1
|
Behrooz AB, Shojaei S. Mechanistic insights into mesenchymal-amoeboid transition as an intelligent cellular adaptation in cancer metastasis and resistance. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167332. [PMID: 38960056 DOI: 10.1016/j.bbadis.2024.167332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/26/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Malignant cell plasticity is an important hallmark of tumor biology and crucial for metastasis and resistance. Cell plasticity lets cancer cells adapt to and escape the therapeutic strategies, which is the leading cause of cancer patient mortality. Epithelial cells acquire mobility via epithelial-mesenchymal transition (EMT), whereas mesenchymal cells enhance their migratory ability and clonogenic potential by acquiring amoeboid characteristics through mesenchymal-amoeboid transition (MAT). Tumor formation, progression, and metastasis depend on the tumor microenvironment (TME), a complex ecosystem within and around a tumor. Through increased migration and metastasis of cancer cells, the TME also contributes to malignancy. This review underscores the distinction between invasion pattern morphological manifestations and the diverse structures found within the TME. Furthermore, the mechanisms by which amoeboid-associated characteristics promote resistance and metastasis and how these mechanisms may represent therapeutic opportunities are discussed.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
2
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
3
|
Raudenská M, Petrláková K, Juriňáková T, Leischner Fialová J, Fojtů M, Jakubek M, Rösel D, Brábek J, Masařík M. Engine shutdown: migrastatic strategies and prevention of metastases. Trends Cancer 2023; 9:293-308. [PMID: 36804341 DOI: 10.1016/j.trecan.2023.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 02/17/2023]
Abstract
Most cancer-related deaths among patients with solid tumors are caused by metastases. Migrastatic strategies represent a unique therapeutic approach to prevent all forms of cancer cell migration and invasion. Because the migration machinery has been shown to promote metastatic dissemination, successful migrastatic therapy may reduce the need for high-dose cytotoxic therapies that are currently used to prevent the risk of metastatic dissemination. In this review we focus on anti-invasive and antimetastatic strategies that hold promise for the treatment of solid tumors. The best targets for migrastatic therapy would be those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Kateřina Petrláková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Tamara Juriňáková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jindřiška Leischner Fialová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Fojtů
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
4
|
Chillà A, Anceschi C, Frediani E, Scavone F, Del Rosso T, Pelagio G, Tufaro A, De Palma G, Del Rosso M, Fibbi G, Chiarugi P, Laurenzana A, Margheri F. Inhibition of MMPs supports amoeboid angiogenesis hampering VEGF-targeted therapies via MLC and ERK 1/2 signaling. J Transl Med 2023; 21:102. [PMID: 36759828 PMCID: PMC9912547 DOI: 10.1186/s12967-023-03954-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND In the past decades studies on anti-tumoral drugs inhibiting matrix metalloproteinase (MMPs) were disappointing. Recently, we demonstrated that mature endothelial cells (ECs) and endothelial colony forming cells (ECFCs) can switch between invasion modes to cope with challenging environments, performing the "amoeboid angiogenesis" in the absence of proteases activity. METHODS We first set out to investigate by ELISA if the inhibitors of the main protease family involved in angiogenesis were differently expressed during breast cancer progression. We used Marimastat, a broad-spectrum MMP inhibitor, as a means of inducing amoeboid characteristics and studied VEGF role in amoeboid angiogenesis. Thus, we performed invasion and capillary morphogenesis assay, morphological, cell signaling and in vivo mouse studies. RESULTS Our data showed that TIMP1, TIMP2, alpha2-antiplasmin, PAI-1 and cystatin increase in breast cancer serum of patients with primary cancer and lymph node positive compared to healthy women. In vitro results revealed that the most high-powered protease inhibitors able to induce amoeboid invasion of ECFCs were TIMP1, 2 and 3. Surprisingly, Marimastat promotes ECFC invasion and tubular formation in vitro and in vivo, inducing amoeboid characteristics. We observed that the combination of Marimastat plus VEGF doesn't boost neither cell invasion nor vessel formation capacity. Moreover, inhibition of VEGF activity with Bevacizumab in the presence of Marimastat confirmed that amoeboid angiogenesis is independent from the stimulus of the main vascular growth factor, VEGF. CONCLUSIONS We underline the importance to consider the amoeboid mechanism of endothelial and cancer cell invasion, probably responsible for the failure of synthetic metalloproteinase inhibitors as cancer therapy and tumor resistance to VEGF-targeted therapies, to set-up new drugs to be used in cancer therapy.
Collapse
Affiliation(s)
- Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy.
| | - Cecilia Anceschi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Elena Frediani
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Francesca Scavone
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Tommaso Del Rosso
- grid.4839.60000 0001 2323 852XDepartment of Physics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ 22451-900 Brazil
| | - Giuseppe Pelagio
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Antonio Tufaro
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Giuseppe De Palma
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Mario Del Rosso
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Gabriella Fibbi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Paola Chiarugi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Anna Laurenzana
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Francesca Margheri
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| |
Collapse
|
5
|
Tikhomirova M, Topchu I, Mazitova A, Barmin V, Ratner E, Sabirov A, Abramova Z, Deneka AY. NEDD9 Restrains dsDNA Damage Response during Non-Small Cell Lung Cancer (NSCLC) Progression. Cancers (Basel) 2022; 14:2517. [PMID: 35626121 PMCID: PMC9139181 DOI: 10.3390/cancers14102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
DNA damaging modalities are the backbone of treatments for non-small cell lung cancer (NSCLC). Alterations in DNA damage response (DDR) in tumor cells commonly contribute to emerging resistance to platinating agents, other targeted therapies, and radiation. The goal of this study is to identify the previously unreported role of NEDD9 scaffolding protein in controlling DDR processes and sensitivity to DNA damaging therapies. Using a siRNA-mediated approach to deplete NEDD9 in a group of human and murine KRAS/TP53-mutant NSCLC cell lines, coupled with a set of cell viability and clonogenic assays, flow cytometry analysis, and Western blotting, we evaluated the effects of NEDD9 silencing on cellular proliferation, DDR and epithelial-to-mesenchymal transition (EMT) signaling, cell cycle, and sensitivity to cisplatin and UV irradiation. Using publicly available NSCLC datasets (TCGA) and an independent cohort of primary NSCLC tumors, subsequent in silico and immunohistochemical (IHC) analyses were performed to assess relevant changes in NEDD9 RNA and protein expression across different stages of NSCLC. The results of our study demonstrate that NEDD9 depletion is associated with the increased tumorigenic capacity of NSCLC cells. These phenotypes were accompanied by significantly upregulated ATM-CHK2 signaling, shifting towards a more mesenchymal phenotype in NEDD9 depleted cells and elevated sensitivity to UV-irradiation. IHC analyses revealed an association between reduced NEDD9 protein expression and a decrease in overall (OS) and progression-free survival (PFS) of the NSCLC patients. These data, for the first time, identified NEDD9 as a negative regulator of ATM kinase activity and related DDR signaling in numerous KRAS/TP53 mutated NSCLC, with its effects on the regulation of DDR-dependent EMT signaling, sensitivity to DNA damaging modalities in tumor cells, and the survival of the patients.
Collapse
Affiliation(s)
- Mariya Tikhomirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
| | - Iuliia Topchu
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60610, USA
| | - Aleksandra Mazitova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
- Department of Medicine and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vitaly Barmin
- Moscow P.A. Gertsen Oncological Research Institute, 125284 Moscow, Russia;
| | - Ekaterina Ratner
- Republican M.Z.Sigal Clinical Oncology Hospital, 420029 Kazan, Russia; (E.R.); (A.S.)
| | - Alexey Sabirov
- Republican M.Z.Sigal Clinical Oncology Hospital, 420029 Kazan, Russia; (E.R.); (A.S.)
| | - Zinaida Abramova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
| | - Alexander Y. Deneka
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
6
|
Decoding Single Cell Morphology in Osteotropic Breast Cancer Cells for Dissecting Their Migratory, Molecular and Biophysical Heterogeneity. Cancers (Basel) 2022; 14:cancers14030603. [PMID: 35158871 PMCID: PMC8833404 DOI: 10.3390/cancers14030603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a heterogeneous disease and the mechanistic framework for differential osteotropism among intrinsic breast cancer subtypes is unknown. Hypothesizing that cell morphology could be an integrated readout for the functional state of a cancer cell, we established a catalogue of the migratory, molecular and biophysical traits of MDA-MB-231 breast cancer cells, compared it with two enhanced bone-seeking derivative cell lines and integrated these findings with single cell morphology profiles. Such knowledge could be essential for predicting metastatic capacities in breast cancer. High-resolution microscopy revealed a heterogeneous and specific spectrum of single cell morphologies in bone-seeking cells, which correlated with differential migration and stiffness. While parental MDA-MB-231 cells showed long and dynamic membrane protrusions and were enriched in motile cells with continuous and mesenchymal cell migration, bone-seeking cells appeared with discontinuous mesenchymal or amoeboid-like migration. Although non-responsive to CXCL12, bone-seeking cells responded to epidermal growth factor with a morphotype shift and differential expression of genes controlling cell shape and directional migration. Hence, single cell morphology encodes the molecular, migratory and biophysical architecture of breast cancer cells and is specifically altered among osteotropic phenotypes. Quantitative morpho-profiling could aid in dissecting breast cancer heterogeneity and in refining clinically relevant intrinsic breast cancer subtypes.
Collapse
|
7
|
Yun J, Kim YS, Heo MJ, Kim MJ, Moon A, Kim SG. ERα inhibits mesenchymal and amoeboidal movement of liver cancer cell via Gα12. Int J Cancer 2022; 150:1690-1705. [PMID: 35020952 DOI: 10.1002/ijc.33929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second most common cancer worldwide, demonstrating aggressiveness and mortality more frequently in men than in women. Despite reports regarding the inhibitory ability of estrogen receptor alpha (ERα, ESR1) in certain cancer progression, targets and the basis of underlying gender disparity in HCC worsening remain elusive. Here, we report the ability of ERα to transcriptionally inhibit G protein subunit alpha 12 (Gα12) responsible for HCC worsening. First, using human samples and public database, the expression of ERα and Gα12 in HCC was examined. Then, quantitative real-time PCR, chromatin immunoprecipitation-assay, luciferase assay, and immunoblottings of liver cancer cell lines confirmed the inhibitory ability of ERα on Gα12 and HCC progression. Gα12 promoted mesenchymal characteristics and amoeboidal movement, which was antagonized by ERα overexpression. Additionally, we found microRNA-141 and -200a as downstream targets of the Gα12 signaling axis for cancer malignancy regulation under the control of ERα. As for in-depth mechanism, PTP4A1 was found to be directly inhibited by microRNA-141 and -200a. Moreover, we found the inhibitory effect of ERα on amoeboidal movement by analyzing the morphology and blebbing of liver cancer cells and the active form of MLC levels. The identified targets and ESR1 levels are inversely correlated in human specimens, as well as with sex-biased survival rates of HCC patients. Collectively, ERα-dependent repression of Gα12 and consequent changes in the Gα12 signaling may explain the gender disparity in HCC, providing pharmacological clues for the control of metastatic HCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica Yun
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Jeong Heo
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Min Joo Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Kyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Eddy CZ, Raposo H, Manchanda A, Wong R, Li F, Sun B. Morphodynamics facilitate cancer cells to navigate 3D extracellular matrix. Sci Rep 2021; 11:20434. [PMID: 34650167 PMCID: PMC8516896 DOI: 10.1038/s41598-021-99902-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Cell shape is linked to cell function. The significance of cell morphodynamics, namely the temporal fluctuation of cell shape, is much less understood. Here we study the morphodynamics of MDA-MB-231 cells in type I collagen extracellular matrix (ECM). We systematically vary ECM physical properties by tuning collagen concentrations, alignment, and gelation temperatures. We find that morphodynamics of 3D migrating cells are externally controlled by ECM mechanics and internally modulated by Rho/ROCK-signaling. We employ machine learning to classify cell shape into four different morphological phenotypes, each corresponding to a distinct migration mode. As a result, we map cell morphodynamics at mesoscale into the temporal evolution of morphological phenotypes. We characterize the mesoscale dynamics including occurrence probability, dwell time and transition matrix at varying ECM conditions, which demonstrate the complex phenotype landscape and optimal pathways for phenotype transitions. In light of the mesoscale dynamics, we show that 3D cancer cell motility is a hidden Markov process whereby the step size distributions of cell migration are coupled with simultaneous cell morphodynamics. Morphological phenotype transitions also facilitate cancer cells to navigate non-uniform ECM such as traversing the interface between matrices of two distinct microstructures. In conclusion, we demonstrate that 3D migrating cancer cells exhibit rich morphodynamics that is controlled by ECM mechanics, Rho/ROCK-signaling, and regulate cell motility. Our results pave the way to the functional understanding and mechanical programming of cell morphodynamics as a route to predict and control 3D cell motility.
Collapse
Affiliation(s)
- Christopher Z Eddy
- Department of Physics, Oregon State University, Corvallis, OR, 97331, USA
| | - Helena Raposo
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Aayushi Manchanda
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, 97331, USA
| | - Ryan Wong
- Department of Physics, Oregon State University, Corvallis, OR, 97331, USA
| | - Fuxin Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
9
|
Crosstalks Among Cancer Stem Cells and Histopathologic Features in Determining Prognosis in Canine Mammary Gland Carcinomas. ACTA VET-BEOGRAD 2021. [DOI: 10.2478/acve-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The purpose of the present work was the evaluation of the prognostic potential of histopathologic features, cancer stem cells (CSCs), and epthelial-mesenchymal transition (EMT) in relation to lymph node status and lymphovascular invasion (LVI) in canine mammary gland carcinomas (CMGCs). CSCs are proposed as the main cause of tumorigenesis, therapy failure, and recurrence which form a small fraction of tumor bulk. We evaluated presence of micropapillary growth pattern (MGP), infiltration into surrounding tissues (IST), and vasculogenic mimicry (VM) in H&E stained slides of 26 paraffin-embedded tumor samples. Lymph nodes of all cases were assessed. Additionally, they were examined immunohistochemically in terms of vimentin expression as an indicator of EMT which is a well-known mechanism for metastasis, and CD44, CD24, and ALDH1 for CSCs detection. Data analyses showed significant relationships between MGP and CSCs (P = 0.037), VM and CSCs (P = 0.013), lymph node status and CSCs (P = 0.0001), lymph node status and EMT (P = 0.003), IST and LVI (P = 0.05), VM and LVI (P = 0.01), VM and lymph node status (P = 0.007), and LVI and lymph node status (P = 0.04). Results indicated the prognostic value of MGP, VM, and CSCs with respect to confirmed prognostic markers, including LVI and lymph node involvement, in CMGCs.
Collapse
|
10
|
Whately KM, Voronkova MA, Maskey A, Gandhi J, Loskutov J, Choi H, Yanardag S, Chen D, Wen S, Margaryan NV, Smolkin MB, Purazo ML, Hu G, Pugacheva EN. Nuclear Aurora-A kinase-induced hypoxia signaling drives early dissemination and metastasis in breast cancer: implications for detection of metastatic tumors. Oncogene 2021; 40:5651-5664. [PMID: 34326467 PMCID: PMC9511212 DOI: 10.1038/s41388-021-01969-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022]
Abstract
Metastatic breast cancer causes most breast cancer-associated deaths, especially in triple negative breast cancers (TNBC). The metastatic drivers of TNBCs are still poorly understood, and effective treatment non-existent. Here we reveal that the presence of Aurora-A Kinase (AURKA) in the nucleus and metastatic dissemination are molecularly connected through HIF1 (Hypoxia-Inducible Factor-1) signaling. Nuclear AURKA activates transcription of "hypoxia-induced genes" under normoxic conditions (pseudohypoxia) and without upregulation of oxygen-sensitive HIF1A subunit. We uncover that AURKA preferentially binds to HIF1B and co-localizes with the HIF complex on DNA. The mass-spectrometry analysis of the AURKA complex further confirmed the presence of CBP and p300 along with other TFIIB/RNApol II components. Importantly, the expression of multiple HIF-dependent genes induced by nuclear AURKA (N-AURKA), including migration/invasion, survival/death, and stemness, promote early cancer dissemination. These results indicate that nuclear, but not cytoplasmic, AURKA is a novel driver of early metastasis. Analysis of clinical tumor specimens revealed a correlation between N-AURKA presence and decreased patient survival. Our results establish a mechanistic link between two critical pathways in cancer metastasis, identifying nuclear AURKA as a crucial upstream regulator of the HIF1 transcription complex and a target for anti-metastatic therapy.
Collapse
Affiliation(s)
- Kristina M Whately
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Maria A Voronkova
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Abha Maskey
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jasleen Gandhi
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Juergen Loskutov
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Hyeran Choi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Sila Yanardag
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Dongquan Chen
- Department of Medicine, Division of Preventive Medicine, UAB Comprehensive Cancer Center, Birmingham, AL, USA
| | - Sijin Wen
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Naira V Margaryan
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Matthew B Smolkin
- Department of Pathology, West Virginia University, Morgantown, WV, USA
| | - Marc L Purazo
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Gangqing Hu
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Elena N Pugacheva
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA.
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
11
|
Kryvoshlyk I. CIRCULATING TUMOR CELLS: WHERE WE LEFT OFF? BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer metastasis and recurrence are the leading causes of cancer-related death. Tumor cells which leave the primary or secondary tumors and shed into the bloodstream are called circulating tumor cells (CTC). These cells are the key drivers of cancer dissemination to surrounding tissues and to distant organs. The use of CTC in clinical practice necessitates the deep insight into their biology, as well as into their role in cancer evasion of immune surveillance, tumor resistance to chemo- radio- and immunotherapies and metastatic dormancy. Aim. The purpose of the work was to review the current knowledge on the CTC biology, as well as the prospects for their use for the diagnosis and targeted treatment of metastatic disease. Methods. The work proposed the integrative literature review using MEDLINE, Biological Abstracts and EMBASE databases. Results. This review summarizes and discusses historical milestones and current data concerning СTС biology, the main stages of their life cycle, their role in metastatic cascade, clinical prospects for their use as markers for the diagnosis and prognostication of the disease course, as well as targets for cancer treatment. Conclusions. Significant progress in the area of CTC biology and their use in cancer theranostics convincingly proved the attractiveness of these cells as targets for cancer prognosis and therapy. The effective use of liquid biopsy with quantitative and phenotypic characteristics of CTCs is impeded by the imperfection of the methodology for taking biological material and by the lack of reliable markers for assessing the metastatic potential of CTCs of various origins. The variety of mechanisms of tumor cells migration and invasion requires the development of complex therapeutic approaches for anti-metastatic therapy targeting CTCs. Efforts to address these key issues could help developing new and effective cancer treatment strategies.
Collapse
|
12
|
Osuchowska PN, Wachulak P, Kasprzycka W, Nowak-Stępniowska A, Wakuła M, Bartnik A, Fiedorowicz H, Trafny EA. Adhesion of Triple-Negative Breast Cancer Cells under Fluorescent and Soft X-ray Contact Microscopy. Int J Mol Sci 2021; 22:ijms22147279. [PMID: 34298899 PMCID: PMC8306697 DOI: 10.3390/ijms22147279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
Understanding cancer cell adhesion could help to diminish tumor progression and metastasis. Adhesion mechanisms are currently the main therapeutic target of TNBC-resistant cells. This work shows the distribution and size of adhesive complexes determined with a common fluorescence microscopy technique and soft X-ray contact microscopy (SXCM). The results presented here demonstrate the potential of applying SXCM for imaging cell protrusions with high resolution when the cells are still alive in a physiological buffer. The possibility to observe the internal components of cells at a pristine and hydrated state with nanometer resolution distinguishes SXCM from the other more commonly used techniques for cell imaging. Thus, SXCM can be a promising technique for investigating the adhesion and organization of the actin cytoskeleton in cancer cells.
Collapse
Affiliation(s)
- Paulina Natalia Osuchowska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.N.O.); (W.K.); (A.N.-S.)
| | - Przemysław Wachulak
- Laser Technology Division, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.W.); (A.B.)
| | - Wiktoria Kasprzycka
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.N.O.); (W.K.); (A.N.-S.)
| | - Agata Nowak-Stępniowska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.N.O.); (W.K.); (A.N.-S.)
| | - Maciej Wakuła
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.W.); (H.F.)
| | - Andrzej Bartnik
- Laser Technology Division, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.W.); (A.B.)
| | - Henryk Fiedorowicz
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.W.); (H.F.)
| | - Elżbieta Anna Trafny
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (P.N.O.); (W.K.); (A.N.-S.)
- Correspondence: ; Tel.: +48-261-839-544
| |
Collapse
|
13
|
Jobe NP, Åsberg L, Andersson T. Reduced WNT5A signaling in melanoma cells favors an amoeboid mode of invasion. Mol Oncol 2021; 15:1835-1848. [PMID: 33969605 PMCID: PMC8253101 DOI: 10.1002/1878-0261.12974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor cells invade and spread via either a mesenchymal or an amoeboid mode of migration. Amoeboid tumor cells have a rounded morphology and pronounced RhoA activity. Here, we investigate how WNT5A signaling, a tumor promotor in melanoma, relates to Rho GTPase activity and amoeboid migration. We compared melanoma cells with low (HTB63 cells) and high (WM852 cells) WNT5A expression. HTB63 cells exhibited an amoeboid morphology and had higher RhoA activity but lower invasiveness than WM852 cells in a three‐dimensional (3D) collagen matrix. We next explored the relationships between WNT5A, morphology, and invasive behavior. WNT5A knockdown impaired Rho GTPase Cdc42 activity, resulting in reduced invasion of amoeboid and mesenchymal melanoma cells. Interestingly, knockdown of WNT5A or inhibition of its secretion in WM852 cells expressing wild‐type BRAF also led to increased RhoA activity via decreased RND3 expression, resulting in predominantly amoeboid morphology. In contrast, such treatments had the opposite effects on RND3 expression and RhoA activity in HTB63 cells expressing the active BRAFV600 mutation. However, treatment of HTB63 cells with a BRAF inhibitor made them respond to WNT5A knockdown in a similar manner as WM852 cells expressing wild‐type BRAF. We next found that dual targeting of WNT5A and RhoA more effectively reduced melanoma cell invasion than targeting either protein individually. Taken together, our results suggest that low WNT5A signaling in melanoma cells promotes a rounded amoeboid type of invasion, which quite likely serves as a compensatory response to decreased WNT5A/Cdc42‐driven invasion. This phenomenon partially explains the enduring melanoma cell invasion observed after impaired WNT5A signaling and has therapeutic implications. Our results suggest that dual targeting of WNT5A and RhoA signaling is a more effective strategy for controlling the invasion of BRAF wild‐type and BRAFV600 mutated melanomas treated with a BRAF inhibitor than targeting either of the proteins individually.
Collapse
Affiliation(s)
- Njainday Pulo Jobe
- Experimental Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Lisa Åsberg
- Experimental Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Tommy Andersson
- Experimental Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
14
|
Mosier JA, Wu Y, Reinhart-King CA. Recent advances in understanding the role of metabolic heterogeneities in cell migration. Fac Rev 2021; 10:8. [PMID: 33659926 PMCID: PMC7894266 DOI: 10.12703/r/10-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Migration is an energy-intensive, multi-step process involving cell adhesion, protrusion, and detachment. Each of these steps require cells to generate and consume energy, regulating their morphological changes and force generation. Given the need for energy to move, cellular metabolism has emerged as a critical regulator of both single cell and collective migration. Recently, metabolic heterogeneity has been highlighted as a potential determinant of collective cell behavior, as individual cells may play distinct roles in collective migration. Several tools and techniques have been developed and adapted to study cellular energetics during migration including live-cell probes to characterize energy utilization and metabolic state and methodologies to sort cells based on their metabolic profile. Here, we review the recent advances in techniques, parsing the metabolic heterogeneities inherent in cell populations and their contributions to cell migration.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yusheng Wu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
15
|
Riehl BD, Kim E, Bouzid T, Lim JY. The Role of Microenvironmental Cues and Mechanical Loading Milieus in Breast Cancer Cell Progression and Metastasis. Front Bioeng Biotechnol 2021; 8:608526. [PMID: 33585411 PMCID: PMC7874074 DOI: 10.3389/fbioe.2020.608526] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer can disrupt the microenvironments and mechanical homeostatic actions in multiple scales from large tissue modification to altered cellular signaling pathway in mechanotransduction. In this review, we highlight recent progresses in breast cancer cell mechanobiology focusing on cell-microenvironment interaction and mechanical loading regulation of cells. First, the effects of microenvironmental cues on breast cancer cell progression and metastasis will be reviewed with respect to substrate stiffness, chemical/topographic substrate patterning, and 2D vs. 3D cultures. Then, the role of mechanical loading situations such as tensile stretch, compression, and flow-induced shear will be discussed in relation to breast cancer cell mechanobiology and metastasis prevention. Ultimately, the substrate microenvironment and mechanical signal will work together to control cancer cell progression and metastasis. The discussions on breast cancer cell responsiveness to mechanical signals, from static substrate and dynamic loading, and the mechanotransduction pathways involved will facilitate interdisciplinary knowledge transfer, enabling further insights into prognostic markers, mechanically mediated metastasis pathways for therapeutic targets, and model systems required to advance cancer mechanobiology.
Collapse
Affiliation(s)
- Brandon D Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
16
|
Mondal C, Di Martino JS, Bravo-Cordero JJ. Actin dynamics during tumor cell dissemination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:65-98. [PMID: 33962751 PMCID: PMC8246644 DOI: 10.1016/bs.ircmb.2020.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The actin cytoskeleton is a dynamic network that regulates cellular behavior from development to disease. By rearranging the actin cytoskeleton, cells are capable of migrating and invading during developmental processes; however, many of these cellular properties are hijacked by cancer cells to escape primary tumors and disseminate to distant organs in the body. In this review article, we highlight recent work describing how cancer cells regulate the actin cytoskeleton to achieve efficient invasion and metastatic colonization. We also review new imaging technologies that are capable of revealing the complex architecture and regulation of the actin cytoskeleton during motility and invasion of tumor cells.
Collapse
Affiliation(s)
- Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
17
|
Wu JS, Jiang J, Chen BJ, Wang K, Tang YL, Liang XH. Plasticity of cancer cell invasion: Patterns and mechanisms. Transl Oncol 2020; 14:100899. [PMID: 33080522 PMCID: PMC7573380 DOI: 10.1016/j.tranon.2020.100899] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion are integral components of metastatic disease, which is the major cause of death in cancer patients. Cancer cells can disseminate and migrate via several alternative mechanisms including amoeboid cell migration, mesenchymal cell migration, and collective cell migration. These diverse movement strategies display certain specific and distinct hallmarks in cell-cell junctions, actin cytoskeleton, matrix adhesion, and protease activity. During tumor progression, cells pass through complex microenvironments and adapt their migration strategies by reversible mesenchymal-amoeboid and individual-collective transitions. This plasticity in motility patterns enables cancer cells disseminate further and thus limit the efficiency of anti-metastasis therapies. In this review, we discuss the modes and mechanisms of cancer cell migration and focus on the plasticity of tumor cell movement as well as potential emerging therapeutic options for reducing cancer cell invasion.
Collapse
Affiliation(s)
- Jia-Shun Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bing-Jun Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Riehl BD, Kim E, Lee JS, Duan B, Yang R, Donahue HJ, Lim JY. The Role of Fluid Shear and Metastatic Potential in Breast Cancer Cell Migration. J Biomech Eng 2020; 142:101001. [PMID: 32346724 PMCID: PMC7477709 DOI: 10.1115/1.4047076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/23/2020] [Indexed: 12/11/2022]
Abstract
During the migration of cancer cells for metastasis, cancer cells can be exposed to fluid shear conditions. We examined two breast cancer cell lines, MDA-MB-468 (less metastatic) and MDA-MB-231 (more metastatic), and a benign MCF-10A epithelial cell line for their responsiveness in migration to fluid shear. We tested fluid shear at 15 dyne/cm2 that can be encountered during breast cancer cells traveling through blood vessels or metastasizing to mechanically active tissues such as bone. MCF-10A exhibited the least migration with a trend of migrating in the flow direction. Intriguingly, fluid shear played a potent role as a trigger for MDA-MB-231 cell migration, inducing directional migration along the flow with significantly increased displacement length and migration speed and decreased arrest coefficient relative to unflowed MDA-MB-231. In contrast, MDA-MB-468 cells were markedly less migratory than MDA-MB-231 cells, and responded very poorly to fluid shear. As a result, MDA-MB-468 cells did not exhibit noticeable difference in migration between static and flow conditions, as was distinct in root-mean-square (RMS) displacement-an ensemble average of all participating cells. These may suggest that the difference between more metastatic MDA-MB-231 and less metastatic MDA-MB-468 breast cancer cells could be at least partly involved with their differential responsiveness to fluid shear stimulatory cues. Our study provides new data in regard to potential crosstalk between fluid shear and metastatic potential in mediating breast cancer cell migration.
Collapse
Affiliation(s)
- Brandon D. Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Jeong Soon Lee
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Bin Duan
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Henry J. Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W317.3 Nebraska Hall Lincoln, NE 68588; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
19
|
Emad A, Ray T, Jensen TW, Parat M, Natrajan R, Sinha S, Ray PS. Superior breast cancer metastasis risk stratification using an epithelial-mesenchymal-amoeboid transition gene signature. Breast Cancer Res 2020; 22:74. [PMID: 32641077 PMCID: PMC7341640 DOI: 10.1186/s13058-020-01304-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/01/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cancer cells are known to display varying degrees of metastatic propensity, but the molecular basis underlying such heterogeneity remains unclear. Our aims in this study were to (i) elucidate prognostic subtypes in primary tumors based on an epithelial-to-mesenchymal-to-amoeboid transition (EMAT) continuum that captures the heterogeneity of metastatic propensity and (ii) to more comprehensively define biologically informed subtypes predictive of breast cancer metastasis and survival in lymph node-negative (LNN) patients. METHODS We constructed a novel metastasis biology-based gene signature (EMAT) derived exclusively from cancer cells induced to undergo either epithelial-to-mesenchymal transition (EMT) or mesenchymal-to-amoeboid transition (MAT) to gauge their metastatic potential. Genome-wide gene expression data obtained from 913 primary tumors of lymph node-negative breast cancer (LNNBC) patients were analyzed. EMAT gene signature-based prognostic stratification of patients was performed to identify biologically relevant subtypes associated with distinct metastatic propensity. RESULTS Delineated EMAT subtypes display a biologic range from less stem-like to more stem-like cell states and from less invasive to more invasive modes of cancer progression. Consideration of EMAT subtypes in combination with standard clinical parameters significantly improved survival prediction. EMAT subtypes outperformed prognosis accuracy of receptor or PAM50-based BC intrinsic subtypes even after adjusting for treatment variables in 3 independent, LNNBC cohorts including a treatment-naïve patient cohort. CONCLUSIONS EMAT classification is a biologically informed method that provides prognostic information beyond that which can be provided by traditional cancer staging or PAM50 molecular subtype status and may improve metastasis risk assessment in early stage, LNNBC patients, who may otherwise be perceived to be at low metastasis risk.
Collapse
Affiliation(s)
- Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Tania Ray
- Onconostic Technologies Inc., Champaign, Illinois, USA
| | - Tor W Jensen
- Illinois Health Sciences Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Meera Parat
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.
| | - Partha S Ray
- Onconostic Technologies Inc., Champaign, Illinois, USA.
| |
Collapse
|
20
|
Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020; 8:201. [PMID: 32322580 PMCID: PMC7156542 DOI: 10.3389/fcell.2020.00201] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Rho, Rac, and Cdc42 have emerged as key players in cancer metastasis, due to their essential roles in regulating cell division and actin cytoskeletal rearrangements; and thus, cell growth, migration/invasion, polarity, and adhesion. This review will focus on the close homologs Rac and Cdc42, which have been established as drivers of metastasis and therapy resistance in multiple cancer types. Rac and Cdc42 are often dysregulated in cancer due to hyperactivation by guanine nucleotide exchange factors (GEFs), belonging to both the diffuse B-cell lymphoma (Dbl) and dedicator of cytokinesis (DOCK) families. Rac/Cdc42 GEFs are activated by a myriad of oncogenic cell surface receptors, such as growth factor receptors, G-protein coupled receptors, cytokine receptors, and integrins; consequently, a number of Rac/Cdc42 GEFs have been implicated in metastatic cancer. Hence, inhibiting GEF-mediated Rac/Cdc42 activation represents a promising strategy for targeted metastatic cancer therapy. Herein, we focus on the role of oncogenic Rac/Cdc42 GEFs and discuss the recent advancements in the development of Rac and Cdc42 GEF-interacting inhibitors as targeted therapy for metastatic cancer, as well as their potential for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Isabel Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
21
|
Fan C, Tang Y, Wang J, Wang Y, Xiong F, Zhang S, Li X, Xiang B, Wu X, Guo C, Ma J, Zhou M, Li X, Xiong W, Li Y, Li G, Zeng Z. Long non-coding RNA LOC284454 promotes migration and invasion of nasopharyngeal carcinoma via modulating the Rho/Rac signaling pathway. Carcinogenesis 2019; 40:380-391. [PMID: 30380023 DOI: 10.1093/carcin/bgy143] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/29/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique malignant cancer with high metastasis. Because the early symptoms of NPC patients are not obvious, most patients have distant metastases when diagnosed, which makes treatment difficult. Long non-coding RNAs (lncRNAs) are emerging as important regulators in human carcinogenesis. LncRNAs have been increasingly identified but remain largely unknown in NPC. Therefore, we performed gene expression profiling to screen for altered expression of lncRNAs in NPC tissues and adjacent samples. One lncRNA, LOC284454, was upregulated and associated with poor prognosis in NPC. In in vivo and in vitro assays, LOC284454 promoted the migration and invasion capacity of NPC cells. Mass spectrometry combined with bioinformatics suggested that LOC284454 affected the cytoskeletal and adhesion-related Rho/Rac signaling pathways. LOC284454 may be a potential novel treatment target and is expected to be a new diagnostic and prognostic marker in patients with NPC.
Collapse
Affiliation(s)
- Chunmei Fan
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Yanyan Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Yian Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital
| | - Shanshan Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Can Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| |
Collapse
|
22
|
Wang Y, Bibi M, Min P, Deng W, Zhang Y, Du J. SOX2 promotes hypoxia-induced breast cancer cell migration by inducing NEDD9 expression and subsequent activation of Rac1/HIF-1α signaling. Cell Mol Biol Lett 2019; 24:55. [PMID: 31462898 PMCID: PMC6704701 DOI: 10.1186/s11658-019-0180-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background Hypoxia, a major condition associated with the tumor microenvironment, stimulates the migration of cancer cells. SOX2 is a powerful transcription factor that shows higher expression in several cancers, however, its role in hypoxia-induced breast cancer cell migration remains largely elusive. Methods The human breast cancer cell lines MDA-MB-231 and MDA-MB-468 were cultured under hypoxic conditions. The cell migration rate was determined using the wound-healing and transwell assays. The protein levels of SOX2, NEDD9 and HIF-1α were evaluated via western blotting analysis. The NEDD9 mRNA levels were evaluated using qPCR. The activation of Rac1 was detected with the pulldown assay. The binding of SOX2 to the NEDD9 promoter was checked using the luciferase reporter assay. We also transfected breast cancer cells with specific siRNA for SOX2, NEDD9 or the Rac1 inactive mutant (T17 N) to investigate the role of SOX2, NEDD9 and Rac1 in the response to hypoxia. Results Hypoxia markedly increased SOX2 protein levels in a time-dependent manner. SiRNA-mediated disruption of SOX2 inhibited cell migration under hypoxic conditions. Hypoxia also significantly augmented the NEDD9 mRNA and protein levels. Interestingly, SOX2 is a positive transcriptional regulator of NEDD9. Knockdown of SOX2 inhibited hypoxia-induced NEDD9 mRNA and protein expressions. Furthermore, hypoxia-induced upregulation of Rac1 activity and HIF-1α expression was attenuated by SOX2 or NEDD9 silencing, and Rac1-T17 N abolished HIF-1α expression as well as cell migration in cells subjected to hypoxia. Conclusions Our results highlight the essential role of SOX2 in breast cancer cell motility. The upregulation of SOX2 under hypoxic conditions may facilitate NEDD9 transcription and expression, and subsequent activation of Rac1 and HIF-1α expression. This could accelerate breast cancer cell migration.
Collapse
Affiliation(s)
- Yueyuan Wang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Maria Bibi
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Pengxiang Min
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Wenjie Deng
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Yujie Zhang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China.,2Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Jun Du
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China.,2Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 Jiangsu China
| |
Collapse
|
23
|
Zhao S, Min P, Liu L, Zhang L, Zhang Y, Wang Y, Zhao X, Ma Y, Xie H, Zhu C, Jiang H, Du J, Gu L. NEDD9 Facilitates Hypoxia-Induced Gastric Cancer Cell Migration via MICAL1 Related Rac1 Activation. Front Pharmacol 2019; 10:291. [PMID: 31019460 PMCID: PMC6458266 DOI: 10.3389/fphar.2019.00291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Aims and Hypothesis: NEDD9 is highly expressed in gastric cancer and has a significant involvement in its pathogenesis. However, the mechanism behind hypoxia-promoted cancer cell migration and its regulation because of NEDD9 is still unknown. The aim of this study is to investigate the involvement of NEDD9 in gastric cancer cell migration under hypoxia and explore the underlying potential molecular mechanisms.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Pengxiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Lei Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Lin Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xuyang Zhao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yadong Ma
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Hui Xie
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Department of Implantology, Changzhou Stomatological Hospital, Changzhou, China
| | - Chenchen Zhu
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Haonan Jiang
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Multinucleation of Incubated Cells and Their Morphological Differences Compared to Mononuclear Cells. MICROMACHINES 2019; 10:mi10020156. [PMID: 30823567 PMCID: PMC6412785 DOI: 10.3390/mi10020156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/08/2023]
Abstract
Some cells cultured in vitro have multiple nuclei. Since cultured cells are used in various fields of science, including tissue engineering, the nature of the multinucleated cells must be determined. However, multinucleated cells are not frequently observed. In this study, a method to efficiently obtain multinucleated cells was established and their morphological properties were investigated. Initially, we established conditions to quickly and easily generate multinucleated cells by seeding a Xenopus tadpole epithelium tissue-derived cell line (XTC-YF) on less and more hydrophilic dishes, and incubating the cultures with medium supplemented with or without Y-27632-a ROCK inhibitor-to reduce cell contractility. Notably, 88% of the cells cultured on a less hydrophilic dish in medium supplemented with Y-27632 became multinucleate 48 h after seeding, whereas less than 5% of cells cultured under other conditions exhibited this morphology. Some cells showed an odd number (three and five) of cell nuclei 72 h after seeding. Multinucleated cells displayed a significantly smaller nuclear area, larger cell area, and smaller nuclear circularity. As changes in the morphology of the cells correlated with their functions, the proposed method would help researchers understand the functions of multinucleated cells.
Collapse
|
25
|
Morphoregulatory functions of the RNA-binding motif protein 3 in cell spreading, polarity and migration. Sci Rep 2018; 8:7367. [PMID: 29743635 PMCID: PMC5943363 DOI: 10.1038/s41598-018-25668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/27/2018] [Indexed: 02/01/2023] Open
Abstract
RNA-binding proteins are emerging as key regulators of transitions in cell morphology. The RNA-binding motif protein 3 (RBM3) is a cold-inducible RNA-binding protein with broadly relevant roles in cellular protection, and putative functions in cancer and development. Several findings suggest that RBM3 has morphoregulatory functions germane to its roles in these contexts. For example, RBM3 helps maintain the morphological integrity of cell protrusions during cell stress and disease. Moreover, it is highly expressed in migrating neurons of the developing brain and in cancer invadopodia, suggesting roles in migration. We here show that RBM3 regulates cell polarity, spreading and migration. RBM3 was present in spreading initiation centers, filopodia and blebs that formed during cell spreading in cell lines and primary myoblasts. Reducing RBM3 triggered exaggerated spreading, increased RhoA expression, and a loss of polarity that was rescued by Rho kinase inhibition and overexpression of CRMP2. High RBM3 expression enhanced the motility of cells migrating by a mesenchymal mode involving extension of long protrusions, whereas RBM3 knockdown slowed migration, greatly reducing the ability of cells to extend protrusions and impairing multiple processes that require directional migration. These data establish novel functions of RBM3 of potential significance to tissue repair, metastasis and development.
Collapse
|