aachen, Germany
| | - Iris Appelmann
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Aachen, Germany
| | - Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Aachen, Germany
| |
Collapse
|
9
|
Shah K, Ahmed M, Kazi JU. The Aurora kinase/β-catenin axis contributes to dexamethasone resistance in leukemia. NPJ Precis Oncol 2021; 5:13. [PMID: 33597638 PMCID: PMC7889633 DOI: 10.1038/s41698-021-00148-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids, such as dexamethasone and prednisolone, are widely used in cancer treatment. Different hematological malignancies respond differently to this treatment which, as could be expected, correlates with treatment outcome. In this study, we have used a glucocorticoid-induced gene signature to develop a deep learning model that can predict dexamethasone sensitivity. By combining gene expression data from cell lines and patients with acute lymphoblastic leukemia, we observed that the model is useful for the classification of patients. Predicted samples have been used to detect deregulated pathways that lead to dexamethasone resistance. Gene set enrichment analysis, peptide substrate-based kinase profiling assay, and western blot analysis identified Aurora kinase, S6K, p38, and β-catenin as key signaling proteins involved in dexamethasone resistance. Deep learning-enabled drug synergy prediction followed by in vitro drug synergy analysis identified kinase inhibitors against Aurora kinase, JAK, S6K, and mTOR that displayed synergy with dexamethasone. Combining pathway enrichment, kinase regulation, and kinase inhibition data, we propose that Aurora kinase or its several direct or indirect downstream kinase effectors such as mTOR, S6K, p38, and JAK may be involved in β-catenin stabilization through phosphorylation-dependent inactivation of GSK-3β. Collectively, our data suggest that activation of the Aurora kinase/β-catenin axis during dexamethasone treatment may contribute to cell survival signaling which is possibly maintained in patients who are resistant to dexamethasone.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Abstract
Forkhead box O (FOXO) transcription factors regulate diverse biological processes, affecting development, metabolism, stem cell maintenance and longevity. They have also been increasingly recognised as tumour suppressors through their ability to regulate genes essential for cell proliferation, cell death, senescence, angiogenesis, cell migration and metastasis. Mechanistically, FOXO proteins serve as key connection points to allow diverse proliferative, nutrient and stress signals to converge and integrate with distinct gene networks to control cell fate, metabolism and cancer development. In consequence, deregulation of FOXO expression and function can promote genetic disorders, metabolic diseases, deregulated ageing and cancer. Metastasis is the process by which cancer cells spread from the primary tumour often via the bloodstream or the lymphatic system and is the major cause of cancer death. The regulation and deregulation of FOXO transcription factors occur predominantly at the post-transcriptional and post-translational levels mediated by regulatory non-coding RNAs, their interactions with other protein partners and co-factors and a combination of post-translational modifications (PTMs), including phosphorylation, acetylation, methylation and ubiquitination. This review discusses the role and regulation of FOXO proteins in tumour initiation and progression, with a particular emphasis on cancer metastasis. An understanding of how signalling networks integrate with the FOXO transcription factors to modulate their developmental, metabolic and tumour-suppressive functions in normal tissues and in cancer will offer a new perspective on tumorigenesis and metastasis, and open up therapeutic opportunities for malignant diseases.
Collapse
Affiliation(s)
- Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
11
|
Liao C, Zhang Q. Understanding the Oxygen-Sensing Pathway and Its Therapeutic Implications in Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1584-1595. [PMID: 32339495 DOI: 10.1016/j.ajpath.2020.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
Maintaining oxygen homeostasis is a most basic cellular process for adapting physiological oxygen variations, and its abnormality typically leads to various disorders in the human body. The key molecules of the oxygen-sensing system include the transcriptional regulator hypoxia-inducible factor (HIF), which controls a wide range of oxygen responsive target genes (eg, EPO and VEGF), certain members of the oxygen/2-oxoglutarate-dependent dioxygenase family, including the HIF proline hydroxylase (PHD, alias EGLN), and an E3 ubiquitin ligase component for HIF destruction called von Hippel-Lindau. In this review, we summarize the physiological role and highlight the pathologic function for each protein of the oxygen-sensing system. A better understanding of their molecular mechanisms of action will help uncover novel therapeutic targets and develop more effective treatment approaches for related human diseases, including cancer.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
12
|
Chen Y, Jiang P, Wen J, Wu Z, Li J, Chen Y, Wang L, Gan D, Chen Y, Yang T, Lin M, Hu J. Integrated bioinformatics analysis of the crucial candidate genes and pathways associated with glucocorticoid resistance in acute lymphoblastic leukemia. Cancer Med 2020; 9:2918-2929. [PMID: 32096603 PMCID: PMC7163086 DOI: 10.1002/cam4.2934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 12/26/2022] Open
Abstract
Glucocorticoids (GC) are the foundation of the chemotherapy regimen in acute lymphoblastic leukemia (ALL). However, resistance to GC is observed more frequently than resistance to other chemotherapy agents in patients with ALL relapse. Moreover, the mechanism underlying the development of GC resistance in ALL has not yet been fully uncovered. In this study, we used bioinformatic analysis methods to integrate the candidate genes and pathways participating in GC resistance in ALL and subsequently verified the bioinformatics findings with in vitro cell experiments. Ninety‐nine significant common differentially expressed genes (DEGs) associated with GC resistance were determined by integrating two gene profile datasets, including GC‐sensitive and ‐resistant samples. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) and REACTOME pathways analysis, the signaling pathways in which DEGs were significantly enriched were clustered. The GC resistance‐related biologically functional interactions were visualized as DEG‐associated Protein–Protein Interaction (PPI) network complexes, with 98 nodes and 127 edges. MYC, a node which displayed the highest connectivity in all edges, was highlighted as the core gene in the PPI network. Increased C‐MYC expression was observed in adriamycin‐resistant BALL‐1/ADR cells, which we demonstrated was also resistant to dexamethasone. These results outlined a panorama in which the solitary and scattered experimental results were integrated and expanded. The potential promising target of the candidate pathways and genes involved in GC resistance of ALL was concomitantly revealed.
Collapse
Affiliation(s)
- Yanxin Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Peifang Jiang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jingjing Wen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Zhengjun Wu
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jiazheng Li
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Yuwen Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Lingyan Wang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Donghui Gan
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Yingyu Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Ting Yang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Minhui Lin
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jianda Hu
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
13
|
Xia D, Wu J, Xing M, Wang Y, Zhang H, Xia Y, Zhou P, Xu S. Iron overload threatens the growth of osteoblast cells via inhibiting the PI3K/AKT/FOXO3a/DUSP14 signaling pathway. J Cell Physiol 2019; 234:15668-15677. [PMID: 30693516 DOI: 10.1002/jcp.28217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Iron overload is a common stress in the development of cells. Growing evidence has indicated that iron overload is associated with osteoporosis. Therefore, enhancing the understanding of iron overload would benefit the development of novel approaches to the treatment of osteoporosis. The purpose of the present study was to analyze the effect of iron overload on osteoblast cells, via the MC3T3-E1 cell line, and to explore its possible underlying molecular mechanisms. Ferric ammonium citrate (FAC) was utilized to simulate iron overload conditions in vitro. FAC-induced iron overload strongly suppressed proliferation of osteoblast cells and induced apoptosis. Moreover, iron overload strongly suppressed the expression of dual-specificity phosphatase 14 (DUSP14). Additionally, overexpression of DUSP14 protected osteoblast cells from the deleterious effects of iron overload, and this protective effect was mediated by FOXO3a. Additionally, matrine rescued the function of DUSP14 in osteoblast cells. Most importantly, our analysis demonstrated the essential role of the PI3K/AKT/FOXO3a/DUSP14 signaling pathway in the defense against iron overload in osteoblast cells. Overall, our results not only elucidate deleterious effects of iron overload, but also unveil its possible signaling pathway in osteoblast cells.
Collapse
Affiliation(s)
- Demeng Xia
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianghong Wu
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
| | - Yang Wang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongyue Zhang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan Xia
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Panyu Zhou
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuogui Xu
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
EP300 and SIRT1/6 Co-Regulate Lapatinib Sensitivity Via Modulating FOXO3-Acetylation and Activity in Breast Cancer. Cancers (Basel) 2019; 11:cancers11081067. [PMID: 31357743 PMCID: PMC6721388 DOI: 10.3390/cancers11081067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Forkhead Box O3 (FOXO3) is a tumor suppressor whose activity is fine-tuned by post-translational modifications (PTMs). In this study, using the BT474 breast cancer cells and a recently established lapatinib resistant (BT474-LapR) cell line, we observed that higher FOXO3 and acetylated (Ac)-FOXO3 levels correlate with lapatinib sensitivity. Subsequent ectopic expression of EP300 led to an increase in acetylated-FOXO3 in sensitive but not in resistant cells. Drug sensitivity assays revealed that sensitive BT474 cells show increased lapatinib cytotoxicity upon over-expression of wild-type but not acetylation-deficient EP300. Moreover, FOXO3 recruitment to target gene promoters is associated with target gene expression and drug response in sensitive cells and the inability of FOXO3 to bind its target genes correlates with lapatinib-resistance in BT474-LapR cells. In addition, using SIRT1/6 specific siRNAs and chemical inhibitor, we also found that sirtuin 1 and -6 (SIRT1 and -6) play a part in fine-tuning FOXO3 acetylation and lapatinib sensitivity. Consistent with this, immunohistochemistry results from different breast cancer subtypes showed that high SIRT6/1 levels are associated with constitutive high FOXO3 expression which is related to FOXO3 deregulation/inactivation and poor prognosis in breast cancer patient samples. Collectively, our results suggest the involvement of FOXO3 acetylation in regulating lapatinib sensitivity of HER2-positive breast cancers.
Collapse
|
15
|
Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018; 233:6440-6454. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Alasiri G, Fan LYN, Zona S, Goldsbrough IG, Ke HL, Auner HW, Lam EWF. ER stress and cancer: The FOXO forkhead transcription factor link. Mol Cell Endocrinol 2018; 462:67-81. [PMID: 28572047 DOI: 10.1016/j.mce.2017.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle with central roles in maintaining proteostasis due to its involvement in protein synthesis, folding, quality control, distribution and degradation. The accumulation of misfolded proteins in the ER lumen causes 'ER stress' and threatens overall cellular proteostasis. To restore ER homeostasis, cells evoke an evolutionarily conserved adaptive signalling and gene expression network collectively called the 'unfolded protein response (UPR)', a complex biological process which aims to restore proteostasis. When ER stress is overwhelming and beyond rectification, the normally pro-survival UPR can shift to induce cell termination. Emerging evidence from mammalian, fly and nematode worm systems reveals that the FOXO Forkhead proteins integrate upstream ER stress and UPR signals with the transcriptional machinery to decrease translation, promote cell survival/termination and increase the levels of ER-resident chaperones and of ER-associated degradation (ERAD) components to restore ER homeostasis. The high rates of protein synthesis/translation associated with cancer cell proliferation and metabolism, as well as mutations resulting in aberrant proteins, also induce ER stress and the UPR. While the pro-survival side of the UPR underlies its ability to sustain and promote cancers, its apoptotic functions can be exploited for cancer therapies by offering the chance to 'flick the proteostatic switch'. To this end, further studies are required to fully reevaluate the roles and regulation of these UPR signalling molecules, including FOXO proteins and their targets, in cancer initiation and progression as well as the effects on inhibiting their functions in cancer cells. This information will help to establish these UPR signalling molecules as possible therapeutic targets and putative biomarkers in cancers.
Collapse
Affiliation(s)
- Glowi Alasiri
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | | | - Hui-Ling Ke
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Holger Werner Auner
- Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Eric Wing-Fai Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
17
|
Yao S, Fan LYN, Lam EWF. The FOXO3-FOXM1 axis: A key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol 2017; 50:77-89. [PMID: 29180117 PMCID: PMC6565931 DOI: 10.1016/j.semcancer.2017.11.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
The FOXO3 and FOXM1 forkhead box transcription factors, functioning downstream of the essential PI3K-Akt, Ras-ERK and JNK/p38MAPK signalling cascades, are crucial for cell proliferation, differentiation, cell survival, senescence, DNA damage repair and cell cycle control. The development of resistance to both conventional and newly emerged molecularly targeted therapies is a major challenge confronting current cancer treatment in the clinic. Intriguingly, the mechanisms of resistance to ‘classical’ cytotoxic chemotherapeutics and to molecularly targeted therapies are invariably linked to deregulated signalling through the FOXO3 and FOXM1 transcription factors. This is owing to the involvement of FOXO3 and FOXM1 in the regulation of genes linked to crucial drug action-related cellular processes, including stem cell renewal, DNA repair, cell survival, drug efflux, and deregulated mitosis. A better understanding of the mechanisms regulating the FOXO3-FOXM1 axis, as well as their downstream transcriptional targets and functions, may render these proteins reliable and early diagnostic/prognostic factors as well as crucial therapeutic targets for cancer treatment and importantly, for overcoming chemotherapeutic drug resistance.
Collapse
Affiliation(s)
- Shang Yao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Eric Wing-Fai Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
18
|
Ushmorov A, Wirth T. FOXO in B-cell lymphopoiesis and B cell neoplasia. Semin Cancer Biol 2017; 50:132-141. [PMID: 28774833 DOI: 10.1016/j.semcancer.2017.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 12/31/2022]
Abstract
FOX O family transcription factors are important for differentiation and function of multiple cell types. In B lymphocytes they play a critical role. The activity of FOXOs is directly regulated both by signaling from B cell receptor (BCR) and cytokine receptors. FOXO1 action controls the transition between differentiation stages of B cell development. In comparison to other FOXO family members, FOXO1 plays a superior role in the regulation of early stages of B-cell differentiation. Although being known as a negative regulator of cell proliferation and therefore potential tumor suppressor, FOXO1 is downregulated only in Hodgkin lymphoma (HL) subtypes. In non-Hodgkin lymphoma (NHL) entities its expression is maintained at significant levels, raising the question on the role of FOXO-transcription factors in the proliferation and survival programs in the process of B cell differentiation as well as their contribution to the oncogenic programs of B-cell lymphomas. In particular, we discuss molecular mechanisms that might determine the switch between pro-apoptotic and pro-survival effects of FOXO1 and their interplay with specific differentiation programs.
Collapse
Affiliation(s)
- Alexey Ushmorov
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany.
| |
Collapse
|
19
|
Steinmetz C, Kashyap A, Zhivkova N, Alizor H, Ernst I, Gottfried-Brand D, Janssen H, Teufel A, Schulze-Bergkamen H, Lotz J, Kuball J, Theobald M, Heise M, Lang H, Galle PR, Strand D, Strand S. Activation of silent mating type information regulation 2 homolog 1 by human chorionic gonadotropin exerts a therapeutic effect on hepatic injury and inflammation. Hepatology 2017; 65:2074-2089. [PMID: 28108987 DOI: 10.1002/hep.29072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/30/2022]
Abstract
UNLABELLED Incidence and prevalence of inflammatory liver diseases has increased over the last years, but therapeutic options are limited. Pregnancy induces a state of immune tolerance, which can result in spontaneous improvement of clinical symptoms of certain autoimmune diseases including autoimmune hepatitis (AIH). We investigated the immune-suppressive mechanisms of the human pregnancy hormone, chorionic gonadotropin (hCG), in the liver. hCG signaling activates silent mating type information regulation 2 homolog 1 (SIRT1), which deacetylates forkhead box o3 (FOXO3a), leading to repression of proapoptotic gene expression, because the immunosuppressive consequence attributed to the absence of caspase-3 activity of hepatocellular interleukin 16 (IL-16) is no longer processed and released. Thus, serum levels of IL-16, a key chemotactic factor for CD4+ lymphocytes, were reduced and migration to injured hepatocytes prevented. Furthermore, elevated IL-16 levels are found in the sera from patients with AIH, hepatitis B virus, hepatitis C virus, and nonalcoholic steatohepatitis. CONCLUSION Here, we report that hCG regulates the SIRT1/FOXO3a axis in hepatocytes, resulting in immune suppression by attenuating caspase-3-dependent IL-16 processing and release, which concomitantly prevents autoaggressive T-cell infiltration of the liver. Considering the low toxicity profile of hCG in humans, interrupting the inflammatory cycle by hCG opens new perspectives for therapeutic intervention of inflammatory liver diseases. (Hepatology 2017;65:2074-2089).
Collapse
Affiliation(s)
- Caroline Steinmetz
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Anubha Kashyap
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Nataliya Zhivkova
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Henry Alizor
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Isabell Ernst
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | - Henning Janssen
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Andreas Teufel
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | - Johannes Lotz
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Jürgen Kuball
- Department of Immunology, Department of Hematology and Van Creveld Clinic University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias Theobald
- Department of Hematology and Oncology, Johannes Gutenberg University, Mainz, Germany
| | - Michael Heise
- General, Visceral and Transplant Surgery, Johannes Gutenberg-University, Mainz, Germany
| | - Hauke Lang
- General, Visceral and Transplant Surgery, Johannes Gutenberg-University, Mainz, Germany
| | - Peter R Galle
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Dennis Strand
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Strand
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
20
|
Fu B, Zhao J, Peng W, Wu H, Zhang Y. Resveratrol rescues cadmium-induced mitochondrial injury by enhancing transcriptional regulation of PGC-1α and SOD2 via the Sirt3/FoxO3a pathway in TCMK-1 cells. Biochem Biophys Res Commun 2017; 486:198-204. [PMID: 28286268 DOI: 10.1016/j.bbrc.2017.03.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
Resveratrol has been reported to ameliorate Cd-induced nephrotoxicity. However, the beneficial effects of resveratrol on Cd-induced nephrotoxicity and the underlying mechanisms of this protection remain unclear. Here, we showed that mouse renal tubular epithelial (TCMK-1) cells exposed to Cd experienced significantly increased mitochondrial reactive oxygen species (mROS) production, as well as decreased mitochondrial biogenesis and function. Cd exposure dramatically decreased Sirt3 protein expression and activity and promoted the acetylation of forkhead box O3 (FoxO3a). Moreover, Cd exposure led to a decreased binding affinity of FoxO3a to the promoters of both peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α and superoxide dismutase 2 (SOD2), powerful and broad regulators of mitochondrial biogenesis and mROS metabolism. Meanwhile, resveratrol remarkably reduced mROS generation by promoting Sirt3 enrichment within the mitochondria and subsequent upregulation of FoxO3a-mediated mitochondria gene expression of PGC-1α and SOD2. Importantly, mechanistic study revealed that ERK1/2 activation was associated with increased apoptosis induced by Cd, resveratrol suppressed Cd-induced apoptosis in mice kidney. Taken together, our data suggest a novel mechanism of action for resveratrol-attenuated Cd-induced cellular damage, which, in part, was mediated through the activation of the Sirt3/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Beibei Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiamin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haibo Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
21
|
Lu M, Xu W, Gao B, Xiong S. Blunting Autoantigen-induced FOXO3a Protein Phosphorylation and Degradation Is a Novel Pathway of Glucocorticoids for the Treatment of Systemic Lupus Erythematosus. J Biol Chem 2016; 291:19900-12. [PMID: 27481940 DOI: 10.1074/jbc.m116.728840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease affecting multiple organs. Glucocorticoids (GCs), the potent anti-inflammatory drugs, remain as a cornerstone in the treatment for SLE; nevertheless, their clinical efficacy is compromised by the side effects of long term treatment and resistance. To improve the therapeutic efficacy of GCs in SLE, it is important to further decipher the molecular mechanisms of how GCs exert their anti-inflammatory effects. In this investigation, FOXO3a was identified as a molecule that was down-regulated in the course of SLE. Of interest, GC treatment was found to rescue FOXO3a expression both in SLE mice and in SLE patients. Gain- and loss-of-function studies demonstrated that FOXO3a played a crucial role in GC treatment of SLE via inhibiting inflammatory responses. Further studies showed that the up-regulation of FOXO3a by GCs relied on the suppression of pI3K/AKT-mediated FOXO3a phosphorylation and the arrest of FOXO3a in the nucleus. Finally, our data revealed that FOXO3a was critical for GC-mediated inhibition of NF-κB activity, which might involve its interaction with NF-κB p65 protein. Collectively, these data indicated that FOXO3a played an important role in GC treatment of SLE by suppressing pro-inflammatory response, and targeting FOXO3a might provide a novel therapeutic strategy against SLE.
Collapse
Affiliation(s)
- Mudan Lu
- From the Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032 and
| | - Wei Xu
- the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China
| | - Bo Gao
- From the Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032 and
| | - Sidong Xiong
- From the Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032 and the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China
| |
Collapse
|
22
|
Polak A, Kiliszek P, Sewastianik T, Szydłowski M, Jabłońska E, Białopiotrowicz E, Górniak P, Markowicz S, Nowak E, Grygorowicz MA, Prochorec-Sobieszek M, Nowis D, Gołąb J, Giebel S, Lech-Marańda E, Warzocha K, Juszczyński P. MEK Inhibition Sensitizes Precursor B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells to Dexamethasone through Modulation of mTOR Activity and Stimulation of Autophagy. PLoS One 2016; 11:e0155893. [PMID: 27196001 PMCID: PMC4872998 DOI: 10.1371/journal.pone.0155893] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/05/2016] [Indexed: 01/16/2023] Open
Abstract
Resistance to glucocorticosteroids (GCs) is a major adverse prognostic factor in B-ALL, but the molecular mechanisms leading to GC resistance are not completely understood. Herein, we sought to elucidate the molecular background of GC resistance in B-ALL and characterize the therapeutic potential of targeted intervention in these mechanisms. Using exploratory bioinformatic approaches, we found that resistant cells exhibited significantly higher expression of MEK/ERK (MAPK) pathway components. We found that GC-resistant ALL cell lines had markedly higher baseline activity of MEK and small-molecule MEK1/2 inhibitor selumetinib increased GCs-induced cell death. MEK inhibitor similarly increased in vitro dexamethasone activity in primary ALL blasts from 19 of 22 tested patients. To further confirm these observations, we overexpressed a constitutively active MEK mutant in GC-sensitive cells and found that forced MEK activity induced resistance to dexamethasone. Since recent studies highlight the role GC-induced autophagy upstream of apoptotic cell death, we assessed LC3 processing, MDC staining and GFP-LC3 relocalization in cells incubated with either DEX, SEL or combination of drugs. Unlike either drug alone, only their combination markedly increased these markers of autophagy. These changes were associated with decreased mTOR activity and blocked 4E-BP1 phosphorylation. In cells with silenced beclin-1 (BCN1), required for autophagosome formation, the synergy of DEX and SEL was markedly reduced. Taken together, we show that MEK inhibitor selumetinib enhances dexamethasone toxicity in GC-resistant B-ALL cells. The underlying mechanism of this interaction involves inhibition of mTOR signaling pathway and modulation of autophagy markers, likely reflecting induction of this process and required for cell death. Thus, our data demonstrate that modulation of MEK/ERK pathway is an attractive therapeutic strategy overcoming GC resistance in B-ALL patients.
Collapse
Affiliation(s)
- Anna Polak
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Przemysław Kiliszek
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Tomasz Sewastianik
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Maciej Szydłowski
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Jabłońska
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Emilia Białopiotrowicz
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Górniak
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Dept. of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Sergiusz Markowicz
- Dept. of Immunology, Maria Sklodowska-Curie Memorial Cancer Center–Institute of Oncology, Warsaw, Poland
| | - Eliza Nowak
- Dept. of Immunology, Maria Sklodowska-Curie Memorial Cancer Center–Institute of Oncology, Warsaw, Poland
| | - Monika A. Grygorowicz
- Dept. of Immunology, Maria Sklodowska-Curie Memorial Cancer Center–Institute of Oncology, Warsaw, Poland
| | | | - Dominika Nowis
- Genomic Medicine, Dept. of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jakub Gołąb
- Dept. of Immunology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Giebel
- Dept. of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Ewa Lech-Marańda
- Dept. of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Dept. of Hematology and Transfusion Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Krzysztof Warzocha
- Dept. of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Przemysław Juszczyński
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- * E-mail:
| |
Collapse
|
23
|
Peng H, Du B, Jiang H, Gao J. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway. Biochem Biophys Res Commun 2015; 469:1111-6. [PMID: 26740175 DOI: 10.1016/j.bbrc.2015.12.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/24/2015] [Indexed: 11/16/2022]
Abstract
Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.
Collapse
Affiliation(s)
- Honghai Peng
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
| | - Bin Du
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
| | - Huili Jiang
- Friendship Nephrology and Blood Purification Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
| | - Jun Gao
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China.
| |
Collapse
|