1
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
2
|
Gabel AM, Belleville AE, Thomas JD, Pineda JMB, Bradley RK. APC mutations dysregulate alternative polyadenylation in cancer. Genome Biol 2024; 25:255. [PMID: 39375704 PMCID: PMC11457450 DOI: 10.1186/s13059-024-03406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Alternative polyadenylation (APA) affects most human genes and is recurrently dysregulated in all studied cancers. However, the mechanistic origins of this dysregulation are incompletely understood. RESULTS We describe an unbiased analysis of molecular regulators of poly(A) site selection across The Cancer Genome Atlas and identify that colorectal adenocarcinoma is an outlier relative to all other cancer subtypes. This distinction arises from the frequent presence of loss-of-function APC mutations in colorectal adenocarcinoma, which are strongly associated with long 3' UTR expression relative to tumors lacking APC mutations. APC knockout similarly dysregulates APA in human colon organoids. By mining previously published APC eCLIP data, we show that APC preferentially binds G- and C-rich motifs just upstream of proximal poly(A) sites. Lastly, we find that reduced APC expression is associated with APA dysregulation in tumor types lacking recurrent APC mutations. CONCLUSIONS As APC has been previously identified as an RNA-binding protein that preferentially binds 3' UTRs during mouse neurogenesis, our results suggest that APC promotes proximal poly(A) site use and that APC loss and altered expression contribute to pervasive APA dysregulation in cancers.
Collapse
Affiliation(s)
- Austin M Gabel
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrea E Belleville
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - James D Thomas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jose Mario Bello Pineda
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Vien KM, Duan Q, Yeung C, Barish S, Volkan PC. Atypical cadherin, Fat2, regulates axon terminal organization in the developing Drosophila olfactory receptor neurons. iScience 2024; 27:110340. [PMID: 39055932 PMCID: PMC11269957 DOI: 10.1016/j.isci.2024.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The process of how neuronal identity confers circuit organization is intricately related to the mechanisms underlying neurodegeneration and neuropathologies. Modeling this process, the olfactory circuit builds a functionally organized topographic map, which requires widely dispersed neurons with the same identity to converge their axons into one a class-specific neuropil, a glomerulus. In this article, we identified Fat2 (also known as Kugelei) as a regulator of class-specific axon organization. In fat2 mutants, axons belonging to the highest fat2-expressing classes present with a more severe phenotype compared to axons belonging to low fat2-expressing classes. In extreme cases, mutations lead to neural degeneration. Lastly, we found that Fat2 intracellular domain interactors, APC1/2 (Adenomatous polyposis coli) and dop (Drop out), likely orchestrate the cytoskeletal remodeling required for axon condensation. Altogether, we provide a potential mechanism for how cell surface proteins' regulation of cytoskeletal remodeling necessitates identity specific circuit organization.
Collapse
Affiliation(s)
- Khanh M. Vien
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chun Yeung
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Scott Barish
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Cuche C, Mastrogiovanni M, Juzans M, Laude H, Ungeheuer MN, Krentzel D, Gariboldi MI, Scott-Algara D, Madec M, Goyard S, Floch C, Chauveau-Le Friec G, Lafaye P, Renaudat C, Le Bidan M, Micallef C, Schmutz S, Mella S, Novault S, Hasan M, Duffy D, Di Bartolo V, Alcover A. T cell migration and effector function differences in familial adenomatous polyposis patients with APC gene mutations. Front Immunol 2023; 14:1163466. [PMID: 37533857 PMCID: PMC10393261 DOI: 10.3389/fimmu.2023.1163466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 08/04/2023] Open
Abstract
Familial adenomatous polyposis (FAP) is an inherited disease characterized by the development of large number of colorectal adenomas with high risk of evolving into colorectal tumors. Mutations of the Adenomatous polyposis coli (APC) gene is often at the origin of this disease, as well as of a high percentage of spontaneous colorectal tumors. APC is therefore considered a tumor suppressor gene. While the role of APC in intestinal epithelium homeostasis is well characterized, its importance in immune responses remains ill defined. Our recent work indicates that the APC protein is involved in various phases of both CD4 and CD8 T cells responses. This prompted us to investigate an array of immune cell features in FAP subjects carrying APC mutations. A group of 12 FAP subjects and age and sex-matched healthy controls were studied. We characterized the immune cell repertoire in peripheral blood and the capacity of immune cells to respond ex vivo to different stimuli either in whole blood or in purified T cells. A variety of experimental approaches were used, including, pultiparamater flow cytometry, NanosString gene expression profiling, Multiplex and regular ELISA, confocal microscopy and computer-based image analyis methods. We found that the percentage of several T and natural killer (NK) cell populations, the expression of several genes induced upon innate or adaptive immune stimulation and the production of several cytokines and chemokines was different. Moreover, the capacity of T cells to migrate in response to chemokine was consistently altered. Finally, immunological synapses between FAP cytotoxic T cells and tumor target cells were more poorly structured. Our findings of this pilot study suggest that mild but multiple immune cell dysfunctions, together with intestinal epithelial dysplasia in FAP subjects, may facilitate the long-term polyposis and colorectal tumor development. Although at an initial discovery phase due to the limited sample size of this rare disease cohort, our findings open new perspectives to consider immune cell abnormalities into polyposis pathology.
Collapse
Affiliation(s)
- Céline Cuche
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
| | - Marta Mastrogiovanni
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Marie Juzans
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Hélène Laude
- Institut Pasteur, Université Paris Cité, ICAReB-Clin, Paris, France
| | | | - Daniel Krentzel
- Institut Pasteur, Université Paris Cité, CNRS-UMR3691, Unité Imagerie et Modélisation, Paris, France
| | - Maria Isabella Gariboldi
- Institut Pasteur, Université Paris Cité, CNRS-UMR3691, Unité Imagerie et Modélisation, Paris, France
| | - Daniel Scott-Algara
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
| | - Marianne Madec
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
| | - Sophie Goyard
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
- Institut Pasteur, Université Paris Cité, Plateforme d’Innovation et de Développement de Tests Diagnostiques, Paris, France
| | - Camille Floch
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
- Institut Pasteur, Université Paris Cité, Plateforme d’Innovation et de Développement de Tests Diagnostiques, Paris, France
| | - Gaëlle Chauveau-Le Friec
- Institut Pasteur, Université Paris Cité, CNRS-UMR3528, Plateforme d’Ingénierie des Anticorps, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris Cité, CNRS-UMR3528, Plateforme d’Ingénierie des Anticorps, Paris, France
| | | | | | | | - Sandrine Schmutz
- Institut Pasteur, Université Paris Cité, Unité de Technologie et Service Cytométrie et Biomarqueurs, Paris, France
| | - Sébastien Mella
- Institut Pasteur, Université Paris Cité, Unité de Technologie et Service Cytométrie et Biomarqueurs, Paris, France
- Institut Pasteur, Université Paris Cité, Hub Bioinformatique et Biostatistique, Paris, France
| | - Sophie Novault
- Institut Pasteur, Université Paris Cité, Unité de Technologie et Service Cytométrie et Biomarqueurs, Paris, France
| | - Milena Hasan
- Institut Pasteur, Université Paris Cité, Unité de Technologie et Service Cytométrie et Biomarqueurs, Paris, France
| | - Darragh Duffy
- Institut Pasteur, Université Paris Cité, Unité Immunologie Translationnelle, Paris, France
| | - Vincenzo Di Bartolo
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
| | - Andrés Alcover
- Institut Pasteur, Université Paris Cité, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer-Équipe Labellisée Ligue 2018, Paris, France
| |
Collapse
|
5
|
Abstract
Colorectal cancer has served as a genetic and biological paradigm for the evolution of solid tumors, and these insights have illuminated early detection, risk stratification, prevention, and treatment principles. Employing the hallmarks of cancer framework, we provide a conceptual framework to understand how genetic alterations in colorectal cancer drive cancer cell biology properties and shape the heterotypic interactions across cells in the tumor microenvironment. This review details research advances pertaining to the genetics and biology of colorectal cancer, emerging concepts gleaned from immune and single-cell profiling, and critical advances and remaining knowledge gaps influencing the development of effective therapies for this cancer that remains a major public health burden.
Collapse
Affiliation(s)
- Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Pan Q, Qin F, Yuan H, He B, Yang N, Zhang Y, Ren H, Zeng Y. Normal tissue adjacent to tumor expression profile analysis developed and validated a prognostic model based on Hippo-related genes in hepatocellular carcinoma. Cancer Med 2021; 10:3139-3152. [PMID: 33818013 PMCID: PMC8085948 DOI: 10.1002/cam4.3890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common malignant disease worldwide. Although the diagnosis and treatment of HCC have greatly improved in the recent years, there is still a lack of accurate methods to predict the prognosis of patients. Evidence has shown that Hippo signaling in tissues adjacent to HCC plays a significant role in HCC development. In the present study, we aimed to construct a model based on the expression of Hippo‐related genes (HRGs) in tissues adjacent to HCC to predict the prognosis of HCC patients. Methods Gene expression data of paired normal tissues adjacent to HCC (PNTAH) and clinical information were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The HRG signature was constructed using four canonical Hippo‐related pathways. Univariate Cox regression analysis was used to screen survival‐related HRGs. LASSO and multivariate Cox regression analyses were used to construct the prognostic model. The true and false positive rates of the model were confirmed using receiver operating characteristic (ROC) analysis. Results The prognostic model was constructed based on the expression levels of five HRGs (NF2, MYC, BIRC3, CSNK1E, and MINK1) in PNTAH. The mortality rate of HCC patients increased as the risk score determined by the model increased. Furthermore, the risk score was found to be an independent risk factor for the survival of patients. ROC analysis showed that the prognostic model had a better predictive value than the other conventional clinical parameters. Moreover, the reliability of the prognostic model was confirmed in TCGA‐LIHC cohort. A nomogram was generated to predict patient survival. An exploration of the predictive value of the model in HCC tissues indicated that the model is PNTAH‐specific. Conclusions We developed and validated a prognostic model based on the expression levels of five HRGs in PNTAH, and this model should be helpful in predicting the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Qingbo Pan
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanbo Qin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanyu Yuan
- Caojie Community Medical Service Centre Hechuan, Chongqing, China
| | - Baoning He
- Chongqing YuCai Secondary School, Chongqing, China
| | - Ni Yang
- Chongqing YuCai Secondary School, Chongqing, China
| | - Yitong Zhang
- Chongqing YuCai Secondary School, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zeng
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|