1
|
Loos NHC, Ferreira Martins ML, Rijmers J, de Jong D, Lebre MC, Tibben M, Beijnen JH, Schinkel AH. Interplay of Ritonavir-Boosted Oral Cabazitaxel with the Organic Anion-Transporting Polypeptide (OATP) Uptake Transporters and Carboxylesterase 1 in Mice. Mol Pharm 2024; 21:1952-1964. [PMID: 38423793 DOI: 10.1021/acs.molpharmaceut.3c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Intravenously administered chemotherapeutic cabazitaxel is used for palliative treatment of prostate cancer. An oral formulation would be more patient-friendly and reduce the need for hospitalization. We therefore study determinants of the oral pharmacokinetics of cabazitaxel in a ritonavir-boosted setting, which reduces the CYP3A-mediated first-pass metabolism of cabazitaxel. We here assessed the role of organic anion-transporting polypeptides (OATPs) in the disposition of orally boosted cabazitaxel and its active metabolites, using the Oatp1a/b-knockout and the OATP1B1/1B3-transgenic mice. These transporters may substantially affect plasma clearance and hepatic and intestinal drug disposition. The pharmacokinetics of cabazitaxel and DM2 were not significantly affected by Oatp1a/b and OATP1B1/1B3 activity. In contrast, the plasma AUC0-120 min of DM1 in Oatp1a/b-/- was 1.9-fold (p < 0.05) higher than that in wild-type mice, and that of docetaxel was 2.4-fold (p < 0.05) higher. We further observed impaired hepatic uptake and intestinal disposition for DM1 and docetaxel in the Oatp-ablated strains. None of these parameters showed rescue by the OATP1B1 or -1B3 transporters in the humanized mouse strains, suggesting a minimal role of OATP1B1/1B3. Ritonavir itself was also a potent substrate for mOatp1a/b, showing a 2.9-fold (p < 0.0001) increased plasma AUC0-120 min and 3.5-fold (p < 0.0001) decreased liver-to-plasma ratio in Oatp1a/b-/- compared to those in wild-type mice. Furthermore, we observed the tight binding of cabazitaxel and its active metabolites, including docetaxel, to plasma carboxylesterase (Ces1c) in mice, which may complicate the interpretation of pharmacokinetic and pharmacodynamic mouse studies. Collectively, these results will help to further optimize (pre)clinical research into the safety and efficacy of orally applied cabazitaxel.
Collapse
Affiliation(s)
- Nancy H C Loos
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | | | - Jamie Rijmers
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Daniëlle de Jong
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Maria C Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Matthijs Tibben
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
2
|
Sunakawa H, Mizoi K, Takahashi R, Takahashi S, Ogihara T. Impact of P-Glycoprotein-Mediated Drug-Endogenous Substrate Interactions on Androgen and Blood-Brain Barrier Permeability. J Pharm Sci 2024; 113:228-234. [PMID: 37898165 DOI: 10.1016/j.xphs.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
This report focuses on pharmacokinetic drug-endogenous substrate interactions (DEIs). We hypothesized that P-glycoprotein (P-gp)-mediated DEI might affect androgen kinetics, especially its blood-brain barrier (BBB) permeability. The intracellular accumulation of the endogenous substrates of P-gp, testosterone (TES) and androstenedione (ADO) was increased by several tested drugs in uptake studies using P-gp overexpressing cells, indicating that these drugs inhibit P-gp-mediated efflux of TES of ADO from the cells. In a transport study using rat BBB kit, we found that the BBB limited the penetration of TES and ADO into the central nervous system. In addition, tested drugs that cause DEI were found to increase BBB permeability of TES and ADO via P-gp inhibition. In short, this study provides new findings regarding the possibility that DEI may affect the kinetics of endogenous substrates of P-gp.
Collapse
Affiliation(s)
- Hiroki Sunakawa
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare.
| | - Kenta Mizoi
- School of Pharmacy, International University of Heath and Welfare
| | - Reiko Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Saori Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Takuo Ogihara
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare; Faculty of Pharmacy, Takasaki University of Health and Welfare
| |
Collapse
|
3
|
Lee KY, Beatson EL, Knechel MA, Sommer ER, Napoli GC, Risdon EN, Leon AF, Depaz RD, Strope JD, Price DK, Chau CH, Figg WD. Detection of Extracellular Vesicle-Derived RNA as Potential Prostate Cancer Biomarkers: Role of Cancer-type SLCO1B3 and ABCC3. J Cancer 2024; 15:615-622. [PMID: 38213719 PMCID: PMC10777027 DOI: 10.7150/jca.90836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
Extracellular vesicles (EVs) provide a minimally invasive liquid biopsy source of tumor-specific markers for patients who have already undergone prostatectomies. Our laboratory has previously demonstrated enrichment of the cancer-type solute carrier organic anion transporter family 1B3 (ct-SLCO1B3) and the ATP Binding Cassette Subfamily Member C (ABCC3) in castration-resistant cell lines (CRPC). However, their expression in EVs has yet to be explored. Our study demonstrated that ct-SLCO1B3 and ABCC3 are highly detectable in CRPC cell line-derived EVs. We also showed that ct-SLCO1B3 and ABCC3 were detectable in a CRPC xenograft mouse model, both intratumorally and in plasma-derived EVs. Our results provide evidence for EV-contained ct-SLCO1B3 and ABCC3 as novel, EV-based tumor markers for prostate cancer progression.
Collapse
Affiliation(s)
- Kristi Y. Lee
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erica L. Beatson
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martina A. Knechel
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elijah R. Sommer
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giulia C. Napoli
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily N. Risdon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andres F. Leon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roger D. Depaz
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D. Strope
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas K. Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Cheong EJY, Chin SY, Ng ZW, Yap TJ, Cheong EZB, Wang Z, Chan ECY. Unraveling Complexities in the Absorption and Disposition Kinetics of Abiraterone via Iterative PBPK Model Development and Refinement. Clin Pharmacokinet 2023; 62:1243-1261. [PMID: 37405634 DOI: 10.1007/s40262-023-01266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Abiraterone is a first-in-class inhibitor of cytochrome P450 17A1 (CYP17A1), and its pharmacokinetic (PK) profile is susceptible to intrinsic and extrinsic variabilities. Potential associations between abiraterone concentrations and pharmacodynamic consequences in prostate cancer may demand further dosage optimization to balance therapeutic outcomes. Consequently, we aim to develop a physiologically based pharmacokinetic (PBPK) model for abiraterone via a middle-out approach to prospectively interrogate the untested, albeit clinically relevant, scenarios. METHODS To characterize in vivo hydrolysis of prodrug abiraterone acetate (AA) and supersaturation of abiraterone, in vitro aqueous solubility data, biorelevant measurements, and supersaturation and precipitation parameters were utilized for mechanistic absorption simulation. CYP3A4-mediated N-oxidation and sulfotransferase 2A1-catalyzed sulfation of abiraterone were subsequently quantified in human liver subcellular systems. Iterative PBPK model refinement involved evaluation of potential organic anion transporting polypeptide (OATP)-mediated abiraterone uptake in transfected cells in the absence and presence of albumin. RESULTS The developed PBPK model recapitulated the duodenal concentration-time profile of both AA and abiraterone after simulated AA administration. Our findings established abiraterone as a substrate of hepatic OATP1B3 to recapitulate its unbound metabolic intrinsic clearance. Further consideration of a transporter-induced protein-binding shift established accurate translational scaling factors and extrapolated the sinusoidal uptake process. Subsequent simulations effectively predicted the PK of abiraterone upon single and multiple dosing. CONCLUSION Our systematic development of the abiraterone PBPK model has demonstrated its application for the prospective interrogation of the individual or combined influences of potential interindividual variabilities influencing the systemic exposure of abiraterone.
Collapse
Affiliation(s)
- Eleanor Jing Yi Cheong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Sheng Yuan Chin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Zheng Wei Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Ting Jian Yap
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Ervin Zhi Bin Cheong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Ziteng Wang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
5
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
6
|
Gjorgoska M, Rizner TL. Integration of androgen hormones in endometrial cancer biology. Trends Endocrinol Metab 2022; 33:639-651. [PMID: 35879182 DOI: 10.1016/j.tem.2022.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/27/2022] [Accepted: 06/26/2022] [Indexed: 12/03/2022]
Abstract
Endometrial cancer (EC) is a gynecological pathology that affects the uterine inner lining. In recent years, genomic studies revealed continually evolving mutational landscapes of endometrial tumors that hold great potential for tailoring therapeutic strategies. This review aims to broaden our knowledge of EC biology by focusing on the role of androgen hormones. First, we discuss epidemiological evidence implicating androgens with EC pathogenesis and cover their biosynthesis and metabolism to bioactive 11-oxyandrogens. Next, we explore the endometrial tumor tissue and the altered microbiota as alternative sources of androgens and their 11-oxymetabolites in EC patients. Finally, we discuss the biological significance of androgens' genomic and nongenomic signaling as part of a medley of pathways ultimately deciding the fate of cells.
Collapse
Affiliation(s)
- Marija Gjorgoska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Lanisnik Rizner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Anabtawi N, Drabison T, Hu S, Sparreboom A, Talebi Z. The role of OATP1B1 and OATP1B3 transporter polymorphisms in drug disposition and response to anticancer drugs: a review of the recent literature. Expert Opin Drug Metab Toxicol 2022; 18:459-468. [PMID: 35983889 DOI: 10.1080/17425255.2022.2113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Members of the solute carrier family of organic anion transporting polypeptides are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. In particular, the polymorphic transporters OATP1B1 and OATP1B3 are highly expressed in the liver and have been identified as critical regulators of hepatic eliminaton. As these transporters are also expressed in cancer cells, the function alteration of these proteins have important consequences for an individual's susceptibility to certain drug-induced side effects, drug-drug interactions, and treatment efficacy. AREAS COVERED In this mini-review, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of genetic variants in OATP1B1 and OATP1B3 to the transport of anticancer drugs, the role of these carriers in regulation of their disposition and toxicity profiles, and recent advances in attempts to integrate information on transport function in patients to derive individualized treatment strategies. EXPERT OPINION Based on currently available data, it appears imperative that different aspects of disease, physiology, and drugs of relevance should be evaluated along with an individual's genetic signature, and that tools such as biomarker levels can be implemented to achieve the most reliable prediction of clinically relevant pharmacodynamic endpoints.
Collapse
Affiliation(s)
- Nadeen Anabtawi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
8
|
Barbier RH, McCrea EM, Lee KY, Strope JD, Risdon EN, Price DK, Chau CH, Figg WD. Abiraterone induces SLCO1B3 expression in prostate cancer via microRNA-579-3p. Sci Rep 2021; 11:10765. [PMID: 34031488 PMCID: PMC8144422 DOI: 10.1038/s41598-021-90143-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/30/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding mechanisms of resistance to abiraterone, one of the primary drugs approved for the treatment of castration resistant prostate cancer, remains a priority. The organic anion polypeptide 1B3 (OATP1B3, encoded by SLCO1B3) transporter has been shown to transport androgens into prostate cancer cells. In this study we observed and investigated the mechanism of induction of SLCO1B3 by abiraterone. Prostate cancer cells (22Rv1, LNCaP, and VCAP) were treated with anti-androgens and assessed for SLCO1B3 expression by qPCR analysis. Abiraterone treatment increased SLCO1B3 expression in 22Rv1 cells in vitro and in the 22Rv1 xenograft model in vivo. MicroRNA profiling of abiraterone-treated 22Rv1 cells was performed using a NanoString nCounter miRNA panel followed by miRNA target prediction. TargetScan and miRanda prediction tools identified hsa-miR-579-3p as binding to the 3'-untranslated region (3'UTR) of the SLCO1B3. Using dual luciferase reporter assays, we verified that hsa-miR-579-3p indeed binds to the SLCO1B3 3'UTR and significantly inhibited SLCO1B3 reporter activity. Treatment with abiraterone significantly downregulated hsa-miR-579-3p, indicating its potential role in upregulating SLCO1B3 expression. In this study, we demonstrated a novel miRNA-mediated mechanism of abiraterone-induced SLCO1B3 expression, a transporter that is also responsible for driving androgen deprivation therapy resistance. Understanding mechanisms of abiraterone resistance mediated via differential miRNA expression will assist in the identification of potential miRNA biomarkers of treatment resistance and the development of future therapeutics.
Collapse
Affiliation(s)
- Roberto H Barbier
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Edel M McCrea
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Kristi Y Lee
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Jonathan D Strope
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Emily N Risdon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Douglas K Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA.
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Vermunt MAC, van der Heijden LT, Hendrikx JJMA, Schinkel AH, de Weger VA, van der Putten E, van Triest B, Bergman AM, Beijnen JH. Pharmacokinetics of docetaxel and ritonavir after oral administration of ModraDoc006/r in patients with prostate cancer versus patients with other advanced solid tumours. Cancer Chemother Pharmacol 2021; 87:855-869. [PMID: 33744986 DOI: 10.1007/s00280-021-04259-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE ModraDoc006 is a novel oral formulation of docetaxel. The clearance of intravenous docetaxel is higher in medically castrated prostate cancer patients as compared to patients with other types of solid tumours. Oral docetaxel requires co-administration ritonavir (r), which might further impact the pharmacokinetics (PK). We now compare the PK of docetaxel and ritonavir between patients with Hormone Sensitive Prostate Cancer (HSPC), metastatic Castration-Resistant Prostate Cancer (mCRPC) and other metastatic solid tumours, treated on the same dose and weekly schedule of ModraDoc006/r. METHODS The docetaxel and ritonavir PK were compared between four patient groups from three clinical phase I trials, including eight male and eight female patients with different types of solid tumours (study 1), seven patients with HSPC (study 2) and five patients with mCRPC (study 3). All patients were treated with ModraDoc006 30 mg and ritonavir 100 mg in the morning, followed by ModraDoc006 20 mg and ritonavir 100 mg in the evening (ModraDoc006/r 30-20/100-100). For comparative purposes, the PK of six mCRPC patients that received 30-20/200-100 in study 3 were also evaluated. RESULTS The maximum plasma concentration (Cmax) was significantly lower for both docetaxel and ritonavir in the prostate cancer patients as compared to the patients with other types of solid tumours treated at ModraDoc006/r 30-20/100-100. The docetaxel area under the plasma concentration versus time curve (AUC) was significantly different at this dose, with a mean AUC0-48 of 1359 ± 374 ng/mL*h (N = 8) in female patients and 894 ± 223 ng/mL*h (N = 8) in male patients with different solid tumours (study 1), 321 ± 81 (N = 7) in HSPC (study 2) and 367 ± 182 ng/mL*h (N = 5) in mCRPC (study 3). A similar pattern was observed for ritonavir. ModraDoc006/r 30-20/200-100 in six mCRPC patients led to a comparable ritonavir exposure as compared to the patients at 30-20/100-100 in study 1 and increased the docetaxel AUC0-48 to 1266 ± 473 ng/mL*h (N = 6). CONCLUSION The exposure to docetaxel and ritonavir was significantly lower in prostate cancer patients as compared to patients with other types of solid tumours, treated on ModraDoc006/r 30-20/100-100. An increase of the ritonavir dose increased the docetaxel exposure in mCRPC patients. Therefore, a different RP2D of ModraDoc006/r is pursued in castrated prostate cancer patients as compared to patients with other types of solid tumours. TRIAL REGISTRATION Study 1: ClinicalTrials.gov Identifier NCT01173913, date of registration August 2, 2010. Study 2: ClinicalTrials.gov Identifier NCT03066154, date of registration February 28, 2017. Study 3: ClinicalTrials.gov Identifier NCT03136640, date of registration May 2, 2017.
Collapse
Affiliation(s)
- Marit A C Vermunt
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands.
| | - Lisa T van der Heijden
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Jeroen J M A Hendrikx
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Alfred H Schinkel
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Vincent A de Weger
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Eric van der Putten
- Modra Pharmaceuticals BV, Barbara Strozzilaan 201, Amsterdam, 1083HN, The Netherlands
| | - Baukelien van Triest
- Department of Radiotherapy, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Andries M Bergman
- Department of Medical Oncology and Oncogenomics, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands.,Modra Pharmaceuticals BV, Barbara Strozzilaan 201, Amsterdam, 1083HN, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Heidelberglaan 100, Utrecht, 3584CX, The Netherlands
| |
Collapse
|
10
|
Pilot study of gadoxetate disodium-enhanced mri for localized and metastatic prostate cancers. Sci Rep 2021; 11:5662. [PMID: 33707581 PMCID: PMC7952731 DOI: 10.1038/s41598-021-84960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
OATP1B3 is expressed de novo in primary prostate cancer tissue and to a greater degree in prostate cancer metastases. Gadoxetate disodium is a substrate of OATP1B3, and its uptake has been shown to correlate with OATP1B3 expression in other cancers. We aimed to evaluate use of gadoxetate disodium to image prostate cancer and to track its utility as a biomarker. A single center open-label non-randomized pilot study recruited men with (1) localized, and (2) metastatic castration resistant prostate cancer (mCRPC). Gadoxetate disodium-enhanced MRI was performed at four timepoints post-injection. The Wilcoxon signed rank test was used to compare MRI contrast enhancement ratio (CER) pre-injection and post-injection. OATP1B3 expression was evaluated via immunohistochemistry (IHC) and a pharmacogenomic analysis of OATP1B3, NCTP and OATP1B1 was conducted. The mCRPC subgroup (n = 9) demonstrated significant enhancement compared to pre-contrast images at 20-, 40- and 60-min timepoints (p < 0.0078). The localized cancer subgroup (n = 11) demonstrated earlier enhancement compared to the mCRPC group, but no retention over time (p > 0.05). OATP1B3 expression on IHC trended higher contrast enhancement between 20–40 min (p ≤ 0.064) and was associated with contrast enhancement at 60 min (p = 0.0422). OATP1B1 haplotype, with N130D and V174A substitutions, impacted enhancement at 40–60 min (p ≤ 0.038). mCRPC lesions demonstrate enhancement after injection of gadoxetate disodium on MRI and retention over 60 min. As inter-individual variability in OATP1B3 expression and function has both predictive and prognostic significance, gadoxetate disodium has potential as a biomarker in prostate cancer.
Collapse
|
11
|
Mout L, Moll JM, Chen M, de Morrée ES, de Ridder CMA, Gibson A, Stuurman D, Aghai A, Erkens-Schulze S, Mathijssen RHJ, Sparreboom A, de Wit R, Lolkema MP, van Weerden WM. Androgen receptor signalling impairs docetaxel efficacy in castration-resistant prostate cancer. Br J Cancer 2020; 123:1715-1719. [PMID: 32989230 PMCID: PMC7722857 DOI: 10.1038/s41416-020-01105-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Androgen receptor (AR) signalling drives neoplastic growth and therapy resistance in prostate cancer. Recent clinical data show that docetaxel combined with androgen deprivation therapy improves outcome in hormone-sensitive disease. We studied whether testosterone and AR signalling interferes with docetaxel treatment efficacy in castration-resistant prostate cancer (CRPC). We found that testosterone supplementation significantly impaired docetaxel tumour accumulation in a CRPC model, resulting in decreased tubulin stabilisation and antitumour activity. Furthermore, testosterone competed with docetaxel for uptake by the drug transporter OATP1B3. Irrespective of docetaxel-induced tubulin stabilisation, AR signalling by testosterone counteracted docetaxel efficacy. AR-pathway activation could also reverse long-term tumour regression by docetaxel treatment in vivo. These results indicate that to optimise docetaxel efficacy, androgen levels and AR signalling need to be suppressed. This study lends evidence for continued maximum suppression of AR signalling by combining targeted therapeutics with docetaxel in CRPC.
Collapse
Affiliation(s)
- Lisanne Mout
- Department of Medical Oncology Erasmus MC-Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jan M Moll
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Mingqing Chen
- Division of Pharmaceutics College of Pharmacy, The Ohio State University, 217 Lloyd M. Parks Hall, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Eleonora S de Morrée
- Department of Medical Oncology Erasmus MC-Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Corrina M A de Ridder
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Alice Gibson
- Division of Pharmaceutics College of Pharmacy, The Ohio State University, 217 Lloyd M. Parks Hall, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Debra Stuurman
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Ashraf Aghai
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology Erasmus MC-Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Alex Sparreboom
- Division of Pharmaceutics College of Pharmacy, The Ohio State University, 217 Lloyd M. Parks Hall, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ronald de Wit
- Department of Medical Oncology Erasmus MC-Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology Erasmus MC-Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Begemann D, Wang Y, Yang W, Kyprianou N. Androgens modify therapeutic response to cabazitaxel in models of advanced prostate cancer. Prostate 2020; 80:926-937. [PMID: 32542812 PMCID: PMC7880610 DOI: 10.1002/pros.24015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Disruption of the phenotypic landscape via epithelial-mesenchymal transition (EMT) enables prostate cancer cells to metastasize and acquire therapeutic resistance. Our previous studies demonstrated that cabazitaxel (CBZ) (second-generation Food and Drug Administration-approved taxane chemotherapy), used for the treatment of castration-resistant prostate cancer (CRPC), causes reversal of EMT to mesenchymal-epithelial transition (MET) and reduces expression of kinesin motor protein KIFC1 (HSET). The present study examined the effect of sequencing CBZ chemotherapy mediated MET on prostate tumor redifferentiation overcoming therapeutic resistance in models of advanced prostate cancer. METHODS To examine the impact of androgens on the antitumor effect of CBZ, we used human prostate cancer cell lines with different sensitivity to androgens and CBZ, in vitro, and two human prostate cancer xenograft models in vivo. Tumor-bearing male mice (with either the androgen-sensitive LNCaP or the CRPC 22Rv1 xenografts) were treated with CBZ (3 mg/kg) alone, or in combination with castration-induced androgen-deprivation therapy (ADT) for 14 days. RESULTS Cell viability assays indicate that the presence of 5α-dihydrotestosterone (1 nM) confers resistance to CBZ in vitro. CBZ treatment in vivo induced MET in LNCaP-derived tumors as shown by increased E-cadherin and decreased N-cadherin levels. Sequencing CBZ after ADT improves tumor response in androgen-sensitive LNCaP, but not in CRPC 22Rv1 xenografts. Mechanistic dissection revealed a novel association between the androgen receptor and HSET in prostate cancer cells that is inhibited by CBZ in an androgen-dependent manner. CONCLUSIONS Our findings provide new insights into the phenotypic reprogramming of prostate cancer cells to resensitize tumors to CBZ action. This evidence is of translational significance in treatment sequencing (CBZ and ADT) towards improved therapeutic benefit in patients with lethal CRPC.
Collapse
Affiliation(s)
- Diane Begemann
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Yang Wang
- Department of Surgery and Biomedical Sciences, Cedars Sinai Cancer Institute, Los Angeles, California
| | - Wei Yang
- Department of Surgery and Biomedical Sciences, Cedars Sinai Cancer Institute, Los Angeles, California
| | - Natasha Kyprianou
- Department of Urology and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
13
|
Sun R, Ying Y, Tang Z, Liu T, Shi F, Li H, Guo T, Huang S, Lai R. The Emerging Role of the SLCO1B3 Protein in Cancer Resistance. Protein Pept Lett 2020; 27:17-29. [PMID: 31556849 PMCID: PMC6978646 DOI: 10.2174/0929866526666190926154248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Currently, chemotherapy is one of the mainstays of oncologic therapies. But the efficacy of chemotherapy is often limited by drug resistance and severe side effects. Consequently, it is becoming increasingly important to investigate the underlying mechanism and overcome the problem of anticancer chemotherapy resistance. The solute carrier organic anion transporter family member 1B3 (SLCO1B3), a functional transporter normally expressed in the liver, transports a variety of endogenous and exogenous compounds, including hormones and their conjugates as well as some anticancer drugs. The extrahepatic expression of SLCO1B3 has been detected in different cancer cell lines and cancer tissues. Recently, accumulating data indicates that the abnormal expression and function of SLCO1B3 are involved in resistance to anticancer drugs, such as taxanes, camptothecin and its analogs, SN-38, and Androgen Deprivation Therapy (ADT) in breast, prostate, lung, hepatic, and colorectal cancer, respectively. Thus, more investigations have been implemented to identify the potential SLCO1B3-related mechanisms of cancer drug resistance. In this review, we focus on the emerging roles of SLCO1B3 protein in the development of cancer chemotherapy resistance and briefly discuss the mechanisms of resistance. Elucidating the function of SLCO1B3 in chemoresistance may bring out novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Ruipu Sun
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Ting Liu
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Huixia Li
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Taichen Guo
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Shibo Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Department of Pharmacy, Medical College, Nanchang University, Nanchang 330006, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences / Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| |
Collapse
|
14
|
Kaipainen A, Zhang A, da Costa RMG, Lucas J, Marck B, Matsumoto AM, Morrissey C, True LD, Mostaghel EA, Nelson PS. Testosterone accumulation in prostate cancer cells is enhanced by facilitated diffusion. Prostate 2019; 79:1530-1542. [PMID: 31376206 PMCID: PMC6783279 DOI: 10.1002/pros.23874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Testosterone is a driver of prostate cancer (PC) growth via ligand-mediated activation of the androgen receptor (AR). Tumors that have escaped systemic androgen deprivation, castration-resistant prostate cancers (CRPC), have measurable intratumoral levels of testosterone, suggesting that a resistance mechanism still depends on androgen-simulated growth. However, AR activation requires an optimal intracellular concentration of androgens, a situation challenged by low circulating testosterone concentrations. Notably, PC cells may optimize their androgen levels by regulating the expression of steroid metabolism enzymes that convert androgen precursors into androgens. Here we propose that testosterone entry into the cell could be another control point. METHODS To determine whether testosterone enters cells via a transporter, we performed in vitro 3 H-testosterone uptake assays in androgen-dependent LNCaP and androgen and AR-independent PC3 cells. To determine if the uptake mechanism depended on a concentration gradient, we modified UGT2B17 levels in LNCaP cells and measured androgen levels by liquid-liquid extraction-mass spectrometry. We also analyzed CRPC metastases for expression of AKR1C3 to determine whether this enzyme that converts adrenal androgens to testosterone was present in the tumor stroma (microenvironment) in addition to its expression in the tumor epithelium. RESULTS Testosterone uptake followed a concentration gradient but unlike in passive diffusion, was saturable and temperature-dependent, thus suggesting facilitated transport. Suppression of UGT2B17 to abrogate a testosterone gradient reduced testosterone transport while overexpression of the enzyme enhanced it. The facilitated transport suggests a paracrine route of testosterone uptake for maintaining optimal intracellular levels. We found that AKR1C3 was expressed in the tumor microenvironment of CRPC metastases in addition to epithelial cells and the pattern of relative abundance of the enzyme in epithelium vs stroma varied substantially between the metastatic sites. CONCLUSIONS Our findings suggest that in addition to testosterone transport and metabolism by tumor epithelium, testosterone could also be produced by components of the tumor microenvironment. Facilitated testosterone uptake by tumor cells supports a cell nonautonomous mechanism for testosterone signaling in CRPC.
Collapse
Affiliation(s)
- Arja Kaipainen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ailin Zhang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rui M. Gil da Costa
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jared Lucas
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brett Marck
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108
| | - Alvin M. Matsumoto
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Lawrence D. True
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elahe A. Mostaghel
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle WA 98104
| | - Peter S. Nelson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle WA 98104
| |
Collapse
|
15
|
Association of prostate cancer SLCO gene expression with Gleason grade and alterations following androgen deprivation therapy. Prostate Cancer Prostatic Dis 2019; 22:560-568. [PMID: 30890759 PMCID: PMC6752995 DOI: 10.1038/s41391-019-0141-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/03/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Background. SLCO-encoded transporters have been associated with progression to castration resistant prostate cancer (CRPC) after initiation of androgen deprivation therapy (ADT). Although expressed at lower levels than in CRPC tissues, SLCO-encoded transporters may also play a role in response of primary prostate cancer (PCa) to ADT and biochemical recurrence. Methods. We systematically explored expression of the 11 human SLCO genes in a large sample of untreated and ADT-treated normal prostate (NP) and primary PCa tissues, including tumors treated with neoadjuvant abiraterone. Results. Transporters with the most recognized role in steroid uptake in PCa, including SLCO2B1 (DHEAS) and 1B3 (testosterone), were consistently detected in primary PCa. SLCO1B3 was nearly 5-fold higher in PCa vs NP with no difference in Gleason 3 vs 4 and no change with ADT. SLCO2B1 was detected at 3-fold lower levels in PCa than NP but was nearly 7-fold higher in Gleason 4 vs Gleason 3 and increased 3-fold following ADT (p<0.05 for all). Conclusions. We observed clear differences in SLCO expression in PCa vs NP samples, in Gleason 4 vs Gleason 3 tumors, and in ADT-treated vs untreated tissues. These findings are hypothesis generating due to small sample size, but suggest that baseline and ADT-induced changes in PCa OATP expression may influence steroid uptake and response to ADT, as well as uptake and response to drugs such as abiraterone and docetaxel which are also subject to OATP-mediated transport and are now being routinely combined with ADT in the metastatic castration sensitive setting.
Collapse
|
16
|
Svoboda M, Mungenast F, Gleiss A, Vergote I, Vanderstichele A, Sehouli J, Braicu E, Mahner S, Jäger W, Mechtcheriakova D, Cacsire-Tong D, Zeillinger R, Thalhammer T, Pils D. Clinical Significance of Organic Anion Transporting Polypeptide Gene Expression in High-Grade Serous Ovarian Cancer. Front Pharmacol 2018; 9:842. [PMID: 30131693 PMCID: PMC6090214 DOI: 10.3389/fphar.2018.00842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is considered the most deadly and frequently occurring type of ovarian cancer and is associated with various molecular compositions and growth patterns. Evaluating the mRNA expression pattern of the organic anion transporters (OATPs) encoded by SLCO genes may allow for improved stratification of HGSOC patients for targeted invention. The expression of SLCO mRNA and genes coding for putative functionally related ABC-efflux pumps, enzymes, pregnane-X-receptor, ESR1 and ESR2 (coding for estrogen receptors ERα and ERß) and HER-2 were assessed using RT-qPCR. The expression levels were assessed in a cohort of 135 HGSOC patients to elucidate the independent impact of the expression pattern on the overall survival (OS). For identification of putative regulatory networks, Graphical Gaussian Models were constructed from the expression data with a tuning parameter K varying between meaningful borders (Pils et al., 2012; Auer et al., 2015, 2017; Kurman and Shih Ie, 2016; Karam et al., 2017; Labidi-Galy et al., 2017; Salomon-Perzynski et al., 2017; Sukhbaatar et al., 2017). The final value used (K = 4) was determined by maximizing the proportion of explained variation of the corresponding LASSO Cox regression model for OS. The following two networks of directly correlated genes were identified: (i) SLCO2B1 with ABCC3 implicated in estrogen homeostasis; and (ii) two ABC-efflux pumps in the immune regulation (ABCB2/ABCB3) with ABCC3 and HER-2. Combining LASSO Cox regression and univariate Cox regression analyses, SLCO5A1 coding for OATP5A1, an estrogen metabolite transporter located in the cytoplasm and plasma membranes of ovarian cancer cells, was identified as significant and independent prognostic factor for OS (HR = 0.68, CI 0.49-0.93; p = 0.031). Furthermore, results indicated the benefits of patients with high expression by adding 5.1% to the 12.8% of the proportion of explained variation (PEV) for clinicopathological parameters known for prognostic significance (FIGO stage, age and residual tumor after debulking). Additionally, overlap with previously described signatures that indicated a more favorable prognosis for ovarian cancer patients was shown for SLCO5A1, the network ABCB2/ABCB3/ABCC4/HER2 as well as ESR1. Furthermore, expression of SLCO2A1 and PGDH, which are important for PGE2 degradation, was associated with the non-miliary peritoneal tumor spreading. In conclusion, the present findings suggested that SLCOs and the related molecules identified as potential biomarkers in HGSOC may be useful for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Martin Svoboda
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Felicitas Mungenast
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Institute of Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Ignace Vergote
- Division of Gynaecological Oncology, Department of Gynaecology and Obstetrics, Leuven Cancer Institute, University Hospital Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Adriaan Vanderstichele
- Division of Gynaecological Oncology, Department of Gynaecology and Obstetrics, Leuven Cancer Institute, University Hospital Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jalid Sehouli
- Department of Gynecology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elena Braicu
- Department of Gynecology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dan Cacsire-Tong
- Translational Gynecology Group, Department of Obstetrics and Gynaecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynaecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Institute of Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Sun Y, Piñón Hofbauer J, Harada M, Wöss K, Koller U, Morio H, Stierschneider A, Kitamura K, Hashimoto M, Chiba K, Akita H, Anzai N, Reichelt J, Bauer JW, Guttmann-Gruber C, Furihata T. Cancer-type organic anion transporting polypeptide 1B3 is a target for cancer suicide gene therapy using RNA trans-splicing technology. Cancer Lett 2018; 433:107-116. [PMID: 29960051 DOI: 10.1016/j.canlet.2018.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/30/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) has been identified as a cancer-specific transcript in various solid cancers, including colorectal cancer. Given its excellent cancer-specific expression profile, we hypothesized that Ct-OATP1B3 could represent a promising target for cancer-specific expression of the suicide gene, herpes simplex virus 1 thymidine kinase (HSV-tk), via a spliceosome-mediated RNA trans-splicing (SMaRT) approach. SMaRT technology is used to recombine two RNA molecules to generate a chimeric transcript. In this study, we engineered an RNA trans-splicing molecule carrying a translation-defective HSV-tk sequence (RTM44), which was capable of inducing its own trans-splicing to the desired Ct-OATP1B3 pre-mRNA target. RTM44 expression in LS180 cells resulted in generation of Ct-OATP1B3/HSV-tk fusion mRNA. A functional translation start site contributed by the target pre-mRNA restored HSV-tk protein expression, rendering LS180 cells sensitive to ganciclovir treatment in vitro and in xenografted mice. The observed effects are ascribed to accurate and efficient trans-splicing, as they were absent in cells carrying a splicing-deficient mutant of RTM44. Collectively, our data highlights Ct-OATP1B3 as an ideal target for the HSV-tk SMaRT suicide system, which opens up new translational avenues for Ct-OATP1B3-targeted cancer therapy.
Collapse
Affiliation(s)
- Yuchen Sun
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan; EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Manami Harada
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Katharina Wöss
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Hanae Morio
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan; Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Anna Stierschneider
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Keita Kitamura
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mari Hashimoto
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hidetaka Akita
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Julia Reichelt
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria.
| | - Tomomi Furihata
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan; Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|