1
|
Rahaman A, Chaudhuri A, Sarkar A, Chakraborty S, Bhattacharjee S, Mandal DP. OUP accepted manuscript. Carcinogenesis 2022; 43:571-583. [PMID: 35165685 DOI: 10.1093/carcin/bgac020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ashikur Rahaman
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, North 24 Parganas, Kolkata, West Bengal, India
| | - Ankur Chaudhuri
- Department of Microbiology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, North 24 Parganas, Kolkata, West Bengal, India
| | - Arnab Sarkar
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, North 24 Parganas, Kolkata, West Bengal, India
| | - Sibani Chakraborty
- Department of Microbiology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, North 24 Parganas, Kolkata, West Bengal, India
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, North 24 Parganas, Kolkata, West Bengal, India
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, North 24 Parganas, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Thet Z, Lam AK, Ranganathan D, Aung SY, Han T, Khoo TK. Reducing non-melanoma skin cancer risk in renal transplant recipients. Nephrology (Carlton) 2021; 26:907-919. [PMID: 34240786 DOI: 10.1111/nep.13939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
With an increasing number of renal transplant recipients (RTRs) and improving patient survival, a higher incidence of non-melanoma skin cancer (NMSC) has been observed. NMSC in RTRs are often more numerous and biologically more aggressive than the general population, thus contributing towards an increase in morbidity and to a lesser degree, mortality. The resultant cumulative health and financial burden is a recognized concern. Proposed strategies in mitigating risks of developing NMSC and early therapeutic options thereof include tailored modification of immunosuppressants in conjunction with sun protection in all transplant patients. This review highlights the clinical and financial burden of transplant-associated skin cancers, carcinogenic mechanisms in association with immunosuppression, importance of skin cancer awareness campaign and integrated transplant skin clinic, and the potential role of chemoprotective agents. A scheme is proposed for primary and secondary prevention of NMSC based on the available evidence.
Collapse
Affiliation(s)
- Zaw Thet
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia.,Department of Nephrology, Central Queensland Hospital and Health Service, Rockhampton, Queensland, Australia
| | - Alfred K Lam
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Pathology Queensland, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Dwarakanathan Ranganathan
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia.,Department of Nephrology, Metro North Hospital and Health Service, Herston, Queensland, Australia
| | - Soe Yu Aung
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Oncology, Central Queensland Hospital and Health Service, Rockhampton, Queensland, Australia
| | - Thin Han
- Department of Nephrology, Central Queensland Hospital and Health Service, Rockhampton, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Tien K Khoo
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
3
|
Sanz Ressel BL, Massone AR, Barbeito CG. Persistent activation of the mammalian target of rapamycin signalling pathway in cutaneous squamous cell carcinomas in cats. Vet Dermatol 2021; 32:675-e180. [PMID: 34240493 DOI: 10.1111/vde.13001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (CSCC) represents the most common malignant tumour of the feline skin. Emerging evidence suggests that the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signalling pathway may represent a potential target for pharmacological intervention in human and canine CSCC. HYPOTHESIS/OBJECTIVES The present study aimed to explore the expression pattern and status of activation of relevant signalling proteins of the PI3K/Akt/mTOR signalling pathway in feline CSCC. METHODS AND MATERIALS The expression of pEGFRTyr1068 , pAktSer473 , pS6Ser235/236 combined with Ki-67, and the tumour suppressor protein PTEN was evaluated by immunohistochemical analysis in 45 samples of feline CSCC, using a tissue microarray. RESULTS The immunodetection using phosphospecific antibodies to detect the activated forms of signalling proteins showed that the PI3K/Akt/mTOR signalling pathway is frequently activated in feline CSCCs, and may be independent of the activation of EGFR. The results also showed that PTEN expression is not significantly altered in feline CSCCs. CONCLUSIONS AND CLINICAL IMPORTANCE Our study shows that the persistent activation of the PI3K/Akt/mTOR signalling pathway represents a key event in feline CSCC, pointing to this signalling pathway being a potential therapeutic target in feline patients with CSCC.
Collapse
Affiliation(s)
- Berenice L Sanz Ressel
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias (FCV), Calle 60 y 118, La Plata, Buenos Aires, CP 1900, Argentina.,FCV - Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Calle 60 y 118, La Plata, Buenos Aires, CP 1900, Argentina
| | - Adriana R Massone
- FCV - Laboratorio de Patología Especial Veterinaria Dr. Bernardo Epstein, Universidad Nacional de La Plata (UNLP), Calle 60 y 118, CP 1900, La Plata, Buenos Aires, Argentina
| | - Claudio G Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias (FCV), Calle 60 y 118, La Plata, Buenos Aires, CP 1900, Argentina.,FCV - Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Calle 60 y 118, La Plata, Buenos Aires, CP 1900, Argentina
| |
Collapse
|
4
|
5'-Cap‒Dependent Translation as a Potent Therapeutic Target for Lethal Human Squamous Cell Carcinoma. J Invest Dermatol 2020; 141:742-753.e10. [PMID: 32971126 DOI: 10.1016/j.jid.2020.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/12/2023]
Abstract
Skin squamous cell carcinomas (SCCs) are a major cause of death in patients who have undergone or will undergo organ transplantation. Moreover, these neoplasms cause significant disease and economic burden and diminish patients' life quality. However, no effective treatment or intervention strategies are available. In this study, we investigated the pathologic role of 5'-cap translation, which is regulated by the formation of a ternary initiation factor complex involving eIF4E, eIF4G, and eIF4A1. We detected increased expression of phosphorylated eIF4E, eIF4G, and eIF4A1 in human and murine skin SCCs. The increase in these ternary initiation factor complex proteins was associated with enhanced eIF4E translation targets cyclin D1 and c-Myc. Conversely, small interfering RNA-mediated depletion of eIF4E in human SCC cells (A431 and SCC-13) reduced eIF4G and proteins that regulate the cell cycle and proliferation. Notably, inhibition of Raf/MAPK/extracellular signal-regulated kinase signaling decreased eIF4E and phosphorylated eIF4E accumulation and significantly diminished cell-cycle gene expression and tumor volume of A431-derived xenograft tumors. Furthermore, disrupting the eIF4E with an allosteric inhibitor of eIF4E and eIF4G binding, 4EGI-1, decreased the eIF4E/eIF4G expression and reduced the proliferation. Finally, combined inhibition of the Raf/MAPK/extracellular signal-regulated kinase axis and eIF4E impaired 5'-cap‒dependent translation and abrogated tumor cell proliferation. These data demonstrate that 5'-cap‒dependent translation is a potential therapeutic target for abrogating lethal skin SCCs in patients who have undergone or will undergo organ transplantation.
Collapse
|
5
|
Sajadimajd S, Bahramsoltani R, Iranpanah A, Kumar Patra J, Das G, Gouda S, Rahimi R, Rezaeiamiri E, Cao H, Giampieri F, Battino M, Tundis R, Campos MG, Farzaei MH, Xiao J. Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer. Pharmacol Res 2019; 151:104584. [PMID: 31809853 DOI: 10.1016/j.phrs.2019.104584] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 02/08/2023]
Abstract
Polyphenols are one of most important phytochemicals distributing in herb plants, vegetables and fruits, which known as important anticancer agents. Given the high incidence and mortality of skin cancer, this study aimed to uncover the chemopreventive effects of polyphenols against skin cancer metastasis. Electronic databases including Scopus, PubMed, and Cochrane library were used to compile the literature from 2000 to August 2019. Only in vivo mechanistic studies with English full-texts were chosen for this review. Polyphenols were included in this study if they were administered in purified form; while total extract and fractions were excluded. Among the 8254 primarily selected papers, only a final number of 34 studies were included. The chemopreventive effects of polyphenols as anthocyanins, ellagitanins, EGCG, oleuropeindihydroxy phenyl, punicalagin, quercetin, resveratrol and theaflavin, were mainly examined in treatment of melanoma as the highly metastatic form of this cutaneous cancer. Those properties are mediated by modulation of angiogenesis, apoptosis, inflammation, metastasis, proliferation, pathways such as EGFR/MAPK, mTOR/PI3K/Akt, JAK/STAT, FAK/RTK2, PGE-2/VEGF, PGE-1/ERK/HIIF-1α, and modulation of related signals including NF-κB, P21WAF/CIP1, Bim, Bax, Bcl2, Bclx, Bim, Puma, Noxa, ILs and MMPs. Chemopreventive effects of polyphenols are mediated by several signaling pathways against skin carcinogenesis and metastasis, implying the importance of polyphenols to open up new horizons in development of anti-skin cancer therapeutic strategies.
Collapse
Affiliation(s)
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sushanto Gouda
- Amity Institute of Forestry and Wildlife, Amity University, Noida, Uttar Pradesh, India.
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Elnaz Rezaeiamiri
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hui Cao
- Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, Guangdong, 519031, China.
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036, Rende, CS, Italy.
| | - Maria G Campos
- Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, Coimbra, Portugal; Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, Coimbra, Portugal.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Sanz Ressel BL, Massone AR, Barbeito CG. Dysregulated Expression of Phosphorylated Epidermal Growth Factor Receptor and Phosphatase and Tensin Homologue in Canine Cutaneous Papillomas and Squamous Cell Carcinomas. J Comp Pathol 2019; 174:26-33. [PMID: 31955800 DOI: 10.1016/j.jcpa.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
The molecular mechanisms contributing to the development of cutaneous papillomas (CPs) and cutaneous squamous cell carcinomas (CSCCs) are still poorly understood, limiting the ability to identify molecular suitable targets for the development of novel therapies. Persistent activation of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signalling pathway is a component of epidermal carcinogenesis in dogs. The present study describes the immunohistochemical expression pattern of two key regulatory molecules involved in the PI3K/Akt/mTOR signalling pathway, phosphorylated epidermal growth factor receptor (pEGFR)Tyr1068 and phosphatase and tensin homologue (PTEN), in samples of normal canine epidermis, CP, preneoplastic epidermis and CSCC using tissue microarrays to determine whether the deregulated activity of these molecules is involved in the pathogenesis of these relevant epidermal tumours of dogs. Expression of pEGFR and PTEN was dysregulated in most samples of CP, preneoplastic epidermis and CSCC. Overexpression of pEGFR, together with decreased expression of PTEN, may facilitate the progression of some canine CPs and CSCCs by deregulation of the key cellular functions in which the PI3K/Akt/mTOR signalling pathway is involved. These findings suggest that the PI3K/Akt/mTOR signalling molecules may be potential therapeutic targets for canine patients with CP and CSCC.
Collapse
Affiliation(s)
- B L Sanz Ressel
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, CONICET, UNLP, La Plata, Buenos Aires, Argentina.
| | - A R Massone
- Laboratorio de Patología Especial Veterinaria Dr. Bernardo Epstein, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - C G Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, CONICET, UNLP, La Plata, Buenos Aires, Argentina
| |
Collapse
|
7
|
Combined mTORC1/mTORC2 inhibition blocks growth and induces catastrophic macropinocytosis in cancer cells. Proc Natl Acad Sci U S A 2019; 116:24583-24592. [PMID: 31732667 DOI: 10.1073/pnas.1911393116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway, which plays a critical role in regulating cellular growth and metabolism, is aberrantly regulated in the pathogenesis of a variety of neoplasms. Here we demonstrate that dual mTORC1/mTORC2 inhibitors OSI-027 and PP242 cause catastrophic macropinocytosis in rhabdomyosarcoma (RMS) cells and cancers of the skin, breast, lung, and cervix, whereas the effects are much less pronounced in immortalized human keratinocytes. Using RMS as a model, we characterize in detail the mechanism of macropinocytosis induction. Macropinosomes are distinct from endocytic vesicles and autophagosomes in that they are single-membrane bound vacuoles formed by projection, ruffling, and contraction of plasma membranes. They are positive for EEA-1 and LAMP-1 and contain watery fluid but not organelles. The vacuoles then merge and rupture, killing the cells. We confirmed the inhibition of mTORC1/mTORC2 as the underpinning mechanism for macropinocytosis. Exposure to rapamycin, an mTORC1 inhibitor, or mTORC2 knockdown alone had little or reduced effect relative to the combination. We further demonstrate that macropinocytosis depends on MKK4 activated by elevated reactive oxygen species. In a murine xenograft model, OSI-027 reduced RMS tumor growth. Molecular characterization of the residual tumors was consistent with the induction of macropinocytosis. Furthermore, relative to the control xenograft tumors, the residual tumors manifested reduced expression of cell proliferation markers and proteins that drive the epithelial mesenchymal transition. These data indicate a role of mTORC2 in regulating tumor growth by macropinocytosis and suggest that dual inhibitors could help block refractory or recurrent RMS and perhaps other neoplasms and other cancer as well.
Collapse
|
8
|
Sanz Ressel BL, Massone AR, Barbeito CG. Dysregulated expression of the key effectors of the mammalian target of rapamycin signalling pathway in cutaneous papillomas of dogs. Vet Comp Oncol 2019; 17:522-527. [PMID: 31222908 DOI: 10.1111/vco.12516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 01/10/2023]
Abstract
Cutaneous papillomas (CP) are one of the most common skin neoplasms in dogs. Different murine models have shown that persistent activation of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway has a central role in the development and progression of CP. The purpose of this study were to evaluate the immunohistochemical expression pattern of two key molecules involved in the PI3K/Akt/mTOR signalling pathway, pAktSer473 , and pS6Ser235/236 , on 36 canine specimens of CP using a tissue microarray. The results show that the PI3K/Akt/mTOR signalling pathway is persistently activated in CP of dogs, pointing to this pathway as a potential therapeutic target.
Collapse
Affiliation(s)
- Berenice L Sanz Ressel
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), La Plata, Argentina.,FCV, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNLP, La Plata, Argentina
| | - Adriana R Massone
- Laboratorio de Patología Especial Veterinaria Dr. Bernardo Epstein, FCV, UNLP, La Plata, Argentina
| | - Claudio G Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), La Plata, Argentina.,FCV, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNLP, La Plata, Argentina
| |
Collapse
|
9
|
Tan FH, Bai Y, Saintigny P, Darido C. mTOR Signalling in Head and Neck Cancer: Heads Up. Cells 2019; 8:cells8040333. [PMID: 30970654 PMCID: PMC6523933 DOI: 10.3390/cells8040333] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) signalling pathway is a central regulator of metabolism in all cells. It senses intracellular and extracellular signals and nutrient levels, and coordinates the metabolic requirements for cell growth, survival, and proliferation. Genetic alterations that deregulate mTOR signalling lead to metabolic reprogramming, resulting in the development of several cancers including those of the head and neck. Gain-of-function mutations in EGFR, PIK3CA, and HRAS, or loss-of-function in p53 and PTEN are often associated with mTOR hyperactivation, whereas mutations identified from The Cancer Genome Atlas (TCGA) dataset that potentially lead to aberrant mTOR signalling are found in the EIF4G1, PLD1, RAC1, and SZT2 genes. In this review, we discuss how these mutant genes could affect mTOR signalling and highlight their impact on metabolic processes, as well as suggest potential targets for therapeutic intervention, primarily in head and neck cancer.
Collapse
Affiliation(s)
- Fiona H Tan
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
| | - Yuchen Bai
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France.
| | - Charbel Darido
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
10
|
Sanz Ressel B, Massone A, Barbeito C. Immunohistochemical expression of selected phosphoproteins of the mTOR signalling pathway in canine cutaneous squamous cell carcinoma. Vet J 2019; 245:41-48. [DOI: 10.1016/j.tvjl.2018.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 11/15/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
11
|
Smith LA, O'Flanagan CH, Bowers LW, Allott EH, Hursting SD. Translating Mechanism-Based Strategies to Break the Obesity-Cancer Link: A Narrative Review. J Acad Nutr Diet 2018; 118:652-667. [PMID: 29102513 PMCID: PMC5869082 DOI: 10.1016/j.jand.2017.08.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/17/2017] [Indexed: 02/08/2023]
Abstract
Prevalence of obesity, an established risk factor for many cancers, has increased dramatically over the past 50 years in the United States and across the globe. Relative to normoweight cancer patients, obese cancer patients often have poorer prognoses, resistance to chemotherapies, and are more likely to develop distant metastases. Recent progress on elucidating the mechanisms underlying the obesity-cancer connection suggests that obesity exerts pleomorphic effects on pathways related to tumor development and progression and, thus, there are multiple opportunities for primary prevention and treatment of obesity-related cancers. Obesity-associated alterations, including systemic metabolism, adipose inflammation, growth factor signaling, and angiogenesis, are emerging as primary drivers of obesity-associated cancer development and progression. These obesity-associated host factors interact with the intrinsic molecular characteristics of cancer cells, facilitating several of the hallmarks of cancer. Each is considered in the context of potential preventive and therapeutic strategies to reduce the burden of obesity-related cancers. In addition, this review focuses on emerging mechanisms behind the obesity-cancer link, as well as relevant dietary interventions, including calorie restriction, intermittent fasting, low-fat diet, and ketogenic diet, that are being implemented in preclinical and clinical trials, with the ultimate goal of reducing incidence and progression of obesity-related cancers.
Collapse
|
12
|
Lee JH, Lee JH, Lee SH, Do SI, Cho SD, Forslund O, Inn KS, Lee JS, Deng FM, Melamed J, Jung JU, Jeong JH. TPL2 Is an Oncogenic Driver in Keratocanthoma and Squamous Cell Carcinoma. Cancer Res 2016; 76:6712-6722. [DOI: 10.1158/0008-5472.can-15-3274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/09/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
|
13
|
O'Flanagan CH, Bowers LW, Hursting SD. A weighty problem: metabolic perturbations and the obesity-cancer link. Horm Mol Biol Clin Investig 2016; 23:47-57. [PMID: 26167982 DOI: 10.1515/hmbci-2015-0022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/05/2015] [Indexed: 01/03/2023]
Abstract
Obesity is an established risk factor for several cancers, including breast, colon, endometrial, ovarian, gastric, pancreatic and liver, and is increasingly a public health concern. Obese cancer patients often have poorer prognoses, reduced response to standard treatments, and are more likely to develop metastatic disease than normo-weight individuals. Many of the pathologic features of obesity promote tumor growth, such as metabolic perturbations, hormonal and growth factor imbalances, and chronic inflammation. Although obesity exacerbates tumor development, the interconnected relationship between the two conditions presents opportunities for new treatment approaches, some of which may be more successful in obese cohorts. Here, we discuss the many ways in which excess adiposity can impact cancer development and progression and address potential preventive and therapeutic strategies to reduce the burden of obesity-related cancers.
Collapse
|
14
|
Leontieva OV, Blagosklonny MV. Tumor promoter-induced cellular senescence: cell cycle arrest followed by geroconversion. Oncotarget 2015; 5:12715-27. [PMID: 25587030 PMCID: PMC4350340 DOI: 10.18632/oncotarget.3011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 12/26/2014] [Indexed: 02/07/2023] Open
Abstract
Phorbol ester (PMA or TPA), a tumor promoter, can cause either proliferation or cell cycle arrest, depending on cellular context. For example, in SKBr3 breast cancer cells, PMA hyper-activates the MEK/MAPK pathway, thus inducing p21 and cell cycle arrest. Here we showed that PMA-induced arrest was followed by conversion to cellular senescence (geroconversion). Geroconversion was associated with active mTOR and S6 kinase (S6K). Rapamycin suppressed geroconversion, maintaining quiescence instead. In this model, PMA induced arrest (step one of a senescence program), whereas constitutively active mTOR drove geroconversion (step two). Without affecting Akt phosphorylation, PMA increased phosphorylation of S6K (T389) and S6 (S240/244), and that was completely prevented by rapamycin. Yet, T421/S424 and S235/236 (p-S6K and p-S6, respectively) phosphorylation became rapamycin-insensitive in the presence of PMA. Either MEK or mTOR was sufficient to phosphorylate these PMA-induced rapamycin-resistant sites because co-treatment with U0126 and rapamycin was required to abrogate them. We next tested whether activation of rapamycin-insensitive pathways would shift quiescence towards senescence. In HT-p21 cells, cell cycle arrest was caused by IPTG-inducible p21 and was spontaneously followed by mTOR-dependent geroconversion. Rapamycin suppressed geroconversion, whereas PMA partially counteracted the effect of rapamycin, revealing the involvement of rapamycin-insensitive gerogenic pathways. In normal RPE cells arrested by serum withdrawal, the mTOR/pS6 pathway was inhibited and cells remained quiescent. PMA transiently activated mTOR, enabling partial geroconversion. We conclude that PMA can initiate a senescent program by either inducing arrest or fostering geroconversion or both. Rapamycin can decrease gero-conversion by PMA, without preventing PMA-induced arrest. The tumor promoter PMA is a gero-promoter, which may be useful to study aging in mammals.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
15
|
Maenhout SK, Du Four S, Corthals J, Neyns B, Thielemans K, Aerts JL. AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells. Oncotarget 2015; 5:6801-15. [PMID: 25149535 PMCID: PMC4196164 DOI: 10.18632/oncotarget.2254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses.
Collapse
Affiliation(s)
- Sarah K Maenhout
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stephanie Du Four
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium. Department of Medical Oncology, Universiteit Ziekenhuis Brussel, Brussels, Belgium
| | - Jurgen Corthals
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Neyns
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium. Department of Medical Oncology, Universiteit Ziekenhuis Brussel, Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joeri L Aerts
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
16
|
Saha A, Blando J, Tremmel L, DiGiovanni J. Effect of Metformin, Rapamycin, and Their Combination on Growth and Progression of Prostate Tumors in HiMyc Mice. Cancer Prev Res (Phila) 2015; 8:597-606. [PMID: 25908508 DOI: 10.1158/1940-6207.capr-15-0014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/06/2015] [Indexed: 11/16/2022]
Abstract
In this study, we compared the effect of oral administration of metformin (MET) and rapamycin (RAPA) alone or in combination on prostate cancer development and progression in HiMyc mice. MET (250 mg/kg body weight in the drinking water), RAPA (2.24 mg/kg body weight microencapsulated in the diet), and the combination inhibited progression of prostatic intraepithelial neoplasia lesions to adenocarcinomas in the ventral prostate (VP). RAPA and the combination were more effective than MET at the doses used. Inhibition of prostate cancer progression in HiMyc mice by RAPA was associated with a significant reduction in mTORC1 signaling that was further potentiated by the combination of MET and RAPA. In contrast, treatment with MET alone enhanced AMPK activation, but had little or no effect on mTORC1 signaling pathways in the VP of HiMyc mice. Further analyses revealed a significant effect of all treatments on prostate tissue inflammation as assessed by analysis of the expression of cytokines, the presence of inflammatory cells and NFκB signaling. MET at the dose used appeared to reduce prostate cancer progression primarily by reducing tissue inflammation whereas RAPA and the combination appeared to inhibit prostate cancer progression in this mouse model via the combined effects on both mTORC1 signaling as well as on tissue inflammation. Overall, these data support the hypothesis that blocking mTORC1 signaling and/or tissue inflammation can effectively inhibit prostate cancer progression in a relevant mouse model of human prostate cancer. Furthermore, combinatorial approaches that target both pathways may be highly effective for prevention of prostate cancer progression in men.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Jorge Blando
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas. Immunopathology Laboratory Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa Tremmel
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas. Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
17
|
Miao G, Liu B, Guo X, Zhang X, Liu GJ. Reduction behavior induced by HL010183, a metformin derivative against the growth of cutaneous squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:287-297. [PMID: 25755715 PMCID: PMC4348908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Metformin is a biguanide widely prescribed as a first-line antidiabetic drug in type 2 diabetes mellitus patients. Animal and cellular studies support that metformin has a strong anti-proliferative effect on various cancers. Herein, we report that metformin derivative, HL010183 significantly inhibited human epidermoid A431 tumor xenograft growth in nu/nu mice, which in turn is associated with a significant reduction in proliferative biomarkers PCNA and cyclins D1/B1. Enhanced apoptotic cell death and an increase in Bax: Bcl2 ratio supported the tumor growth reduction. The mechanism of the drug effects appears to be dependent on the inhibition of nuclear factor kappa B (NFkB) and mTOR signaling pathways. Reduced enhancement of NFkB transcriptional target proteins, iNOS/COX-2 together with decreased phosphorylation of NFkB inhibitory protein IKBa were also observed. Further, AKT signaling activation was evaluated by the reduced phosphorylation at Ser473. In addition, a concomitant decrease in mTOR signaling pathway was also estimated from the reduced phosphorylation at mTOR regulatory proteins p70S6K and 4E-BP-1. Along with this, decreased phosphorylation of GSK3b, which is carried out by AKT kinases was also observed. Overall results suggested that HL010183 interrupt SCC growth via NFkB and mTOR signaling pathways.
Collapse
Affiliation(s)
- Guoying Miao
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering Handan 056029, China
| | - Baoguo Liu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering Handan 056029, China
| | - Xiaohui Guo
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering Handan 056029, China
| | - Xike Zhang
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering Handan 056029, China
| | - Gui-Jing Liu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering Handan 056029, China
| |
Collapse
|
18
|
Lashinger LM, Ford NA, Hursting SD. Interacting inflammatory and growth factor signals underlie the obesity-cancer link. J Nutr 2014; 144:109-13. [PMID: 24285690 PMCID: PMC3901418 DOI: 10.3945/jn.113.178533] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The prevalence of obesity, an established risk factor for many chronic diseases (including diabetes, cardiovascular disease, stroke, and several types of cancer), has risen steadily for the past several decades in the United States and many parts of the world. Today, ∼70% of U.S. adults and 30% of children are at an unhealthy weight. The evidence on key biologic mechanisms underlying the obesity-cancer link, with an emphasis on local and systemic inflammatory processes and their crosstalk with energy-sensing growth factor signaling pathways, will be discussed. Understanding the influence and underlying mechanisms of obesity on chronic inflammation and cancer will identify promising mechanistic targets and strategies for disrupting the obesity-cancer link and provide important lessons regarding the associations between obesity, inflammation, and other chronic diseases.
Collapse
Affiliation(s)
- Laura M. Lashinger
- Department of Nutritional Sciences, University of Texas, Austin, TX; and
| | - Nikki A. Ford
- Department of Nutritional Sciences, University of Texas, Austin, TX; and
| | - Stephen D. Hursting
- Department of Nutritional Sciences, University of Texas, Austin, TX; and,Department of Molecular Carcinogenesis, University of Texas–MD Anderson Cancer Center, Smithville, TX,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
So PL, Wang GY, Wang K, Chuang M, Chiueh VC, Kenny PA, Epstein EH. PI3K-AKT signaling is a downstream effector of retinoid prevention of murine basal cell carcinogenesis. Cancer Prev Res (Phila) 2014; 7:407-17. [PMID: 24449057 DOI: 10.1158/1940-6207.capr-13-0304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Basal cell carcinoma (BCC) is the most common human cancer. We have demonstrated previously that topical application of the retinoid prodrug tazarotene profoundly inhibits murine BCC carcinogenesis via retinoic acid receptor γ-mediated regulation of tumor cell transcription. Because topical retinoids can cause adverse cutaneous effects and because tumors can develop resistance to retinoids, we have investigated mechanisms downstream of tazarotene's antitumor effect in this model. Specifically we have used (i) global expression profiling to identify and (ii) functional cell-based assays to validate the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway as a downstream target pathway of tazarotene's action. Crucially, we have demonstrated that pharmacologic inhibition of this downstream pathway profoundly reduces murine BCC cell proliferation and tumorigenesis both in vitro and in vivo. These data identify PI3K/AKT/mTOR signaling as a highly attractive target for BCC chemoprevention and indicate more generally that this pathway may be, in some contexts, an important mediator of retinoid anticancer effects.
Collapse
Affiliation(s)
- Po-Lin So
- Jr., Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609. ; and Po-Lin So,
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease.
Collapse
|
21
|
Blagosklonny MV. Immunosuppressants in cancer prevention and therapy. Oncoimmunology 2013; 2:e26961. [PMID: 24575379 PMCID: PMC3926869 DOI: 10.4161/onci.26961] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 10/25/2013] [Accepted: 10/25/2013] [Indexed: 12/13/2022] Open
Abstract
Rapalogs such as rapamycin (sirolimus), everolimus, temserolimus, and deforolimus are indicated for the treatment of some malignancies. Rapamycin is the most effective cancer-preventive agent currently known, at least in mice, dramatically delaying carcinogenesis in both normal and cancer-prone murine strains. In addition, rapamycin and everolimus decrease the risk of cancer in patients receiving these drugs in the context of immunosuppressive regimens. In general, the main concern about the use of immunosuppressants in humans is an increased risk of cancer. Given that rapalogs are useful in cancer prevention and therapy, should they be viewed as immunosuppressants or immunostimulators? Or should we reconsider the role of immunity in cancer altogether? In addition to its anti-viral, anti-inflammatory, anti-angiogenic and anti-proliferative effects, rapamycin operates as a gerosuppressant, meaning that it inhibits the cellular conversion to a senescent state (the so-called geroconversion), a fundamental process involved in aging and age-related pathologies including cancer.
Collapse
|
22
|
Chaudhary SC, Kurundkar D, Elmets CA, Kopelovich L, Athar M. Metformin, an antidiabetic agent reduces growth of cutaneous squamous cell carcinoma by targeting mTOR signaling pathway. Photochem Photobiol 2012; 88:1149-56. [PMID: 22540890 PMCID: PMC3476735 DOI: 10.1111/j.1751-1097.2012.01165.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biguanide metformin is widely used for the treatment of Type-II diabetes. Its antiproliferative and pro-apoptotic effects in various tumor cells suggest its potential candidacy for cancer chemoprevention. Herein, we report that metformin significantly inhibited human epidermoid A431 tumor xenograft growth in nu/nu mice, which was associated with a significant reduction in proliferative biomarkers PCNA and cyclins D1/B1. This tumor growth reduction was accompanied by the enhanced apoptotic cell death and an increase in Bax:Bcl2 ratio. The mechanism by which metformin manifests antitumor effects appears to be dependent on the inhibition of nuclear factor kappa B (NFkB) and mTOR signaling pathways. Decreased phosphorylation of NFkB inhibitory protein IKBα together with reduced enhancement of NFkB transcriptional target proteins, iNOS/COX-2 were observed. In addition, a decrease in the activation of ERK/p38-driven MAP kinase signaling was seen. Similarly, AKT signaling activation as assessed by the diminished phosphorylation at Ser473 with a concomitant decrease in mTOR signaling pathway was also noted as phosphorylation of mTOR regulatory proteins p70S6K and 4E-BP-1 was significantly reduced. Consistently, decreased phosphorylation of GSK3β, which is carried out by AKT kinases was also observed. These results suggest that metformin blocks SCC growth by dampening NFkB and mTOR signaling pathways.
Collapse
Affiliation(s)
- Sandeep C. Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, 1530 3 Avenue South, VH 509, Birmingham, AL 35294-0019
| | - Deepali Kurundkar
- Department of Dermatology, University of Alabama at Birmingham, 1530 3 Avenue South, VH 509, Birmingham, AL 35294-0019
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, 1530 3 Avenue South, VH 509, Birmingham, AL 35294-0019
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd, Suite 2114, Bethesda, MD 20892
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, 1530 3 Avenue South, VH 509, Birmingham, AL 35294-0019
| |
Collapse
|
23
|
Lu X, Xiao L, Wang L, Ruden DM. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem Pharmacol 2012; 83:995-1004. [PMID: 22120678 PMCID: PMC3299878 DOI: 10.1016/j.bcp.2011.11.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 12/11/2022]
Abstract
Hsp90 is a chaperone protein that interacts with client proteins that are known to be in the cell cycle, signaling and chromatin-remodeling pathways. Hsp90 inhibitors act additively or synergistically with many other drugs in the treatment of both solid tumors and leukemias in murine tumor models and humans. Hsp90 inhibitors potentiate the actions of anti-cancer drugs that target Hsp90 client proteins, including trastuzumab (Herceptin™) which targets Her2/Erb2B, as Hsp90 inhibition elicits the drug effects in cancer cell lines that are otherwise resistant to the drug. A phase II study of the Hsp90 inhibitor 17-AAG and trastuzumab showed that this combination therapy has anticancer activity in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. In this review, we discuss the results of Hsp90 inhibitors in combination with trastuzumab and other cancer drugs. We also discuss recent results from yeast focused on the genetics of drug resistance when Hsp90 is inhibited and the implications that this might have in understanding the effects of genetic variation in treating cancer in humans.
Collapse
Affiliation(s)
- Xiangyi Lu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
| | - Li Xiao
- University of Alabama at Birmingham, Department of Immunology and Rheumatology, Birmingham, AL 35294
| | - Luan Wang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Douglas M. Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
24
|
Chen HC, Fong TH, Hsu PW, Chiu WT. Multifaceted effects of rapamycin on functional recovery after spinal cord injury in rats through autophagy promotion, anti-inflammation, and neuroprotection. J Surg Res 2012; 179:e203-10. [PMID: 22482761 DOI: 10.1016/j.jss.2012.02.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Spinal cord injuries (SCIs) are serious and debilitating health problems that lead to severe and permanent neurological deficits resulting from the primary mechanical impact followed by secondary tissue injury. During the acute stage after an SCI, the expression of autophagy and inflammatory responses contribute to the development of secondary injury. In the present study, we examined the multifaceted effects of rapamycin on outcomes of rats after an SCI. MATERIALS AND METHODS We used 72 female Sprague-Dawley rats for this study. In the SCI group, we performed a laminectomy at T10, followed by impact-contusion of the spinal cord. In the control group, we performed only a laminectomy without contusion. We evaluated the effects of rapamycin using the Basso, Beattie, and Bresnahan scale for functional outcomes, Western blot analyses for analyzing LC3-II, tumor necrosis factor expression, and p70S6K phosphorylation, and an immunostaining technique for localization and enumeration of microglial and neuronal cells. RESULTS Basso, Beattie, and Bresnahan scores after injury significantly improved in the rapamycin-treated group compared with the vehicle group (on Day 28 after the SCI; P < .05). The Western blot analysis demonstrated that rapamycin enhanced LC3-II expression and decreased p70S6K phosphorylation compared with the vehicle (P < .01), which implies promotion of autophagy through mammalian target of rapamycin inhibition. Furthermore, rapamycin treatment significantly attenuated tumor necrosis factor production and microglial expression (P < .05). Immunohistochemistry of NeuN (antibodies specific to neurons) showed remarkable neuronal cell preservation in the rapamycin-treated group compared with the vehicle-treated group (P < .05), which suggests a neuroprotective effect of rapamycin. CONCLUSIONS Rapamycin is a novel neuroprotectant with multifaceted effects on the rat spinal cord after injury. Use of such a clinically established drug could facilitate early clinical trials in selected cases of human SCIs.
Collapse
Affiliation(s)
- Hsien-Chih Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital at Keelung, Taiwan
| | | | | | | |
Collapse
|