1
|
Bogsrud TV, Engelsen O, Lu TTT, Stensvold A, Johnson DR, Burkett BJ, Kendi AT, Pandey MK, Sundset R, Durski JM. All that glitters is not gold: high uptake on PSMA PET in non-prostate cancers does not mean that treatment with [ 177Lu]Lu-PSMA-radioligand will be successful. EJNMMI Res 2024; 14:95. [PMID: 39404984 PMCID: PMC11480294 DOI: 10.1186/s13550-024-01156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The main objective is to discuss why treatment of non-prostate cancers with [177Lu]Lu-PSMA-radioligand achieved only low tumor dose in most published cases, despite high uptake on PSMA PET. We use a patient with renal cell carcinoma as an illustrative example. Furthermore, we discuss how the problem with early washout and low tumor dose might be overcome by using a radionuclide with shorter half-life, matching the target binding residence time. CASE PRESENTATION [68Ga]Ga-PSMA-11 PET/CT of a 56-year old man with metastatic renal cell carcinoma showed high lesion uptake. One dose of 6.9 GBq [177Lu]Lu-PSMA-I&T was administrated. Post-therapy dosimetry was performed with SPECT/CT and whole-body planar imaging after 5, 24 and 48 h. Doses to target lesions were only 0.2-0.5 Gy. No treatment effect was achieved. CONCLUSION Rapid tumor washout of [177Lu]Lu-PSMA-I&T and low tumor dose despite high uptake of [68Ga]Ga-PSMA-11 are most likely caused by localization of PSMA-receptors on neovasculature rather than on the tumor cells, and unlike in prostate cancer cells, the PSMA-RL / PSMA-receptor complex is not internalized. To overcome the problem with early washout, the use of a radionuclide with shorter half-life matching the target binding residence time will be needed.
Collapse
Affiliation(s)
- Trond Velde Bogsrud
- PET-Imaging Center, University Hospital of North Norway, Tromso, Norway.
- Department of Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark.
| | - Ola Engelsen
- PET-Imaging Center, University Hospital of North Norway, Tromso, Norway
| | - Thuy Thu Thi Lu
- PET-Imaging Center, University Hospital of North Norway, Tromso, Norway
| | | | - Derek R Johnson
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Brian J Burkett
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Ayse Tuba Kendi
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Mukesh K Pandey
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Rune Sundset
- PET-Imaging Center, University Hospital of North Norway, Tromso, Norway
- UiT The Arctic University of Norway, Tromso, Norway
| | - Jolanta M Durski
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Shirke AA, Wang J, Ramamurthy G, Mahanty A, Walker E, Zhang L, Panigrahi A, Wang X, Basilion JP. Prostate Specific Membrane Antigen Expression in a Syngeneic Breast Cancer Mouse Model. Mol Imaging Biol 2024; 26:714-728. [PMID: 38760621 PMCID: PMC11281974 DOI: 10.1007/s11307-024-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
PURPOSE Prostate specific membrane antigen (PSMA) has been studied in human breast cancer (BCa) biopsies, however, lack of data on PSMA expression in mouse models impedes development of PSMA-targeted therapies, particularly in improving breast conserving surgery (BCS) margins. This study aimed to validate and characterize the expression of PSMA in murine BCa models, demonstrating that PSMA can be utilized to improve therapies and imaging techniques. METHODS Murine triple negative breast cancer 4T1 cells, and human cell lines, MDA-MB-231, MDA-MB-468, implanted into the mammary fat pads of BALB/c mice, were imaged by our PSMA targeted theranostic agent, PSMA-1-Pc413, and tumor to background ratios (TBR) were calculated to validate selective uptake. Immunohistochemistry was used to correlate PSMA expression in relation to CD31, an endothelial cell biomarker highlighting neovasculature. PSMA expression was also quantified by Reverse Transcriptase Polymerase Chain Reaction (RT-PCR). RESULTS Accumulation of PSMA-1-Pc413 was observed in 4T1 primary tumors and associated metastases. Average TBR of 4T1 tumors were calculated to be greater than 1.5-ratio at which tumor tissues can be distinguished from normal structures-at peak accumulation with the signal intensity in 4T1 tumors comparable to that in high PSMA expressing PC3-pip tumors. Extraction of 4T1 tumors and lung metastases followed by RT-PCR analysis and PSMA-CD31 co-staining shows that PSMA is consistently localized on tumor neovasculature with no expression in tumor cells and surrounding normal tissues. CONCLUSION The selective uptake of PSMA-1-Pc413 in these cancer tissues as well as the characterization and validation of PSMA expression on neovasculature in this syngeneic 4T1 model emphasizes their potential for advancements in targeted therapies and imaging techniques for BCa. PSMA holds great promise as an oncogenic target for BCa and its associated metastases.
Collapse
Affiliation(s)
- Aditi A Shirke
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA.
| | - Jing Wang
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Gopolakrishnan Ramamurthy
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Arpan Mahanty
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Lifang Zhang
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Abhiram Panigrahi
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA.
| | - James P Basilion
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA.
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Andryszak N, Kurzawa P, Krzyżaniak M, Nowicki M, Ruchała M, Iżycki D, Czepczyński R. Evaluation of Prostate-Specific Membrane Antigen (PSMA) Immunohistochemical Expression in Early-Stage Breast Cancer Subtypes. Int J Mol Sci 2024; 25:6519. [PMID: 38928224 PMCID: PMC11204143 DOI: 10.3390/ijms25126519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer, known for its diverse subtypes, ranks as one of the leading causes of cancer-related deaths. Prostate-specific membrane antigen (PSMA), primarily associated with prostate cancer, has also been identified in breast cancer, though its role remains unclear. This study aimed to evaluate PSMA expression across different subtypes of early-stage breast cancer and investigate its correlation with clinicopathological factors. This retrospective study included 98 breast cancer cases. PSMA expression was examined in both tumor cells and tumor-associated blood vessels. The analysis revealed PSMA expression in tumor-associated blood vessels in 88 cases and in tumor cells in 75 cases. Ki67 expression correlated positively with PSMA expression in blood vessels (p < 0.0001, RSpearman 0.42) and tumor cells (p = 0.010, RSpearman 0.26). The estrogen and progesterone receptor expression correlated negatively with PSMA levels in blood vessels (p = 0.0053, R Spearman -0.26 and p = 0.00026, R Spearman -0.347, respectively). Human epidermal growth factor receptor 2 (HER2) status did not significantly impact PSMA expression. We did not detect any statistically significant differences between breast cancer subtypes. These findings provide evidence for a heterogenous PSMA expression in breast cancer tissue and suggest its correlation with tumor aggressiveness. Despite the limited sample size, the study provides valuable insights into the potential of PSMA as a prognostic, diagnostic, and therapeutic target in the management of breast cancer.
Collapse
Affiliation(s)
- Natalia Andryszak
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland (R.C.)
| | - Paweł Kurzawa
- Department of Oncological Pathology, Hospital of Lord’s Transfiguration, Poznan University of Medical Sciences, 60-101 Poznan, Poland (M.K.)
| | - Monika Krzyżaniak
- Department of Oncological Pathology, Hospital of Lord’s Transfiguration, Poznan University of Medical Sciences, 60-101 Poznan, Poland (M.K.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland (R.C.)
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-101 Poznan, Poland;
| | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland (R.C.)
| |
Collapse
|
4
|
Feng YY, Shi YR, Xia Z, Xu L, Li WB, Pang H, Wang ZJ. The clinical signification and application value of [ 68Ga]Ga-PSMA imaging in thyroid malignancy. Endocrine 2024; 84:598-606. [PMID: 37987969 DOI: 10.1007/s12020-023-03599-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
PURPOSE Approximately 5% of differentiated thyroid cancers lose the ability to uptake iodine, leading to limited treatment options and poor prognosis due to invasion and distant metastasis. PSMA imaging probes have been proposed as a potential diagnostic and therapeutic tool for iodine-refractory thyroid cancer. However, there are limited reports and significant heterogeneity in patient selection, warranting further exploration of the application value of PSMA in thyroid cancer. METHODS We performed Western Blot, PCR, and [68Ga]Ga-PSMA uptake experiments on cell lines and conducted in vivo small animal imaging. Clinical and radiological results of included differentiated thyroid cancer patients were collected. (Trial registration number: 2021-669, Trial registration date: December 30, 2021). RESULTS PSMA expression levels were significantly higher in poorly differentiated thyroid cancer (7.86 ± 1.90 vs. 1.00 ± 0, P < 0.01; 7.86 ± 1.90 vs. 0.03 ± 0.02, P < 0.01), but [68Ga]Ga-PSMA imaging correlated with tumor burden, such as 18F-FDG (8.08 ± 7.74 and 5.67 ± 4.23, P = 0.01) and Tg levels (307.1 ± 183.4 vs. 118.0 ± 116.1, P = 0.002). CONCLUSION Our results showed that PSMA expression increased with the decrease of thyroid cancer differentiation. However, the level of [68Ga]Ga-PSMA uptake in thyroid cancer patients was not significantly associated with the degree of thyroid cancer differentiation, but also with the metabolism and burden of tumors such as 2-[18F]FDG and Tg levels. These findings provide additional clinical significance and application value for PSMA in thyroid cancer.
Collapse
Affiliation(s)
- Yu Yue Feng
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China
| | - Yang Rui Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China
| | - Zhu Xia
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China
| | - Lu Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China
| | - Wen Bo Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China.
| | - Zheng Jie Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China.
| |
Collapse
|
5
|
Heesch A, Florea A, Maurer J, Habib P, Werth LS, Hansen T, Stickeler E, Sahnoun SEM, Mottaghy FM, Morgenroth A. The prostate-specific membrane antigen holds potential as a vascular target for endogenous radiotherapy with [ 177Lu]Lu-PSMA-I&T for triple-negative breast cancer. Breast Cancer Res 2024; 26:30. [PMID: 38378689 PMCID: PMC10877802 DOI: 10.1186/s13058-024-01787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
INTRODUCTION Overexpression of prostate-specific membrane antigen (PSMA) on the vasculature of triple-negative breast cancer (TNBC) presents a promising avenue for targeted endogenous radiotherapy with [177Lu]Lu-PSMA-I&T. This study aimed to assess and compare the therapeutic efficacy of a single dose with a fractionated dose of [177Lu]Lu-PSMA-I&T in an orthotopic model of TNBC. METHODS Rj:NMRI-Foxn1nu/nu mice were used as recipients of MDA-MB-231 xenografts. The single dose group was treated with 1 × 60 ± 5 MBq dose of [177Lu]Lu-PSMA-I&T, while the fractionated dose group received 4 × a 15 ± 2 MBq dose of [177Lu]Lu-PSMA-I&T at 7 day intervals. The control group received 0.9% NaCl. Tumor progression was monitored using [18F]FDG-PET/CT. Ex vivo analysis encompassed immunostaining, TUNEL staining, H&E staining, microautoradiography, and autoradiography. RESULTS Tumor volumes were significantly smaller in the single dose (p < 0.001) and fractionated dose (p < 0.001) groups. Tumor growth inhibition rates were 38% (single dose) and 30% (fractionated dose). Median survival was notably prolonged in the treated groups compared to the control groups (31d, 28d and 19d for single dose, fractionated dose and control, respectively). [177Lu]Lu-PSMA-I&T decreased the size of viable tumor areas. We further demonstrated, that [177Lu]Lu-PSMA-I&T binds specifically to the tumor-associated vasculature. CONCLUSION This study highlights the potential of [177Lu]Lu-PSMA-I&T for endogenous radiotherapy of TNBC.
Collapse
Affiliation(s)
- Amelie Heesch
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Alexandru Florea
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center (MUMC+), 6202, Maastricht, The Netherlands
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital RWTH Aachen, 52074, Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Germany
| | - Pardes Habib
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, USA
| | - Laura S Werth
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Thomas Hansen
- Department of Obstetrics and Gynecology, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University Hospital RWTH Aachen, 52074, Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Germany
| | - Sabri E M Sahnoun
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202, Maastricht, The Netherlands
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
6
|
Ramirez-Fort MK, Gilman CK, Alexander JS, Meier-Schiesser B, Gower A, Olyaie M, Vaidya N, Vahidi K, Li Y, Lange CS, Fort M, Deurdulian C. Gender and disease-inclusive nomenclature consolidation of theragnostic target, prostate-specific membrane antigen (PSMA) to folate hydrolase-1 (FOLH1). Front Med (Lausanne) 2024; 10:1304718. [PMID: 38444631 PMCID: PMC10913592 DOI: 10.3389/fmed.2023.1304718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/31/2023] [Indexed: 03/07/2024] Open
Affiliation(s)
- Marigdalia K. Ramirez-Fort
- BioFort, Guaynabo, Puerto Rico
- Veterans Affairs (VA) Greater Los Angeles Healthcare System, Veterans Health Administration, United States Department of Veterans Affairs, Los Angeles, CA, United States
- University of California at Los Angeles (UCLA) Health System, Los Angeles, CA, United States
| | - Casey K. Gilman
- BioFort, Guaynabo, Puerto Rico
- San Juan Bautista School of Medicine, Caguas, Puerto Rico
| | - Jacob S. Alexander
- BioFort, Guaynabo, Puerto Rico
- San Juan Bautista School of Medicine, Caguas, Puerto Rico
| | | | - Arjan Gower
- University of California at Los Angeles (UCLA) Health System, Los Angeles, CA, United States
| | - Mojtaba Olyaie
- Veterans Affairs (VA) Greater Los Angeles Healthcare System, Veterans Health Administration, United States Department of Veterans Affairs, Los Angeles, CA, United States
- University of California at Los Angeles (UCLA) Health System, Los Angeles, CA, United States
| | - Neel Vaidya
- Veterans Affairs (VA) Greater Los Angeles Healthcare System, Veterans Health Administration, United States Department of Veterans Affairs, Los Angeles, CA, United States
| | - Kiarash Vahidi
- Veterans Affairs (VA) Greater Los Angeles Healthcare System, Veterans Health Administration, United States Department of Veterans Affairs, Los Angeles, CA, United States
| | - Yuxin Li
- Veterans Affairs (VA) Greater Los Angeles Healthcare System, Veterans Health Administration, United States Department of Veterans Affairs, Los Angeles, CA, United States
- University of California at Los Angeles (UCLA) Health System, Los Angeles, CA, United States
| | - Christopher S. Lange
- BioFort, Guaynabo, Puerto Rico
- Department of Radiology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | | | - Corinne Deurdulian
- Veterans Affairs (VA) Greater Los Angeles Healthcare System, Veterans Health Administration, United States Department of Veterans Affairs, Los Angeles, CA, United States
- University of California at Los Angeles (UCLA) Health System, Los Angeles, CA, United States
- University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Bui VN, Unterrainer LM, Brendel M, Kunte SC, Holzgreve A, Allmendinger F, Bartenstein P, Klauschen F, Unterrainer M, Staehler M, Ledderose S. PSMA-Expression Is Highly Associated with Histological Subtypes of Renal Cell Carcinoma: Potential Implications for Theranostic Approaches. Biomedicines 2023; 11:3095. [PMID: 38002095 PMCID: PMC10668989 DOI: 10.3390/biomedicines11113095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
In renal cell carcinoma (RCC), accurate imaging methods are required for treatment planning and response assessment to therapy. In addition, there is an urgent need for new therapeutic options, especially in metastatic RCC. One way to combine diagnostics and therapy in a so-called theranostic approach is the use of radioligands directed against surface antigens. For instance, radioligands against prostate-specific membrane antigen (PSMA) have already been successfully used for diagnosis and radionuclide therapy of metastatic prostate cancer. Recent studies have demonstrated that PSMA is expressed not only in prostate cancer but also in the neovasculature of several solid tumors, which has raised hopes to use PSMA-guided theranostic approaches in other tumor entities, too. However, data on PSMA expression in different histopathological subtypes of RCC are sparse. Because a better understanding of PSMA expression in RCC is critical to assess which patients would benefit most from theranostic approaches using PSMA-targeted ligands, we investigated the expression pattern of PSMA in different subtypes of RCC on protein level. Immunohistochemical staining for PSMA was performed on formalin-fixed, paraffin-embedded archival material of major different histological subtypes of RCC (clear cell RCC (ccRCC)), papillary RCC (pRCC) and chromophobe RCC (cpRCC). The extent and intensity of PSMA staining were scored semi-quantitatively and correlated with the histological RCC subtypes. Group comparisons were calculated with the Kruskal-Wallis test. In all cases, immunoreactivity was detected only in the tumor-associated vessels and not in tumor cells. Staining intensity was the strongest in ccRCC, followed by cpRCC and pRCC. ccRCC showed the most diffuse staining pattern, followed by cpRCC and pRCC. Our results provide a rationale for PSMA-targeted theranostic approaches in ccRCC and cpRCC.
Collapse
Affiliation(s)
- Vinh Ngoc Bui
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.B.); (S.C.K.); (F.A.); (P.B.); (M.U.)
| | - Lena M. Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.B.); (S.C.K.); (F.A.); (P.B.); (M.U.)
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.B.); (S.C.K.); (F.A.); (P.B.); (M.U.)
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sophie C. Kunte
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.B.); (S.C.K.); (F.A.); (P.B.); (M.U.)
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.B.); (S.C.K.); (F.A.); (P.B.); (M.U.)
| | - Fabian Allmendinger
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.B.); (S.C.K.); (F.A.); (P.B.); (M.U.)
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.B.); (S.C.K.); (F.A.); (P.B.); (M.U.)
| | | | - Marcus Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.B.); (S.C.K.); (F.A.); (P.B.); (M.U.)
- Die RADIOLOGIE, 80331 Munich, Germany
| | - Michael Staehler
- Department of Urology, LMU University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Stephan Ledderose
- Institute of Pathology, LMU Munich, 81377 Munich, Germany; (F.K.); (S.L.)
| |
Collapse
|
8
|
Uemura M, Watabe T, Hoshi S, Tanji R, Yaginuma K, Kojima Y. The current status of prostate cancer treatment and PSMA theranostics. Ther Adv Med Oncol 2023; 15:17588359231182293. [PMID: 37424944 PMCID: PMC10328176 DOI: 10.1177/17588359231182293] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
In the treatment of cancer, understanding the disease status, or accurate staging, is extremely important, and various imaging techniques are used. Computed tomography (CT), magnetic resonance imaging, and scintigrams are commonly used for solid tumors, and advances in these technologies have improved the accuracy of diagnosis. In the clinical practice of prostate cancer, CT and bone scans have been considered especially important for detecting metastases. Nowadays, CT and bone scans are called conventional methods because positron emission tomography (PET), especially prostate-specific membrane antigen (PSMA)/PET, is extremely sensitive in detecting metastases. Advances in functional imaging, such as PET, are advancing the diagnosis of cancer by allowing information to be added to the morphological diagnosis. Furthermore, PSMA is known to be upregulated depending on the malignancy of the prostate cancer grade and resistance to therapy. Therefore, it is often highly expressed in castration-resistant prostate cancer (CRPC) with poor prognosis, and its therapeutic application has been attempted for around two decades. PSMA theranostics refers to a type of cancer treatment that combines both diagnosis and therapy using a PSMA. The theranostic approach uses a radioactive substance attached to a molecule that targets PSMA protein on cancer cells. This molecule is injected into the patient's bloodstream and can be used for both imaging the cancer cells with a PET scan (PSMA PET imaging) and delivering radiation directly to the cancer cells (PSMA-targeted radioligand therapy), with the aim of minimizing damage to healthy tissue. Recently, in an international phase III trial, the impact of 177Lu-PSMA-617 therapy was studied in patients with advanced PSMA-positive metastatic CRPC who had previously been treated with specific inhibitors and regimens. The trial revealed that 177Lu-PSMA-617 significantly extended both progression-free survival and overall survival compared to standard care alone. Although there was a higher incidence of grade 3 or above adverse events with 177Lu-PSMA-617, it did not negatively impact the patients' quality of life. PSMA theranostics is currently being studied and used primarily for the treatment of prostate cancer, but it has the potential to be applied to other types of cancers as well.
Collapse
Affiliation(s)
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiji Hoshi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ryo Tanji
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kei Yaginuma
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
9
|
The Potential of PSMA as a Vascular Target in TNBC. Cells 2023; 12:cells12040551. [PMID: 36831218 PMCID: PMC9954547 DOI: 10.3390/cells12040551] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Recent studies proving prostate-specific membrane antigen (PSMA) expression on triple-negative breast cancer (TNBC) cells and adjacent endothelial cells suggest PSMA as a promising target for therapy of until now not-targetable cancer entities. In this study, PSMA and its isoform expression were analyzed in different TNBC cells, breast cancer stem cells (BCSCs), and tumor-associated endothelial cells. PSMA expression was detected in 91% of the investigated TNBC cell lines. The PSMA splice isoforms were predominantly found in the BCSCs. Tumor-conditioned media from two TNBC cell lines, BT-20 (high full-length PSMA expression, PSMAΔ18 expression) and Hs578T (low full-length PSMA expression, no isoform expression), showed significant pro-angiogenic effect with induction of tube formation in endothelial cells. All TNBC cell lines induced PSMA expression in human umbilical vein endothelial cells (HUVEC). Significant uptake of radiolabeled ligand [68Ga]Ga-PSMA was detected in BCSC1 (4.2%), corresponding to the high PSMA expression. Moreover, hypoxic conditions increased the uptake of radiolabeled ligand [177Lu]Lu-PSMA in MDA-MB-231 (0.4% vs. 3.4%, under hypoxia and normoxia, respectively) and MCF-10A (0.3% vs. 3.0%, under normoxia and hypoxia, respectively) significantly (p < 0.001). [177Lu]Lu-PSMA-induced apoptosis rates were highest in BT-20 and MDA-MB-231 associated endothelial cells. Together, these findings demonstrate the potential of PSMA-targeted therapy in TNBC.
Collapse
|
10
|
Yarahmadi A, Sohan R, McAllister B, Caromile LA. Therapeutic potential of targeting mirnas to prostate cancer tumors: using psma as an active target. Mol Cell Oncol 2022; 9:2136476. [PMID: 36313480 PMCID: PMC9601542 DOI: 10.1080/23723556.2022.2136476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prostate cancer (PC) is a commonly diagnosed malignancy in men and is associated with high mortality rates. Current treatments for PC include surgery, chemotherapy, and radiation therapy. However, recent advances in targeted delivery systems have yielded promising new approaches to PC treatment. As PC epithelial cells express high levels of prostate-specific membrane antigen (PSMA) on the cell surface, new drug conjugates focused on PSMA targeting have been developed. microRNAs (miRNAs) are small noncoding RNAs that regulate posttranscriptional gene expression in cells and show excellent possibilities for use in developing new therapeutics for PC. PSMA-targeted therapies based on a miRNA payload and that selectively target PC cells enhances therapeutic efficacy without eliciting damage to normal surrounding tissue. This review discusses the rationale for utilizing miRNAs to target PSMA, revealing their potential in therapeutic approaches to PC treatment. Different delivery systems for miRNAs and challenges to miRNA therapy are also explored.
Collapse
Affiliation(s)
- Amir Yarahmadi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Romoye Sohan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Brenna McAllister
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Leslie A. Caromile
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA,CONTACT Leslie A. Caromile Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
11
|
Chen J, Qi L, Tang Y, Tang G, Gan Y, Cai Y. Current role of prostate-specific membrane antigen-based imaging and radioligand therapy in castration-resistant prostate cancer. Front Cell Dev Biol 2022; 10:958180. [PMID: 36036001 PMCID: PMC9411749 DOI: 10.3389/fcell.2022.958180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a therapy-resistant and lethal form of prostate cancer as well as a therapeutic challenge. Prostate-specific membrane antigen (PSMA) has been proved as a promising molecular target for optimizing the theranostics for CRPC patients. When combined with PSMA radiotracers, novel molecular imaging techniques such as positron emission tomography (PET) can provide more accurate and expedient identification of metastases when compared with conventional imaging techniques. Based on the PSMA-based PET scans, the accurate visualization of local and disseminative lesions may help in metastasis-directed therapy. Moreover, the combination of 68Ga-labeled PSMA-based PET imaging and radiotherapy using PSMA radioligand therapy (RLT) becomes a novel treatment option for CRPC patients. The existing studies have demonstrated this therapeutic strategy as an effective and well-tolerated therapy among CRPC patients. PSMA-based PET imaging can accurately detect CRPC lesions and describe their molecular features with quantitative parameters, which can be used to select the best choice of treatments, monitor the response, and predict the outcome of RLT. This review discussed the current and potential role of PSMA‐based imaging and RLT in the diagnosis, treatment, and prediction of prognosis of CRPC.
Collapse
Affiliation(s)
- Jiaxian Chen
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lin Qi
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yongxiang Tang
- Department of PET Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Guyu Tang
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu Gan
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- *Correspondence: Yu Gan, ; Yi Cai,
| | - Yi Cai
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- *Correspondence: Yu Gan, ; Yi Cai,
| |
Collapse
|
12
|
An S, Huang G, Liu J, Wei W. PSMA-targeted theranostics of solid tumors: applications beyond prostate cancers. Eur J Nucl Med Mol Imaging 2022; 49:3973-3976. [PMID: 35916921 DOI: 10.1007/s00259-022-05905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
13
|
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022; 22:101450. [PMID: 35597190 PMCID: PMC9123266 DOI: 10.1016/j.tranon.2022.101450] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
PSMA is an appealing target for theranostic because it is a transmembrane protein with a known substrate that is overexpessed on prostate cancer cells and internalizes upon ligand binding. There are a number of PSMA theranostic ligands in clinical evaluation, clinical trial, or clinically approved. PSMA theranostic ligands increase progression-free survival, overall survival, and pain in patients with metastatic castration resistant prostate cancer. A major obstacle to PSMA-targeted radioligand therapy is off-target toxicity in salivary glands.
The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA
| | - John W Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA
| | - James M Kelly
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA.
| |
Collapse
|
14
|
Sergeeva O, Zhang Y, Julian W, Sasikumar A, Awadallah A, Kenyon J, Shi W, Sergeev M, Huang S, Sexton S, Iyer R, Xin W, Avril N, Chan ER, Lee Z. Imaging of Tumor-Associated Vascular Prostate-Specific Membrane Antigen in Woodchuck Model of Hepatocellular Carcinoma. GASTRO HEP ADVANCES 2022; 1:631-639. [PMID: 35844243 PMCID: PMC9280909 DOI: 10.1016/j.gastha.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Radiolabeled short peptide ligands targeting prostate-specific membrane antigen (PSMA) were developed initially for imaging and treatment of prostate cancers. While many nonprostate solid tumors including hepatocellular carcinoma (HCC) express little PSMA, their neovasculature expresses a high level of PSMA, which is avid for Gallium-68-labeled PSMA-targeting radio-ligand (68Ga-PSMA-11) for positron emission tomography (PET). However, the lack of a spontaneous animal model of tumor-associated vascular PSMA overexpression has hindered the development and assessment of PSMA-targeting radioligands for imaging and therapy of the nonprostatic cancers. We identified detectable indigenous PSMA expression on tumor neovascular endothelia in a naturally occurring woodchuck model of HCC. METHODS Molecular docking was performed with 3 bait PSMA ligands and compared between human and woodchuck PSMA. Initially, PET images were acquired dynamically after intravenously injecting 37 MBq (1.0 mCi) of 68Ga-PSMA-11 into woodchuck models of HCC. Subsequently, 10-minute static PET scans were conducted for other animals 1-hour after injection due to HCC and liver background uptake stabilization at 30-45 minutes after injection. Liver tissue samples were harvested after imaging, fresh-frozen for quantitative reverse transcription polymerase chain reaction and western blot for validation, or fixed for histology for correlation. RESULTS Our preclinical studies confirmed the initial clinical findings of 68Ga-PSMA-11 uptake in HCC. The agents (ligands and antibodies) developed against human PSMA were found to be reactive against the woodchuck PSMA. CONCLUSION This animal model offers a unique opportunity for investigating the biogenesis of tumor-associated vascular PSMA, its functional role(s), and potentials for future treatment strategies targeting tumor vascular PSMA using already developed PSMA-targeting agents.
Collapse
Affiliation(s)
- Olga Sergeeva
- Radiology, Case Western Reserve University, Cleveland, Ohio
| | - Yifan Zhang
- Radiology, Case Western Reserve University, Cleveland, Ohio
| | - Willian Julian
- Radiology, Case Western Reserve University, Cleveland, Ohio
| | - Arun Sasikumar
- Nuclear Medicine, St. Gregorios International Cancer Care Centre, Parumala, Kerala, India
| | - Amad Awadallah
- Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Wuxian Shi
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio
| | - Maxim Sergeev
- Radiology, University Hospitals Clevel and Medical Center, Cleveland, Ohio
| | - Steve Huang
- Nuclear Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Sandra Sexton
- Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Renuka Iyer
- Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Wei Xin
- Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Norbert Avril
- Radiology, University Hospitals Clevel and Medical Center, Cleveland, Ohio
| | - Ernest Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
| | - Zhenghong Lee
- Radiology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
15
|
Solimando AG, Kalogirou C, Krebs M. Angiogenesis as Therapeutic Target in Metastatic Prostate Cancer - Narrowing the Gap Between Bench and Bedside. Front Immunol 2022; 13:842038. [PMID: 35222436 PMCID: PMC8866833 DOI: 10.3389/fimmu.2022.842038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis in metastatic castration-resistant prostate cancer (mCRPC) has been extensively investigated as a promising druggable biological process. Nonetheless, targeting angiogenesis has failed to impact overall survival (OS) in patients with mCRPC despite promising preclinical and early clinical data. This discrepancy prompted a literature review highlighting the tumor heterogeneity and biological context of Prostate Cancer (PCa). Narrowing the gap between the bench and bedside appears critical for developing novel therapeutic strategies. Searching clinicaltrials.gov for studies examining angiogenesis inhibition in patients with PCa resulted in n=20 trials with specific angiogenesis inhibitors currently recruiting (as of September 2021). Moreover, several other compounds with known anti-angiogenic properties - such as Metformin or Curcumin - are currently investigated. In general, angiogenesis-targeting strategies in PCa include biomarker-guided treatment stratification - as well as combinatorial approaches. Beyond established angiogenesis inhibitors, PCa therapies aiming at PSMA (Prostate Specific Membrane Antigen) hold the promise to have a substantial anti-angiogenic effect - due to PSMA´s abundant expression in tumor vasculature.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine "G. Baccelli", University of Bari Medical School, Bari, Italy.,Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Charis Kalogirou
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - Markus Krebs
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Unger C, Bronsert P, Michalski K, Bicker A, Juhasz-Böss I. Expression of Prostate Specific Membrane Antigen (PSMA) in Breast Cancer. Geburtshilfe Frauenheilkd 2022; 82:50-58. [PMID: 35027860 PMCID: PMC8747897 DOI: 10.1055/a-1638-9429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/06/2021] [Indexed: 10/28/2022] Open
Abstract
Background Prostate specific membrane antigen (PSMA) is a promising protein for breast cancer patients. It has not only been detected in prostate cancer but is also expressed by tumor cells and the endothelial cells of tumor vessels in breast cancer patients. PSMA plays a role in tumor progression and tumor angiogenesis. For this reason, a number of diagnostic and therapeutic methods to target PSMA have been developed. Method This paper provides a general structured overview of PSMA and its oncogenic potential, with a special focus on its role in breast cancer. This narrative review is based on a selective literature search carried out in PubMed and the library of Freiburg University Clinical Center. The following key words were used for the search: "PSMA", "PSMA and breast cancer", "PSMA PET/CT", "PSMA tumor progression". Relevant articles were explicitly read through, processed, and summarized. Conclusion PSMA could be a new diagnostic and therapeutic alternative, particularly for triple-negative breast cancer. It appears to be a potential predictive and prognostic marker.
Collapse
Affiliation(s)
- Clara Unger
- Klinik für Frauenheilkunde, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institut für Klinische Pathologie, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Kerstin Michalski
- Klinik für Nuklearmedizin, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Anna Bicker
- Klinik für Gynäkologie und Geburtshilfe in den St. Vincentius Kliniken, Karslruhe, Germany
| | - Ingolf Juhasz-Böss
- Klinik für Frauenheilkunde, Universitätsklinikum Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Abd El Khalek SM, Hafez F. Prostate-specific membrane antigen expression in clear-cell renal cell carcinoma: An angiogenic marker with clinicopathologic significance. EGYPTIAN JOURNAL OF PATHOLOGY 2022; 42:11. [DOI: 10.4103/egjp.egjp_54_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Watanabe R, Maekawa M, Kiyoi T, Kurata M, Miura N, Kikugawa T, Higashiyama S, Saika T. PSMA-positive membranes secreted from prostate cancer cells have potency to transform vascular endothelial cells into an angiogenic state. Prostate 2021; 81:1390-1401. [PMID: 34516672 PMCID: PMC9292811 DOI: 10.1002/pros.24237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) is highly expressed in poorly differentiated, metastatic, and castration-resistant prostate cancers. Recently, 68Ga-PSMA positron emission tomography/computed tomography has been successfully developed as an effective diagnostic tool for prostate cancer. However, the pathophysiological functions of PSMA in prostate tumors remain unclear. METHODS We examined the protein expression of PSMA in tumor endothelial cells in human prostate tumors by immunohistochemistry. Prostate cancer tissues were resected by robotic surgery in 2019 at Ehime University from patients with prostate cancer. In vitro, we prepared conditioned medium (CM) derived from a PSMA-positive human prostate cancer cell line, LNCaP, cultured on collagen I gels. We then examined PSMA expression in human umbilical vascular endothelial cells (HUVECs) cultured with the CM. We assessed angiogenic activities by treatment of HUVECs with LNCaP-derived CM using a tube formation assay that mimics angiogenesis. RESULTS Immunohistochemistry of PSMA and CD31, a marker of endothelial cells, and PSMA-expressing tumor endothelial cells were observed in 4 of 33 prostate cancer patients (12.1%). We also found that the 10,000g pellet fraction of the LNCaP-derived CM containing PSMA-positive membranes, such as microvesicles transformed HUVECs "PSMA-negative" into "PSMA-positive." Furthermore, treatment of HUVECs with the 10,000g pellet fraction of the LNCaP-derived CM significantly promoted tube formation, mimicking angiogenesis in a PSMA-dependent manner. CONCLUSIONS Our findings revealed the existence of PSMA-positive tumor endothelial cells in human prostate tumors, which enhances tumor angiogenesis in prostate cancer tissues.
Collapse
Affiliation(s)
- Ryuta Watanabe
- Department of UrologyEhime University Graduate School of MedicineMatsuyamaEhimeJapan
- Department of Biochemistry and Molecular GeneticsEhime University Graduate School of MedicineMatsuyamaEhimeJapan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular GeneticsEhime University Graduate School of MedicineMatsuyamaEhimeJapan
- Division of Cell Growth and Tumor Regulation, Proteo‐Science CenterEhime UniversityMatsuyamaEhimeJapan
| | - Takeshi Kiyoi
- Division of Analytical Bio‐medicine, Advanced Research Support CenterEhime UniversityEhimeJapan
| | - Mie Kurata
- Department of PathologyEhime University Graduate School of Medicine and Proteo‐Science CenterEhimeJapan
| | - Noriyoshi Miura
- Department of UrologyEhime University Graduate School of MedicineMatsuyamaEhimeJapan
| | - Tadahiko Kikugawa
- Department of UrologyEhime University Graduate School of MedicineMatsuyamaEhimeJapan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular GeneticsEhime University Graduate School of MedicineMatsuyamaEhimeJapan
- Division of Cell Growth and Tumor Regulation, Proteo‐Science CenterEhime UniversityMatsuyamaEhimeJapan
- Department of Molecular and Cellular BiologyOsaka International Cancer InstituteOsakaJapan
| | - Takashi Saika
- Department of UrologyEhime University Graduate School of MedicineMatsuyamaEhimeJapan
| |
Collapse
|
19
|
Kirchner MA, Holzgreve A, Brendel M, Orth M, Ruf VC, Steiger K, Pötter D, Gold L, Unterrainer M, Mittlmeier LM, Barci E, Kälin RE, Glass R, Lindner S, Kaiser L, Maas J, von Baumgarten L, Ilhan H, Belka C, Notni J, Bartenstein P, Lauber K, Albert NL. PSMA PET Imaging in Glioblastoma: A Preclinical Evaluation and Theranostic Outlook. Front Oncol 2021; 11:774017. [PMID: 34869017 PMCID: PMC8635528 DOI: 10.3389/fonc.2021.774017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prostate specific membrane antigen (PSMA) PET imaging has recently gained attention in glioblastoma (GBM) patients as a potential theranostic target for PSMA radioligand therapy. However, PSMA PET has not yet been established in a murine GBM model. Our goal was to investigate the potential of PSMA PET imaging in the syngeneic GL261 GBM model and to give an outlook regarding the potential of PMSA radioligand therapy in this model. METHODS We performed an 18F-PSMA-1007 PET study in the orthotopic GL261 model (n=14 GBM, n=7 sham-operated mice) with imaging at day 4, 8, 11, 15, 18 and 22 post implantation. Time-activity-curves (TAC) were extracted from dynamic PET scans (0-120 min p. i.) in a subset of mice (n=4 GBM, n=3 sham-operated mice) to identify the optimal time frame for image analysis, and standardized-uptake-values (SUV) as well as tumor-to-background ratios (TBR) using contralateral normal brain as background were calculated in all mice. Additionally, computed tomography (CT), ex vivo and in vitro 18F-PSMA-1007 autoradiographies (ARG) were performed. RESULTS TAC analysis of GBM mice revealed a plateau of TBR values after 40 min p. i. Therefore, a 30 min time frame between 40-70 min p. i. was chosen for PET quantification. At day 15 and later, GBM mice showed a discernible PSMA PET signal on the inoculation site, with highest TBRmean in GBM mice at day 18 (7.3 ± 1.3 vs. 1.6 ± 0.3 in shams; p=0.024). Ex vivo ARG confirmed high tracer signal in GBM compared to healthy background (TBRmean 26.9 ± 10.5 vs. 1.6 ± 0.7 in shams at day 18/22 post implantation; p=0.002). However, absolute uptake values in the GL261 tumor remained low (e.g., SUVmean 0.21 ± 0.04 g/ml at day 18) resulting in low ratios compared to dose-relevant organs (e.g., mean tumor-to-kidney ratio 1.5E-2 ± 0.5E-2). CONCLUSIONS Although 18F-PSMA-1007 PET imaging of GL261 tumor-bearing mice is feasible and resulted in high TBRs, absolute tumoral uptake values remained low and hint to limited applicability of the GL261 model for PSMA-directed therapy studies. Further investigations are warranted to identify suitable models for preclinical evaluation of PSMA-targeted theranostic approaches in GBM.
Collapse
Affiliation(s)
- Maximilian A. Kirchner
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technische Universität München (TUM) School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis Pötter
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Lukas Gold
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Lena M. Mittlmeier
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Enio Barci
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Roland E. Kälin
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Jessica Maas
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Notni
- Institute of Pathology, Technische Universität München (TUM) School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Ramirez-Fort MK, Meier-Schiesser B, Lachance K, Mahase SS, Church CD, Niaz MJ, Liu H, Navarro V, Nikolopoulou A, Kazakov DV, Contassot E, Nguyen DP, Sach J, Hadravsky L, Sheng Y, Tagawa ST, Wu X, Lange CS, French LE, Nghiem PT, Bander NH. Folate hydrolase-1 (FOLH1) is a novel target for antibody-based brachytherapy in Merkel cell carcinoma. SKIN HEALTH AND DISEASE 2021; 1. [PMID: 34541577 PMCID: PMC8447486 DOI: 10.1002/ski2.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Backgrounds Folate Hydrolase‐1 (FOLH1; PSMA) is a type II transmembrane protein, luminally expressed by solid tumour neo‐vasculature. Monoclonal antibody (mAb), J591, is a vehicle for mAb‐based brachytherapy in FOLH1+ cancers. Brachytherapy is a form of radiotherapy that involves placing a radioactive material a short distance from the target tissue (e.g., on the skin or internally); brachytherapy is commonly accomplished with the use of catheters, needles, metal seeds and antibody or small peptide conjugates. Herein, FOLH1 expression in primary (p) and metastatic (m) Merkel cell carcinoma (MCC) is characterized to determine its targeting potential for J591‐brachytherapy. Materials & Methods Paraffin sections from pMCC and mMCC were evaluated by immunohistochemistry for FOLH1. Monte Carlo simulation was performed using the physical properties of conjugated radioisotope lutetium‐177. Kaplan–Meier survival curves were calculated based on patient outcome data and FOLH1 expression. Results Eighty‐one MCC tumours were evaluated. 67% (54/81) of all cases, 77% (24/31) pMCC and 60% (30/50) mMCC tumours were FOLH1+. Monte Carlo simulation showed highly localized ionizing tracks of electrons emitted from the targeted neo‐vessel. 42% (34/81) of patients with FOLH1+/− MCC had available survival data for analysis. No significant differences in our limited data set were detected based on FOLH1 status (p = 0.4718; p = 0.6470), staining intensity score (p = 0.6966; p = 0.9841) or by grouping staining intensity scores (− and + vs. ++, +++, +++) (p = 0.8022; p = 0.8496) for MCC‐specific survival or recurrence free survival, respectively. Conclusions We report the first evidence of prevalent FOLH1 expression within MCC‐associated neo‐vessels, in 60‐77% of patients in a large MCC cohort. Given this data, and the need for alternatives to immune therapies it is appropriate to explore the safety and efficacy of FOLH1‐targeted brachytherapy for MCC. What's already known about this topic? We report the first evidence of prevalent folate hydrolase‐1 (FOLH1; also known as prostate‐specific membrane antigen) expression within MCC‐associated neovessels.
What does this study add? Herein, FOLH1 expression in Merkel cell carcinoma neovasculature is validated, and the therapeutic mechanism of specific, systemic targeting of disseminated disease with antibody‐based brachytherapy, is defined.
Collapse
Affiliation(s)
- M K Ramirez-Fort
- Department of Life Sciences, BioFort®, Guaynabo, Puerto Rico, USA.,Department of Urology, Weill Cornell Medicine, New York, New York, USA.,Department of Radiation Oncology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - B Meier-Schiesser
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - K Lachance
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - S S Mahase
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | - C D Church
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - M J Niaz
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - H Liu
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - V Navarro
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - A Nikolopoulou
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - D V Kazakov
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.,Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - E Contassot
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - D P Nguyen
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - J Sach
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - L Hadravsky
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Y Sheng
- Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - S T Tagawa
- Department of Urology, Weill Cornell Medicine, New York, New York, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - X Wu
- Shanghai Proton and Heavy Ion Center, Shanghai, China.,Innovative Cancer Institute, Miami, Florida, USA
| | - C S Lange
- Department of Life Sciences, BioFort®, Guaynabo, Puerto Rico, USA.,Department of Radiation Oncology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - L E French
- Department of Dermatology, Münich University Hospital, Münich, Germany
| | - P T Nghiem
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - N H Bander
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
21
|
Comparison of Quantification of Target-Specific Accumulation of [ 18F]F-siPSMA-14 in the HET-CAM Model and in Mice Using PET/MRI. Cancers (Basel) 2021; 13:cancers13164007. [PMID: 34439163 PMCID: PMC8393674 DOI: 10.3390/cancers13164007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Animal studies are essential for the development of new radiopharmaceuticals to determine specific accumulation and biodistribution. Alternative models, such as the HET-CAM model, offer the possibility of reducing animal experiments in accordance with the 3Rs principles. Accurate quantification of tumor accumulation of a PSMA-specific ligand in the HET-CAM model and comparison with corresponding animal experiments was performed using the imaging modalities PET and MRI. It was demonstrated that the HET-CAM model leads to comparable results and is suitable as an alternative to animal experiments for the initial assessment of target-specific binding of novel radiopharmaceuticals. However, as evaluation of biodistribution in ovo is still limited, further animal experiments with promising compounds are mandatory. Abstract Assessment of biodistribution and specific tumor accumulation is essential for the development of new radiopharmaceuticals and requires animal experiments. The HET-CAM (hens-egg test—chorioallantoic membrane) model can be used in combination with the non-invasive imaging modalities PET and MRI for pre-selection during radiopharmaceutical development to reduce the number of animal experiments required. Critical to the acceptance of this model is the demonstration of the quantifiability and reproducibility of these data compared to the standard animal model. Tumor accumulation and biodistribution of the PSMA-specific radiotracer [18F]F-siPSMA-14 was analyzed in the chick embryo and in an immunodeficient mouse model. Evaluation was based on MRI and PET data in both models. γ-counter measurements and histopathological analyses complemented these data. PSMA-specific accumulation of [18F]F-siPSMA-14 was successfully demonstrated in the HET-CAM model, similar to the results obtained by mouse model studies. The combination of MR and PET imaging allowed precise quantification of peptide accumulation, initial assessment of biodistribution, and accurate determination of tumor volume. Thus, the use of the HET-CAM model is suitable for the pre-selection of new radiopharmaceuticals and potentially reduces animal testing in line with the 3Rs principles of animal welfare.
Collapse
|
22
|
Evolving Castration Resistance and Prostate Specific Membrane Antigen Expression: Implications for Patient Management. Cancers (Basel) 2021; 13:cancers13143556. [PMID: 34298770 PMCID: PMC8307676 DOI: 10.3390/cancers13143556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease, despite multiple novel treatment options. The role of prostate-specific membrane antigen (PSMA) in the process of mCRPC development has long been underestimated. During the last years, a new understanding of the underlying molecular mechanisms of rising PSMA expression and its association with disease progression has emerged. Accurate understanding of these complex interactions is indispensable for a precise diagnostic process and ultimately successful treatment of advanced prostate cancer. The combination of different novel therapeutics such as androgen deprivation agents, 177LU-PSMA radioligand therapy and PARP inhibitors promises a new kind of efficacy. In this review, we summarize the current knowledge about the most relevant molecular mechanisms around PSMA in mCRPC development and how they can be implemented in mCRPC management.
Collapse
|
23
|
Gao Y, Zheng H, Li L, Feng M, Chen X, Hao B, Lv Z, Zhou X, Cao Y. Prostate-Specific Membrane Antigen (PSMA) Promotes Angiogenesis of Glioblastoma Through Interacting With ITGB4 and Regulating NF-κB Signaling Pathway. Front Cell Dev Biol 2021; 9:598377. [PMID: 33748101 PMCID: PMC7969793 DOI: 10.3389/fcell.2021.598377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/15/2021] [Indexed: 12/01/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common primary malignant tumor in the central nervous system (CNS), causing the extremely poor prognosis. Combining the role of angiogenesis in tumor progression and the role of prostate-specific membrane antigen (PSMA) in angiogenesis, this study aims to explore the functions of PSMA in GBM. Methods Clinical GBM specimens were collected from 60 patients who accepted surgical treatment in Fudan University Shanghai Cancer Center between January 2018 and June 2019. Immunohistochemical staining was used to detect PSMA and CD31 expression in GBM tissues. Prognostic significance of PSMA was evaluated by bioinformatics. Human umbilical vein endothelial cells (HUVECs) transfected with PSMA overexpression plasmids or cultured with conditioned medium collected based on GBM cells, were used for CCK8, Transwell and tube formation assays. High-throughput sequencing and immunoprecipitation were used to explore the underlying mechanism. Furthermore, the in vivo experiment had been also conducted. Results We demonstrated that PSMA was abundantly expressed in endothelium of vessels of GBM tissues but not in vessels of normal tissues, which was significantly correlated with poor prognosis. Overexpression of PSMA could promotes proliferation, invasion and tube formation ability of human umbilical vein endothelial cells (HUVECs). Moreover, U87 or U251 conditioned medium could upregulated PSMA expression and induce similar effects on phenotypes of HUVECs, all of which could be partially attenuated by 2-PMPA treatment. The mechanistic study revealed that PSMA might promote angiogenesis of GBM through interacting with Integrin β4 (ITGB4) and activating NF-κB signaling pathway. The in vivo growth of GBM could be alleviated by the treatment of 2-PMPA. Conclusion This study identified PSMA as a critical regulator in angiogenesis and progression of GBM, which might be a promising therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Zheng
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Hao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xiaoyan Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Rosenfeld L, Sananes A, Zur Y, Cohen S, Dhara K, Gelkop S, Ben Zeev E, Shahar A, Lobel L, Akabayov B, Arbely E, Papo N. Nanobodies Targeting Prostate-Specific Membrane Antigen for the Imaging and Therapy of Prostate Cancer. J Med Chem 2020; 63:7601-7615. [PMID: 32442375 PMCID: PMC7383930 DOI: 10.1021/acs.jmedchem.0c00418] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The repertoire of
methods for the detection and chemotherapeutic
treatment of prostate cancer (PCa) is currently limited. Prostate-specific
membrane antigen (PSMA) is overexpressed in PCa tumors and can be
exploited for both imaging and drug delivery. We developed and characterized
four nanobodies that present tight and specific binding and internalization
into PSMA+ cells and that accumulate specifically in PSMA+ tumors. We then conjugated one of these nanobodies to the
cytotoxic drug doxorubicin, and we show that the conjugate internalizes
specifically into PSMA+ cells, where the drug is released
and induces cytotoxic activity. In vivo studies show
that the extent of tumor growth inhibition is similar when mice are
treated with commercial doxorubicin and with a 42-fold lower amount
of the nanobody-conjugated doxorubicin, attesting to the efficacy
of the conjugated drug. These data highlight nanobodies as promising
agents for the imaging of PCa tumors and for the targeted delivery
of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Lior Rosenfeld
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Amiram Sananes
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yuval Zur
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shira Cohen
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Kalyan Dhara
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sigal Gelkop
- Department of Virology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Efrat Ben Zeev
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Shahar
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Leslie Lobel
- Department of Virology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Eyal Arbely
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
25
|
Niaz MO, Sun M, Ramirez-Fort MK, Niaz MJ. Prostate-specific Membrane Antigen Based Antibody-drug Conjugates for Metastatic Castration-resistance Prostate Cancer. Cureus 2020; 12:e7147. [PMID: 32257692 PMCID: PMC7105266 DOI: 10.7759/cureus.7147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer cells can be selectively targeted by identifying and developing antibodies to specific antigens present on the cancer cell surface. Cytotoxic agents can be conjugated to these antibodies that bind to these cell surface antigens in order to significantly increase the therapeutic index of whichever cytotoxic agent is utilized. This approach of conjugating the cytotoxic drugs to antibodies to target specific surface antigens enhances the anti-tumor activity of antibodies and improves the tumor-to-normal tissue selectivity of chemotherapy. Critical parameters in the development of these antibody-drug conjugates include: 1) selection of most appropriate antigen, 2) the ability of an antibody to be internalized after binding to the antigen, 3) cytotoxic drug potency and 4) stability of the antibody-drug conjugate. For prostate cancer, prostate-specific membrane antigen (PSMA, also known as folate hydrolase-1) is the most validated theragnostic target to date. PSMA is overexpressed on the prostate cancer cell surface, which makes it an even better target for selective drug delivery through conjugated antibodies. Here, we review the PSMA-based antibody-drug conjugates for metastatic castration-resistance prostate cancer (mCRPC).
Collapse
Affiliation(s)
- Muhammad O Niaz
- Internal Medicine, Sharif Medical City Hospital, Lahore, PAK
| | - Michael Sun
- Internal Medicine, Weill Cornell Medicine, New York, USA
| | - Marigdalia K Ramirez-Fort
- Life Sciences, Biofort Corp., Guaynabo, PRI.,Urology, Weill Cornell Medicine, New York, USA.,Physiology / Pathology, San Juan Bautista School of Medicine, Caguas, PRI
| | | |
Collapse
|
26
|
Morgenroth A, Tinkir E, Vogg ATJ, Sankaranarayanan RA, Baazaoui F, Mottaghy FM. Targeting of prostate-specific membrane antigen for radio-ligand therapy of triple-negative breast cancer. Breast Cancer Res 2019; 21:116. [PMID: 31640747 PMCID: PMC6805467 DOI: 10.1186/s13058-019-1205-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Background Triple-negative breast cancer has extremely high risk of relapse due to the lack of targeted therapies, intra- and inter-tumoral heterogeneity, and the inherent and acquired resistance to therapies. In this study, we evaluate the potential of prostate-specific membrane antigen (PSMA) as target for radio-ligand therapy (RLT). Methods Tube formation was investigated after incubation of endothelial HUVEC cells in tumor-conditioned media and monitored after staining using microscopy. A binding study with 68Ga-labeled PSMA-addressing ligand was used to indicate targeting potential of PSMA on tumor-conditioned HUVEC cells. For mimicking of the therapeutic application, tube formation potential and vitality of tumor-conditioned HUVEC cells were assessed following an incubation with radiolabeled PSMA-addressing ligand [177Lu]-PSMA-617. For in vivo experiments, NUDE mice were xenografted with triple-negative breast cancer cells MDA-MB231 or estrogen receptor expressing breast cancer cells MCF-7. Biodistribution and binding behavior of [68Ga]-PSMA-11 was investigated in both tumor models at 30 min post injection using μPET. PSMA- and CD31-specific staining was conducted to visualize PSMA expression and neovascularization in tumor tissue ex vivo. Results The triple-negative breast cancer cells MDA-MB231 showed a high pro-angiogenetic potential on tube formation of endothelial HUVEC cells. The induced endothelial expression of PSMA was efficiently addressed by radiolabeled PSMA-specific ligands. 177Lu-labeled PSMA-617 strongly impaired the vitality and angiogenic potential of HUVEC cells. In vivo, as visualized by μPET, radiolabeled PSMA-ligand accumulated specifically in the triple-negative breast cancer xenograft MDA-MB231 (T/B ratio of 43.3 ± 0.9), while no [68Ga]-PSMA-11 was detected in the estrogen-sensitive MCF-7 xenograft (T/B ratio of 1.1 ± 0.1). An ex vivo immunofluorescence analysis confirmed the localization of PSMA on MDA-MB231 xenograft-associated endothelial cells and also on TNBC cells. Conclusions Here we demonstrate PSMA as promising target for two-compartment endogenous radio-ligand therapy of triple-negative breast cancer.
Collapse
Affiliation(s)
- Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Ebru Tinkir
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Andreas T J Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ramya Ambur Sankaranarayanan
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Fatima Baazaoui
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center X, Maastricht, The Netherlands
| |
Collapse
|
27
|
Morgantetti G, Ng KL, Samaratunga H, Rhee H, Gobe GC, Wood ST. Prostate specific membrane antigen (PSMA) expression in vena cava tumour thrombi of clear cell renal cell carcinoma suggests a role for PSMA-driven tumour neoangiogenesis. Transl Androl Urol 2019; 8:S147-S155. [PMID: 31236332 DOI: 10.21037/tau.2019.04.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a malignant renal neoplasm with a peculiar propensity to propagate as a contiguous tumor extension via the renal vein and inferior vena cava, occasionally reaching the right atrium. This intravascular tumor extension, often referred to as a tumor thrombus, represents the active growing front of the cancer. Prostate specific membrane antigen (PSMA), a glycoprotein that is extensively used in prostate cancer diagnostics, is a useful vascular marker for a variety of solid tumors. It is expressed in renal carcinomas. The aim of the current investigation was to analyse and compare the expression of PSMA at the growing front of the vena cava tumor extension with that found in the primary renal lesion. Methods Immunohistochemical (IHC) analysis of PSMA and CD34 was performed on archived paraffin embedded vena cava tumour thrombus tissue and matching renal tumours. These specimens were collected from radical nephrectomies of 10 patients with vena cava invasive (pT3b) ccRCC in a large tertiary hospital in Australia. Quantitative and qualitative morphometric analysis of PSMA IHC expression was performed with Aperio ImageScope morphometry using intensity and positive pixel counts of CD34 and PSMA from the IVC tumour slides and the corresponding renal tumour mass. Results PSMA and CD34 immunostaining were noted in the neovasculature of IVC tumour and renal tumour tissue. There was a higher PSMA/CD34 positive pixel count ratio noted in IVC tumour tissue when compared to renal tumour tissue. PSMA showed consistently increased expression in vena cava tumour, in comparison with the renal tumour mass. Conclusions Intravascular venous tumour extension expresses PSMA more intensely compared to intrarenal tumour tissue neovasculature. Our data suggest a possible mechanism for PSMA in neoangiogenesis and local progression of ccRCC and therefore its usefulness as a biomarker of neoangiogenesis for future diagnostic and therapeutic advancements.
Collapse
Affiliation(s)
- Giuliano Morgantetti
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Keng Lim Ng
- Translational Research Institute, University of Queensland Faculty of Medicine, Brisbane, Australia.,Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | | | - Handoo Rhee
- Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C Gobe
- Translational Research Institute, University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Simon T Wood
- Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
28
|
Simons BW, Turtle NF, Ulmert DH, Abou DS, Thorek DLJ. PSMA expression in the Hi-Myc model; extended utility of a representative model of prostate adenocarcinoma for biological insight and as a drug discovery tool. Prostate 2019; 79:678-685. [PMID: 30656716 PMCID: PMC6519119 DOI: 10.1002/pros.23770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is highly overexpressed in primary and metastatic prostate cancer (PCa). This has led to the development of radiopharmaceuticals for targeted imaging and therapy under current clinical evaluation. Despite this progress, the exact biological role of the protein in prostate cancer development and progression has not been fully elucidated. This is in part because the human PSMA and mouse PSMA (mPSMA) have different patterns of anatomical expression which confound study in the most widely utilized model organisms. Most notably, mPSMA is not expressed in the healthy murine prostate. Here, we reveal that mPSMA is highly upregulated in the prostate adenocarcinoma of the spontaneous Hi-Myc mouse model, a highly accurate and well characterized mouse model of prostate cancer development. Antibody detection and molecular imaging tools are used to confirm that mPSMA is expressed from early prostatic intraepithelial neoplasia (PIN) through adenocarcinoma.
Collapse
Affiliation(s)
- Brian W. Simons
- Center for Comparative MedicineBaylor College of MedicineHoustonTexas
| | - Norman F. Turtle
- Radiological Chemistry Imaging LaboratoryMallinckrodt Institute of RadiologyWashington University in St. LouisSt. LouisMissouri
| | - David H. Ulmert
- Johnsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesCalifornia
- Department of Molecular and Medical PharmacologyUniversity of California Los AngelesLos AngelesCalifornia
| | - Diane S. Abou
- Radiological Chemistry Imaging LaboratoryMallinckrodt Institute of RadiologyWashington University in St. LouisSt. LouisMissouri
- Radiology Cyclotron Facility, Mallinckrodt Institute of RadiologyWashington University in St. LouisSt. Louis,Missouri
| | - Daniel L. J. Thorek
- Radiological Chemistry Imaging LaboratoryMallinckrodt Institute of RadiologyWashington University in St. LouisSt. LouisMissouri
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouri
| |
Collapse
|
29
|
Ramirez-Fort MK, Mahase SS, Osborne JR, Lange CS. Theragnostic Target, Prostate-Specific Membrane Antigen-Also Specific for Nonprostatic Malignancies. Int J Radiat Oncol Biol Phys 2018; 101:646-649. [PMID: 29893276 DOI: 10.1016/j.ijrobp.2018.03.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Marigdalia K Ramirez-Fort
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina; Department of Urology, Weill Cornell Medicine, New York, New York
| | - Sean S Mahase
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Joseph R Osborne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher S Lange
- Department of Radiation Oncology, State University of New York Downstate Medical Center, Brooklyn, New York.
| |
Collapse
|
30
|
Prostate-specific membrane antigen in breast cancer: a comprehensive evaluation of expression and a case report of radionuclide therapy. Breast Cancer Res Treat 2018; 169:447-455. [PMID: 29455299 DOI: 10.1007/s10549-018-4717-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA), a protein product of the folate hydrolase 1 (FOLH1) gene, is gaining increasing acceptance as a target for positron emission tomography/computer tomography (PET/CT) imaging in patients with several cancer types, including breast cancer. So far, PSMA expression in breast cancer endothelia has not been sufficiently characterized. METHODS This study comprised 315 cases of invasive carcinoma of no special type (NST) and lobular breast cancer (median follow-up time 9.0 years). PSMA expression on tumor endothelia was detected by immunohistochemistry. Further, vascular mRNA expression of the FOLH1 gene (PSMA) was investigated in a cohort of patients with invasive breast cancer provided by The Cancer Genome Atlas (TCGA). RESULTS Sixty percent of breast cancer cases exhibited PSMA-positive endothelia with higher expression rates in tumors of higher grade, NST subtype with Her2-positivity, and lack of hormone receptors. These findings were confirmed on mRNA expression levels. The highest PSMA rates were observed in triple-negative carcinomas (4.5 × higher than in other tumors). Further, a case of a patient with metastatic breast cancer showing PSMA expression in PET/CT imaging and undergoing PSMA radionuclide therapy is discussed in detail. CONCLUSIONS This study provides a rationale for the further development of PSMA-targeted imaging in breast cancer, especially in triple-negative tumors.
Collapse
|
31
|
Prostate-specific membrane antigen (PSMA) expression in breast cancer and its metastases. Clin Exp Metastasis 2018; 34:479-490. [PMID: 29426963 DOI: 10.1007/s10585-018-9878-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
The present study was undertaken to investigate the expression of prostate-specific membrane antigen (PSMA) in normal breast tissues, in cancerous breast tissues and in distant metastases from patients with breast cancer. Immunohistochemical analysis was performed to determine PSMA expression and angiogenic activity using anti-PSMA mAb and anti-CD31 mAb respectively. Immunofluorescence staining was applied to confirm the exact co-localization of PSMA and CD31. We observed different patterns of PSMA expression between normal and cancerous tissues. Normal breast tissues showed PSMA expression only in normal glandular cells. However, primary breast tumors and distant metastases showed PSMA expression in tumor cells and in tumor-associated neovasculature. PSMA score group status in primary breast tumors was significantly associated with histologic type and tumor grade (p = 0.026 and p = 0.004 respectively). Distant metastases showed higher PSMA expression in tumor-associated neovasculature comparing with primary tumors. Moreover, brain tumor-associated neovasculture had significantly higher expression of PSMA comparing with bone tumor-associated neovasculture. The localized binding of PSMA mAb to the neovasculature endothelium was confirmed with the double Immunofluorescence staining. 68Ga-PSAM imaging of a patient with metastatic breast cancer showed strong tracer uptake in all known skeletal metastases. To the best of our knowledge, this study is the second one that has assessed PSMA expression in a large number of breast cancer patients. Our findings showed that PSMA is particularly expressed in tumor-associated neovasculature of breast tumors and its distant metastases, thus enhancing the evidence on the potential usefulness of PSMA as a therapeutic vascular target.
Collapse
|
32
|
Zlitni A, Yin M, Janzen N, Chatterjee S, Lisok A, Gabrielson KL, Nimmagadda S, Pomper MG, Foster FS, Valliant JF. Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry. PLoS One 2017; 12:e0176958. [PMID: 28472168 PMCID: PMC5417523 DOI: 10.1371/journal.pone.0176958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/19/2017] [Indexed: 01/28/2023] Open
Abstract
Prostate specific membrane antigen (PSMA) targeted microbubbles (MBs) were developed using bioorthogonal chemistry. Streptavidin-labeled MBs were treated with a biotinylated tetrazine (MBTz) and targeted to PSMA expressing cells using trans-cyclooctene (TCO)-functionalized anti-PSMA antibodies (TCO-anti-PSMA). The extent of MB binding to PSMA positive cells for two different targeting strategies was determined using an in vitro flow chamber. The initial approach involved pretargeting, where TCO-anti-PSMA was first incubated with PSMA expressing cells and followed by MBTz, which subsequently showed a 2.8 fold increase in the number of bound MBs compared to experiments performed in the absence of TCO-anti-PSMA. Using direct targeting, where TCO-anti-PSMA was linked to MBTz prior to initiation of the assay, a 5-fold increase in binding compared to controls was observed. The direct targeting approach was subsequently evaluated in vivo using a human xenograft tumor model and two different PSMA-targeting antibodies. The US signal enhancements observed were 1.6- and 5.9-fold greater than that for non-targeted MBs. The lead construct was also evaluated in a head-to-head study using mice bearing both PSMA positive or negative tumors in separate limbs. The human PSMA expressing tumors exhibited a 2-fold higher US signal compared to those tumors deficient in human PSMA. The results demonstrate both the feasibility of preparing PSMA-targeted MBs and the benefits of using bioorthogonal chemistry to create targeted US probes.
Collapse
Affiliation(s)
- Aimen Zlitni
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Melissa Yin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Samit Chatterjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Ala Lisok
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Kathleen L Gabrielson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - F Stuart Foster
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada.,Centre for Probe Development and Commercialization, Hamilton, Ontario, Canada
| |
Collapse
|