1
|
Jiang T, Dong Y, Zhu W, Wu T, Chen L, Cao Y, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. Underlying mechanisms and molecular targets of genistein in the management of type 2 diabetes mellitus and related complications. Crit Rev Food Sci Nutr 2024; 64:11543-11555. [PMID: 37497995 DOI: 10.1080/10408398.2023.2240886] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease caused by a complex interaction of genetic and environmental factors and is characterized by persistent hyperglycemia. Long-term hyperglycemia can cause macrovascular and microvascular damage, and compromise the heart, brain, kidney, peripheral nerves, eyes and other organs, leading to serious complications. Genistein, a phytoestrogen derived from soybean, is known for its various biological activities and therapeutic properties. Recent studies found that genistein not only has hypoglycemic activity but can also decrease insulin resistance. In addition, genistein has particular activity in the prevention and treatment of diabetic complications, such as nephropathy, cardiovascular disease, osteoarthrosis, encephalopathy and retinopathy. Therefore, the purpose of this review is to summarize the latest medical research and progress of genistein in DM and related complications and highlights its potential molecular mechanisms and therapeutic targets. Meanwhile, evidence is provided for the development and application of genistein as a potential drug or functional food in the prevention and treatment of diabetes and its related complications.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Yuhe Dong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yuantong Cao
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
2
|
Lv D, Liu Y, Tang R, Fu S, Kong S, Liao Q, Li H, Lin L. Analysis of Clinical Trials Using Anti-Tumor Traditional Chinese Medicine Monomers. Drug Des Devel Ther 2024; 18:1997-2020. [PMID: 38855536 PMCID: PMC11162644 DOI: 10.2147/dddt.s454774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
The potential anti-cancer effect of traditional Chinese medicine (TCM) monomers has been widely studied due to their advantages of well-defined structure, clear therapeutic effects, and easy quality control during the manufacturing process. However, clinical trial information on these monomers is scarce, resulting in a lack of knowledge regarding the research progress, efficacy, and adverse reactions at the clinical stage. Therefore, this study systematically reviewed the clinical trials on the anti-cancer effect of TCM monomers registered in the Clinicaltrials.gov website before 2023.4.30, paying special attention to the trials on tumors, aiming to explore the research results and development prospects in this field. A total of 1982 trials were started using 69 of the 131 TCM monomers. The number of clinical trials performed each year showed an overall upward trend. However, only 26 monomers entered into 519 interventional anti-tumor trials, with vinblastine (194, 37.38%) and camptothecin (146, 28.13%) being the most used. A total of 45 tumors were studied in these 519 trials, with lymphoma (112, 21.58%) being the most frequently studied. Clinical trials are also unevenly distributed across locations and sponsors/collaborators. The location and the sponsor/collaborator with the highest number of performed trials were the United States (651,32.85%) and NIH (77). Therefore, China and its institutions still have large room for progress in promoting TCM monomers in anti-tumor clinical trials. In the next step, priority should be given to the improvement of the research and development ability of domestic enterprises, universities and other institutions, using modern scientific and technological means to solve the problems of poor water solubility and strong toxic and side effects of monomers, so as to promote the clinical research of TCM monomers.
Collapse
Affiliation(s)
- Dan Lv
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Sai Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Shasha Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Jiangxi, 330006, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| |
Collapse
|
3
|
Shete V, Mahajan NM, Shivhare R, Akkewar A, Gupta A, Gurav S. Genistein: A promising phytoconstituent with reference to its bioactivities. Phytother Res 2024. [PMID: 38831683 DOI: 10.1002/ptr.8256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
Genistein, a potent phytoconstituent, has garnered significant attention for its diverse bioactivities, making it a subject of extensive research and exploration. This review delves into the multifaceted properties of genistein, encompassing its antioxidant and anticancer potential. Its ability to modulate various cellular pathways and interact with diverse molecular targets has positioned it as a promising candidate in the prevention and treatment of various diseases. This review provides a comprehensive examination of Genistein, covering its chemical properties, methods of isolation, synthesis, therapeutic attributes with regard to cancer management, and the proposed mechanisms of action as put forth by researchers.
Collapse
Affiliation(s)
- Vaishnavi Shete
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Wardha, Maharashtra, India
| | - Nilesh M Mahajan
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Ruchi Shivhare
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Ashish Akkewar
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Amisha Gupta
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa, India
| |
Collapse
|
4
|
Choudhury SD, Kumar P, Choudhury D. Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3585-3616. [PMID: 38019298 DOI: 10.1007/s00210-023-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
G-quadruplexes (G4) are non-canonical, four-stranded, nucleic acid secondary structures formed in the guanine-rich sequences, where guanine nucleotides associate with each other via Hoogsteen hydrogen bonding. These structures are widely found near the functional regions of the mammalian genome, such as telomeres, oncogenic promoters, and replication origins, and play crucial regulatory roles in replication and transcription. Destabilization of G4 by various carcinogenic agents allows oncogene overexpression and extension of telomeric ends resulting in dysregulation of cellular growth-promoting oncogenesis. Therefore, targeting and stabilizing these G4 structures with potential ligands could aid cancer prevention and therapy. The field of G-quadruplex targeting is relatively nascent, although many articles have demonstrated the effect of G4 stabilization on oncogenic expressions; however, no previous study has provided a comprehensive analysis about the potency of a wide variety of nutraceuticals and some of their derivatives in targeting G4 and the lattice of oncogenic cell signaling cascade affected by them. In this review, we have discussed bioactive G4-stabilizing nutraceuticals, their sources, mode of action, and their influence on cellular signaling, and we believe our insight would bring new light to the current status of the field and motivate researchers to explore this relatively poorly studied arena.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
5
|
Konstantinou EK, Gioxari A, Dimitriou M, Panoutsopoulos GI, Panagiotopoulos AA. Molecular Pathways of Genistein Activity in Breast Cancer Cells. Int J Mol Sci 2024; 25:5556. [PMID: 38791595 PMCID: PMC11122029 DOI: 10.3390/ijms25105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The most common malignancy in women is breast cancer. During the development of cancer, oncogenic transcription factors facilitate the overproduction of inflammatory cytokines and cell adhesion molecules. Antiapoptotic proteins are markedly upregulated in cancer cells, which promotes tumor development, metastasis, and cell survival. Promising findings have been found in studies on the cell cycle-mediated apoptosis pathway for medication development and treatment. Dietary phytoconstituents have been studied in great detail for their potential to prevent cancer by triggering the body's defense mechanisms. The underlying mechanisms of action may be clarified by considering the role of polyphenols in important cancer signaling pathways. Phenolic acids, flavonoids, tannins, coumarins, lignans, lignins, naphthoquinones, anthraquinones, xanthones, and stilbenes are examples of natural chemicals that are being studied for potential anticancer drugs. These substances are also vital for signaling pathways. This review focuses on innovations in the study of polyphenol genistein's effects on breast cancer cells and presents integrated chemical biology methods to harness mechanisms of action for important therapeutic advances.
Collapse
Affiliation(s)
| | | | | | | | - Athanasios A. Panagiotopoulos
- Department of Nutritional Science and Dietetics, School of Health Sciences, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.K.K.); (A.G.); (M.D.); (G.I.P.)
| |
Collapse
|
6
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
7
|
Kaufman-Szymczyk A, Jalmuzna J, Lubecka-Gajewska K. Soy-derived isoflavones as chemo-preventive agents targeting multiple signalling pathways for cancer prevention and therapy. Br J Pharmacol 2024. [PMID: 38528688 DOI: 10.1111/bph.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 03/27/2024] Open
Abstract
The chemopreventive and chemotherapeutic properties of soy and soy-derived compounds, especially isoflavones, have been extensively studied in recent years. However, in contrast to their anticancer effects, such as cell growth inhibition, cell cycle arrest and apoptosis induction, isoflavones have also been found to promote the growth of cancer cells. Therefore, the aim of this comprehensive review article is to present the current state of knowledge regarding the molecular mechanisms by which soy-derived isoflavones target multiple cellular signalling pathways in cancer cells. Our findings indicate that soy-derived isoflavones act as, among other things, potent modulators of HOX transcript antisense RNA (HOTAIR)/SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1), vascular endothelial growth factor (VEGF)/C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor type 4 (CXCR4), 17-β-oestradiol (E2)/oestrogen receptor-α (ERα)/neuroglobin (NGB) and sonic hedgehog signalling pathways, epigenetic modulatory agents (i.a. miR-155, miR-34a and miR-10a-5p) and cancer stem cells and epithelial-to-mesenchymal transition inhibitors. The paper also discusses the latest epidemiological studies and clinical trials and provides an insight into recent extensive research on the chemo-preventive and therapeutic potential of soy-derived isoflavones.
Collapse
Affiliation(s)
- Agnieszka Kaufman-Szymczyk
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Łódź, Łódź, Poland
| | - Justyna Jalmuzna
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Łódź, Łódź, Poland
| | - Katarzyna Lubecka-Gajewska
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
8
|
Singh S. Review on Natural Agents as Aromatase Inhibitors: Management of Breast Cancer. Comb Chem High Throughput Screen 2024; 27:2623-2638. [PMID: 37861041 DOI: 10.2174/0113862073269599231009115338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is a prevalent type of cancer that is typically hormone-dependent, caused by estrogen. Aromatase inhibitors are frequently utilised in the treatment of hormonereceptor- positive breast cancer because they prevent the enzyme aromatase from converting androgens to estrogens. Natural medicines with aromatase inhibitory characteristics have attracted interest as potential alternatives or complementary therapy to manufactured medications. This review discusses the function of natural agents as aromatase inhibitors in treating breast cancer. A variety of natural compounds have been investigated for their capacity to inhibit aromatase activity and lower estrogen levels. These agents include resveratrol from red wine and grapes, curcumin from turmeric extract and green teahigh in catechins, and other flavonoids such as genistein, luteolin and quercetin. It has been demonstrated that by decreasing estrogen synthesis, they can slow the growth of breast cancer cells that are dependent on estrogen. However, the clinical evidence supporting their efficacy and safety in breast cancer treatment is inadequate. More research is required to investigate the therapeutic potential of natural medicines, such as aromatase inhibitors, in treating breast cancer. The clinical trials are required to assess their efficacy, appropriate doses, and potential interactions with other therapies. In conclusion, natural aromatase inhibitory drugs are promising adjuncts in the treatment of hormone receptor-positive breast cancer. Their clinical value and safety profile, however, require additional investigation.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P: 281406, India
| |
Collapse
|
9
|
Farhan M, Rizvi A, Aatif M, Ahmad A. Current Understanding of Flavonoids in Cancer Therapy and Prevention. Metabolites 2023; 13:metabo13040481. [PMID: 37110140 PMCID: PMC10142845 DOI: 10.3390/metabo13040481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is a major cause of death worldwide, with multiple pathophysiological manifestations. In particular, genetic abnormalities, inflammation, bad eating habits, radiation exposure, work stress, and toxin consumption have been linked to cancer disease development and progression. Recently, natural bioactive chemicals known as polyphenols found in plants were shown to have anticancer capabilities, destroying altered or malignant cells without harming normal cells. Flavonoids have demonstrated antioxidant, antiviral, anticancer, and anti-inflammatory effects. Flavonoid type, bioavailability, and possible method of action determine these biological actions. These low-cost pharmaceutical components have significant biological activities and are beneficial for several chronic disorders, including cancer. Recent research has focused primarily on isolating, synthesizing, and studying the effects of flavonoids on human health. Here we have attempted to summarize our current knowledge of flavonoids, focusing on their mode of action to better understand their effects on cancer.
Collapse
|
10
|
Mishra A, Pathak Y, Mishra SK, Prakash H, Tripathi V. Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. Eur J Pharmacol 2022; 938:175412. [PMID: 36427534 DOI: 10.1016/j.ejphar.2022.175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cancer stem cells (CSCs) are indispensable for development, progression, drug resistance, and tumor metastasis. Current cancer-directed interventions target targeting rapidly dividing cancer cells and slow dividing CSCs, which are the root cause of cancer origin and recurrence. The most promising targets include several self-renewal pathways involved in the maintenance and renewal of CSCs, such as the Wnt/β-Catenin, Sonic Hedgehog, Notch, Hippo, Autophagy, and Ferroptosis. In view of safety, natural compounds are coming to the front line of treatment modalities for modifying various signaling pathways simultaneously involved in maintaining CSCs. Therefore, targeting CSCs with natural compounds is a promising approach to treating various types of cancers. In view of this, here we provide a comprehensive update on the current status of natural compounds that effectively tune key self-renewal pathways of CSCs. In addition, we highlighted surface expression markers in several types of cancer. We also emphasize how natural compounds target these self-renewal pathways to reduce therapy resistance and cancer recurrence properties of CSCs, hence providing valuable cancer therapeutic strategies. The inclusion of nutraceuticals is believed to enhance the therapeutic efficacy of current cancer-directed interventions significantly.
Collapse
Affiliation(s)
- Amaresh Mishra
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Yamini Pathak
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | | | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Uttar Pradesh, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
11
|
Bakrim S, El Omari N, El Hachlafi N, Bakri Y, Lee LH, Bouyahya A. Dietary Phenolic Compounds as Anticancer Natural Drugs: Recent Update on Molecular Mechanisms and Clinical Trials. Foods 2022; 11:foods11213323. [PMID: 36359936 PMCID: PMC9657352 DOI: 10.3390/foods11213323] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Given the stochastic complexity of cancer diseases, the development of chemotherapeutic drugs is almost limited by problems of selectivity and side effects. Furthermore, an increasing number of protective approaches have been recently considered as the main way to limit these pathologies. Natural bioactive compounds, and particularly dietary phenolic compounds, showed major protective and therapeutic effects against different types of human cancers. Indeed, phenolic substances have functional groups that allow them to exert several anti-cancer mechanisms, such as the induction of apoptosis, autophagy, cell cycle arrest at different stages, and the inhibition of telomerase. In addition, in vivo studies show that these phenolic compounds also have anti-angiogenic effects via the inhibition of invasion and angiogenesis. Moreover, clinical studies have already highlighted certain phenolic compounds producing clinical effects alone, or in combination with drugs used in chemotherapy. In the present work, we present a major advance in research concerning the mechanisms of action of the different phenolic compounds that are contained in food medicinal plants, as well as evidence from the clinical trials that focus on them.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology, and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Fes 30000, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
- Correspondence: (L.-H.L.); (A.B.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (L.-H.L.); (A.B.)
| |
Collapse
|
12
|
Freudenburg E, Bagheri I, Srinivas S, Martinez A, Putluri N, Klaassen Z, Kamat AM, Konety BR, Kim WY, Dyrskjøt L, McConkey DJ, Freedland SJ, Black PC, Daneshmand S, Catto JWF, Williams SB. Race reporting and disparities regarding clinical trials in bladder cancer: a systematic review. Cancer Causes Control 2022; 33:1071-1081. [PMID: 35699798 DOI: 10.1007/s10552-022-01593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/21/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To systematically review the literature to investigate racial disparities among bladder cancer clinical trial enrollees. METHODS A systematic review was conducted using Ovid, MEDLINE® to identify clinical trials between 1970 and 2020. Articles were reviewed and were included if they assessed race in their outcomes reporting among bladder cancer patients enrolled in clinical trials. The review was conducted in accordance with the PRISMA statement. RESULTS We identified 544 clinical trials meeting our initial search criteria, with only 24 (4.4%) studies reporting racial demographic data. Enrollees were largely Caucasian (81-98%), with a strikingly small proportion of enrolled patients consisting of African-Americans (2-8%) and Hispanics (2-5%). Only one of the studies reported results on the efficacy and safety/tolerability of the tested treatment separately for racial groups and performed analyses stratified by race. CONCLUSION Race is poorly studied in bladder cancer clinical trials. Trial cohorts may not reflect multicultural populations. The potential association between race and efficacy, safety or tolerability of the tested interventions is unknown. Given the up to twofold increase in bladder cancer-specific death among African-Americans, further research is needed to address the impact of race in clinical trials, while encompassing socioeconomic factors and disease risk factor exposures.
Collapse
Affiliation(s)
- Elliott Freudenburg
- Department of Surgery, Division of Urology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Iyla Bagheri
- Department of Surgery, Division of Urology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Sunay Srinivas
- Department of Surgery, Division of Urology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Ariza Martinez
- Department of Surgery, Division of Urology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Zachary Klaassen
- Department of Surgery, Section of Urology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Badrinath R Konety
- Virginia Piper Cancer Center and Piper Breast Centers, Allina Health Cancer Institute, Minneapolis, MN, USA
| | - William Y Kim
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Siamak Daneshmand
- Department of Urology, USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - James W F Catto
- Academic Urology Unit, University of Sheffield, Sheffield, UK
| | - Stephen B Williams
- Department of Surgery, Division of Urology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
13
|
Muhammad N, Usmani D, Tarique M, Naz H, Ashraf M, Raliya R, Tabrez S, Zughaibi TA, Alsaieedi A, Hakeem IJ, Suhail M. The Role of Natural Products and Their Multitargeted Approach to Treat Solid Cancer. Cells 2022; 11:cells11142209. [PMID: 35883653 PMCID: PMC9318484 DOI: 10.3390/cells11142209] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Natural products play a critical role in the discovery and development of numerous drugs for the treatment of various types of cancer. These phytochemicals have demonstrated anti-carcinogenic properties by interfering with the initiation, development, and progression of cancer through altering various mechanisms such as cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. Treating multifactorial diseases, such as cancer with agents targeting a single target, might lead to limited success and, in many cases, unsatisfactory outcomes. Various epidemiological studies have shown that the steady consumption of fruits and vegetables is intensely associated with a reduced risk of cancer. Since ancient period, plants, herbs, and other natural products have been used as healing agents. Likewise, most of the medicinal ingredients accessible today are originated from the natural resources. Regardless of achievements, developing bioactive compounds and drugs from natural products has remained challenging, in part because of the problem associated with large-scale sequestration and mechanistic understanding. With significant progress in the landscape of cancer therapy and the rising use of cutting-edge technologies, we may have come to a crossroads to review approaches to identify the potential natural products and investigate their therapeutic efficacy. In the present review, we summarize the recent developments in natural products-based cancer research and its application in generating novel systemic strategies with a focus on underlying molecular mechanisms in solid cancer.
Collapse
Affiliation(s)
- Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, Saint Louis, MO 63130, USA;
| | | | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO 65211, USA;
| | - Huma Naz
- Department of Internal Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Mohammad Ashraf
- Department of Chemistry, Bundelkhand University Jhansi, Jhansi 284128, Uttar Pradesh, India;
| | - Ramesh Raliya
- IFFCO Nano Biotechnology Research Center, Kalol 382423, Gujarat, India;
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Israa J. Hakeem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence:
| |
Collapse
|
14
|
Mas-Bargues C, Borrás C, Viña J. The multimodal action of genistein in Alzheimer's and other age-related diseases. Free Radic Biol Med 2022; 183:127-137. [PMID: 35346775 DOI: 10.1016/j.freeradbiomed.2022.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Genistein is a phytoestrogen that, due to its structural similarity with estrogen, can both mimic and antagonize estrogen effects. Early analysis proved that at high concentrations, genistein inhibits breast cancer cell proliferation, thereby suggesting an anticancer activity. Since then, many discoveries have identified the genistein mechanism of action, including cell cycle arrest, apoptosis induction, as well as angiogenesis, and metastasis inhibition. In this review, we aim to discuss the multimodal action of genistein as an antioxidant, anti-inflammatory, anti-amyloid β, and autophagy promoter, which could be responsible for the genistein beneficial effect on Alzheimer's. Furthermore, we pinpoint the main signal transduction pathways that are known to be modulated by genistein. Genistein has thus several beneficial effects in several diseases, many of them associated with age, such as the above mentioned Alzheimer disease. Indeed, the beneficial effects of genistein for health promotion depend on each multimodality. In the context of geroscience, genistein has promising beneficial effects due to its multimodal action to treat age associated-diseases.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain
| |
Collapse
|
15
|
Issa NT, Wathieu H, Glasgow E, Peran I, Parasido E, Li T, Simbulan-Rosenthal CM, Rosenthal D, Medvedev AV, Makarov SS, Albanese C, Byers SW, Dakshanamurthy S. A novel chemo-phenotypic method identifies mixtures of salpn, vitamin D3, and pesticides involved in the development of colorectal and pancreatic cancer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113330. [PMID: 35189517 PMCID: PMC10202418 DOI: 10.1016/j.ecoenv.2022.113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 05/24/2023]
Abstract
Environmental chemical (EC) exposures and our interactions with them has significantly increased in the recent decades. Toxicity associated biological characterization of these chemicals is challenging and inefficient, even with available high-throughput technologies. In this report, we describe a novel computational method for characterizing toxicity, associated biological perturbations and disease outcome, called the Chemo-Phenotypic Based Toxicity Measurement (CPTM). CPTM is used to quantify the EC "toxicity score" (Zts), which serves as a holistic metric of potential toxicity and disease outcome. CPTM quantitative toxicity is the measure of chemical features, biological phenotypic effects, and toxicokinetic properties of the ECs. For proof-of-concept, we subject ECs obtained from the Environmental Protection Agency's (EPA) database to the CPTM. We validated the CPTM toxicity predictions by correlating 'Zts' scores with known toxicity effects. We also confirmed the CPTM predictions with in-vitro, and in-vivo experiments. In in-vitro and zebrafish models, we showed that, mixtures of the motor oil and food additive 'Salpn' with endogenous nuclear receptor ligands such as Vitamin D3, dysregulated the nuclear receptors and key transcription pathways involved in Colorectal Cancer. Further, in a human patient derived cell organoid model, we found that a mixture of the widely used pesticides 'Tetramethrin' and 'Fenpropathrin' significantly impacts the population of patient derived pancreatic cancer cells and 3D organoid models to support rapid PDAC disease progression. The CPTM method is, to our knowledge, the first comprehensive toxico-physicochemical, and phenotypic bionetwork-based platform for efficient high-throughput screening of environmental chemical toxicity, mechanisms of action, and connection to disease outcomes.
Collapse
Affiliation(s)
- Naiem T Issa
- Department of Oncology, and Molecular and Experimental Therapeutic Research in Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Henri Wathieu
- Department of Oncology, and Molecular and Experimental Therapeutic Research in Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Eric Glasgow
- Department of Oncology, and Molecular and Experimental Therapeutic Research in Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ivana Peran
- Department of Oncology, and Molecular and Experimental Therapeutic Research in Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Erika Parasido
- Department of Oncology, and Molecular and Experimental Therapeutic Research in Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC 20057, USA
| | | | - Dean Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | - Christopher Albanese
- Department of Oncology, and Molecular and Experimental Therapeutic Research in Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Stephen W Byers
- Department of Oncology, and Molecular and Experimental Therapeutic Research in Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC 20057, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, and Molecular and Experimental Therapeutic Research in Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
16
|
Antiangiogenic Phytochemicals Constituent of Diet as Promising Candidates for Chemoprevention of Cancer. Antioxidants (Basel) 2022; 11:antiox11020302. [PMID: 35204185 PMCID: PMC8868078 DOI: 10.3390/antiox11020302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the extensive knowledge on cancer nature acquired over the last years, the high incidence of this disease evidences a need for new approaches that complement the clinical intervention of tumors. Interestingly, many types of cancer are closely related to dietary habits associated with the Western lifestyle, such as low fruit and vegetable intake. Recent advances around the old-conceived term of chemoprevention highlight the important role of phytochemicals as good candidates for the prevention or treatment of cancer. The potential to inhibit angiogenesis exhibited by many natural compounds constituent of plant foods makes them especially interesting for their use as chemopreventive agents. Here, we review the antitumoral potential, with a focus on the antiangiogenic effects, of phenolic and polyphenolic compounds, such as quercetin or myricetin; terpenoids, such as ursolic acid or kahweol; and anthraquinones from Aloe vera, in different in vitro and in vivo assays, and the available clinical data. Although clinical trials have failed to assess the preventive role of many of these compounds, encouraging preclinical data support the efficacy of phytochemicals constituent of diet in the prevention and treatment of cancer, but a deeper understanding of their mechanisms of action and better designed clinical trials are urgently needed.
Collapse
|
17
|
Bhat SS, Prasad SK, Shivamallu C, Prasad KS, Syed A, Reddy P, Cull CA, Amachawadi RG. Genistein: A Potent Anti-Breast Cancer Agent. Curr Issues Mol Biol 2021; 43:1502-1517. [PMID: 34698063 PMCID: PMC8929066 DOI: 10.3390/cimb43030106] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Genistein is an isoflavonoid present in high quantities in soybeans. Possessing a wide range of bioactives, it is being studied extensively for its tumoricidal effects. Investigations into mechanisms of the anti-cancer activity have revealed many pathways including induction of cell proliferation, suppression of tyrosine kinases, regulation of Hedgehog-Gli1 signaling, modulation of epigenetic activities, seizing of cell cycle and Akt and MEK signaling pathways, among others via which the cancer cell proliferation can be controlled. Notwithstanding, the observed activities have been time- and dose-dependent. In addition, genistein has also shown varying results in women depending on the physiological parameters, such as the early or post-menopausal states.
Collapse
Affiliation(s)
- Smitha S. Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (S.S.B.); (S.K.P.); (C.S.)
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (S.S.B.); (S.K.P.); (C.S.)
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (S.S.B.); (S.K.P.); (C.S.)
| | - Kollur Shiva Prasad
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570026, Karnataka, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru 560107, Karnataka, India;
| | | | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
18
|
Yu L, Rios E, Castro L, Liu J, Yan Y, Dixon D. Genistein: Dual Role in Women's Health. Nutrients 2021; 13:3048. [PMID: 34578926 PMCID: PMC8472782 DOI: 10.3390/nu13093048] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Advanced research in recent years has revealed the important role of nutrients in the protection of women's health and in the prevention of women's diseases. Genistein is a phytoestrogen that belongs to a class of compounds known as isoflavones, which structurally resemble endogenous estrogen. Genistein is most often consumed by humans via soybeans or soya products and is, as an auxiliary medicinal, used to treat women's diseases. In this review, we focused on analyzing the geographic distribution of soybean and soya product consumption, global serum concentrations of genistein, and its metabolism and bioactivity. We also explored genistein's dual effects in women's health through gathering, evaluating, and summarizing evidence from current in vivo and in vitro studies, clinical observations, and epidemiological surveys. The dose-dependent effects of genistein, especially when considering its metabolites and factors that vary by individuals, indicate that consumption of genistein may contribute to beneficial effects in women's health and disease prevention and treatment. However, consumption and exposure levels are nuanced because adverse effects have been observed at lower concentrations in in vitro models. Therefore, this points to the duplicity of genistein as a possible therapeutic agent in some instances and as an endocrine disruptor in others.
Collapse
Affiliation(s)
| | | | | | | | | | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch (MTB), Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, Durham, NC 27709, USA; (L.Y.); (E.R.); (L.C.); (J.L.); (Y.Y.)
| |
Collapse
|
19
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Sadia H, Qadri QR, Raza S, Irshad A, Akbar A, Reiner Ž, Al-Harrasi A, Al-Rawahi A, Satmbekova D, Butnariu M, Bagiu IC, Bagiu RV, Sharifi-Rad J. Genistein as a regulator of signaling pathways and microRNAs in different types of cancers. Cancer Cell Int 2021; 21:388. [PMID: 34289845 PMCID: PMC8296701 DOI: 10.1186/s12935-021-02091-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are complex diseases orchestrated by a plethora of extrinsic and intrinsic factors. Research spanning over several decades has provided better understanding of complex molecular interactions responsible for the multifaceted nature of cancer. Recent advances in the field of next generation sequencing and functional genomics have brought us closer towards unravelling the complexities of tumor microenvironment (tumor heterogeneity) and deregulated signaling cascades responsible for proliferation and survival of tumor cells. Phytochemicals have begun to emerge as potent beneficial substances aimed to target deregulated signaling pathways. Isoflavonoid genistein is an essential phytochemical involved in regulation of key biological processes including those in different types of cancer. Emerging preclinical evidence have shown its anti-cancer, anti-inflammatory and anti-oxidant properties. Testing of this substance is in various phases of clinical trials. Comprehensive preclinical and clinical trials data is providing insight on genistein as a modulator of various signaling pathways both at transcription and translation levels. In this review we have explained the mechanistic regulation of several key cellular pathways by genistein. We have also addressed in detail various microRNAs regulated by genistein in different types of cancer. Moreover, application of nano-formulations to increase the efficiency of genistein is also discussed. Understanding the pleiotropic potential of genistein to regulate key cellular pathways and development of efficient drug delivery system will bring us a step towards designing better chemotherapeutics.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office of Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.,Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Sajid Naeem
- School of Life Sciences, Lanzhuo University, Lanzhou, 730000, People's Republic of China
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan.
| | - Haleema Sadia
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Qamar Raza Qadri
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Shahid Raza
- Office of Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa, 616, Oman
| | - Dinara Satmbekova
- High School of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" From Timisoara, Timisoara, Romania.
| | - Iulia Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timisoara, Romania.,Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timisoara, Romania.,Preventive Medicine Study Center, Timisoara, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3268136. [PMID: 34336089 PMCID: PMC8315847 DOI: 10.1155/2021/3268136] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein" from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-, Pakistan
| | | | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-, 25120 KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Oxana Mihailovna Zhilina
- Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma 07122, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
21
|
Ponte LGS, Pavan ICB, Mancini MCS, da Silva LGS, Morelli AP, Severino MB, Bezerra RMN, Simabuco FM. The Hallmarks of Flavonoids in Cancer. Molecules 2021; 26:2029. [PMID: 33918290 PMCID: PMC8038160 DOI: 10.3390/molecules26072029] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids represent an important group of bioactive compounds derived from plant-based foods and beverages with known biological activity in cells. From the modulation of inflammation to the inhibition of cell proliferation, flavonoids have been described as important therapeutic adjuvants against several diseases, including diabetes, arteriosclerosis, neurological disorders, and cancer. Cancer is a complex and multifactor disease that has been studied for years however, its prevention is still one of the best known and efficient factors impacting the epidemiology of the disease. In the molecular and cellular context, some of the mechanisms underlying the oncogenesis and the progression of the disease are understood, known as the hallmarks of cancer. In this text, we review important molecular signaling pathways, including inflammation, immunity, redox metabolism, cell growth, autophagy, apoptosis, and cell cycle, and analyze the known mechanisms of action of flavonoids in cancer. The current literature provides enough evidence supporting that flavonoids may be important adjuvants in cancer therapy, highlighting the importance of healthy and balanced diets to prevent the onset and progression of the disease.
Collapse
Affiliation(s)
- Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
- Laboratory of Signal Mechanisms (LMS), School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, São Paulo 13083-871, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| |
Collapse
|
22
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
23
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
24
|
Silva H. The Vascular Effects of Isolated Isoflavones-A Focus on the Determinants of Blood Pressure Regulation. BIOLOGY 2021; 10:49. [PMID: 33445531 PMCID: PMC7827317 DOI: 10.3390/biology10010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/27/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Isoflavones are phytoestrogen compounds with important biological activities, including improvement of cardiovascular health. This activity is most evident in populations with a high isoflavone dietary intake, essentially from soybean-based products. The major isoflavones known to display the most important cardiovascular effects are genistein, daidzein, glycitein, formononetin, and biochanin A, although the closely related metabolite equol is also relevant. Most clinical studies have been focused on the impact of dietary intake or supplementation with mixtures of compounds, with only a few addressing the effect of isolated compounds. This paper reviews the main actions of isolated isoflavones on the vasculature, with particular focus given to their effect on the determinants of blood pressure regulation. Isoflavones exert vasorelaxation due to a multitude of pathways in different vascular beds. They can act in the endothelium to potentiate the release of NO and endothelium-derived hyperpolarization factors. In the vascular smooth muscle, isoflavones modulate calcium and potassium channels, leading to hyperpolarization and relaxation. Some of these effects are influenced by the binding of isoflavones to estrogen receptors and to the inhibition of specific kinase enzymes. The vasorelaxation effects of isoflavones are mostly obtained with plasma concentrations in the micromolar range, which are only attained through supplementation. This paper highlights isolated isoflavones as potentially suitable alternatives to soy-based foodstuffs and supplements and which could enlarge the current therapeutic arsenal. Nonetheless, more studies are needed to better establish their safety profile and elect the most useful applications.
Collapse
Affiliation(s)
- Henrique Silva
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| |
Collapse
|
25
|
Grafakou ME, Barda C, Tomou EM, Skaltsa H. The genus Genista L.: A rich source of bioactive flavonoids. PHYTOCHEMISTRY 2021; 181:112574. [PMID: 33152578 DOI: 10.1016/j.phytochem.2020.112574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The genus Genista L. (family Fabaceae, subfamily Papilionoideae), with its cosmopolitan distribution, has attracted the human interest since ancient times, as it is used in folk medicine and mainly in the Mediterranean area for the treatment of respiratory diseases, rheumatic disorders, diabetes and ulcer, while it is also well known for its yellow pigment. The chemical composition of the Genista species revealed the presence of more than 108 flavonoids. Isoflavones, belonging to the group of phytoestrogens, are important secondary metabolites of the genus. The extracts of the Genista species may act as important source of bioactive phytochemicals for the treatment of many human ailments, mainly inflammation and pain, estrogen related pathology, hyperglycaemia, cancer and microbial infections. Therefore, the present review summarizes and discusses the flavonoid derivatives from the genus Genista, together with their structural features and pharmacological properties, aiming to highlight the recent advances in current knowledge on Genista species as a source of bioactive flavonoids.
Collapse
Affiliation(s)
- Maria-Eleni Grafakou
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Christina Barda
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Ekaterina-Michaela Tomou
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Helen Skaltsa
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
26
|
Chestnut C, Subramaniam D, Dandawate P, Padhye S, Taylor J, Weir S, Anant S. Targeting Major Signaling Pathways of Bladder Cancer with Phytochemicals: A Review. Nutr Cancer 2020; 73:2249-2271. [DOI: 10.1080/01635581.2020.1856895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Connor Chestnut
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Subhash Padhye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Interdisciplinary Science and Technology Research Academy, University of Pune, Pune, India
| | - John Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Scott Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
27
|
Arruda HS, Neri-Numa IA, Kido LA, Maróstica Júnior MR, Pastore GM. Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Marmitt DJ, Bitencourt S, Silva GRD, Rempel C, Goettert MI. RENISUS Plants and Their Potential Antitumor Effects in Clinical Trials and Registered Patents. Nutr Cancer 2020; 73:1821-1848. [PMID: 32835511 DOI: 10.1080/01635581.2020.1810290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
Cancer is a significant cause of morbidity and mortality. Scientific advances, coupled with potential flaws in current treatments, are driving research into the discovery of new bioactive molecules. This systematic review focused on scientific studies with clinical trials and patents registered on the National Relation of Medicinal Plants of Interest to the Unified Health System (RENISUS) plants (or derivative compounds) with antitumor potential. Studies with 19 different forms of cancer were found, the prostate being the organ with the highest research incidence and the species Glycine max, Curcuma longa, and Zingiber officinale, beside the phytochemicals curcumin and soy isoflavone were the most tested in clinical trials/patents.
Collapse
Affiliation(s)
- Diorge Jônatas Marmitt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Shanna Bitencourt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Gustavo Rodrigo da Silva
- Centro de Ciências Biológicas e da Saúde, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Claudete Rempel
- Programa de Pós-graduação em Ambiente e Desenvolvimento/Programa de Pós-graduação em Sistemas Ambientais Sustentáveis, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Márcia Inês Goettert
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| |
Collapse
|
29
|
O'Donovan SM, Eby H, Henkel ND, Creeden J, Imami A, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT, Reigle J, Thorman A, Shamsaei B, Meller J, McCullumsmith RE. Identification of new drug treatments to combat COVID19: A signature-based approach using iLINCS. RESEARCH SQUARE 2020:rs.3.rs-25643. [PMID: 32702077 PMCID: PMC7336712 DOI: 10.21203/rs.3.rs-25643/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. As no vaccine or drugs are currently approved to specifically treat COVID-19, identification of effective therapeutics is crucial to treat the afflicted and limit disease spread. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an "omics" repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and signatures of coronavirus-infected cell lines to identify therapeutics with concordant signatures and discordant signatures, respectively. Our findings include three FDA approved drugs that have established antiviral activity, including protein kinase inhibitors, providing a promising new category of candidates for COVID-19 interventions.
Collapse
|
30
|
Sauter ER. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev Clin Pharmacol 2020; 13:265-285. [PMID: 32154753 DOI: 10.1080/17512433.2020.1738218] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Naturally occurring compounds play an essential role in the prevention and treatment of various cancers. There are more than 100 plant and animal based natural compounds currently in clinical use.Areas covered: 1) The importance of natural products combinations in the prevention and treatment of cancer, 2) the need to maximize efficacy while minimizing side effects when using natural product combinations, and 3) specifics related to plant and animal derived natural products, as well as agents derived from natural products. Therapies using natural compounds that have been investigated, their rationale, mechanism of action and findings are reviewed. When the data warrant it, combined interventions that appear to increase efficacy (compared with monotherapy) while minimizing toxicity have been highlighted. Pubmed was used to search for relevant publications.Expert opinion: Combination therapy with natural compounds has the potential to be more effective than single agent therapy. Similar to pharmacologic agents, the goal is to maximize efficacy while mimimizing potential side effects. There is an increasing research focus on the development of agents derived from natural products, with notable successes already achieved from the effort.
Collapse
Affiliation(s)
- Edward R Sauter
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
31
|
Shriwas P, Chen X, Kinghorn AD, Ren Y. Plant-derived glucose transport inhibitors with potential antitumor activity. Phytother Res 2019; 34:1027-1040. [PMID: 31823431 DOI: 10.1002/ptr.6587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022]
Abstract
Glucose, a key nutrient utilized by human cells to provide cellular energy and a carbon source for biomass synthesis, is internalized in cells via glucose transporters that regulate glucose homeostasis throughout the human body. Glucose transporters have been used as important targets for the discovery of new drugs to treat cancer, diabetes, and heart disease, owing to their abnormal expression during these disease conditions. Thus far, several glucose transport inhibitors have been used in clinical trials, and increasing numbers of natural products have been characterized as potential anticancer agents targeting glucose transport. The present review focuses on natural product glucose transport inhibitors of plant origin, including alkaloids, flavonoids and other phenolic compounds, and isoprenoids, with their potential antitumor properties also discussed.
Collapse
Affiliation(s)
- Pratik Shriwas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Department of Biological Sciences, Ohio University, Athens, Ohio.,Edison Biotechnology Institute, Ohio University, Athens, Ohio.,Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, Ohio.,Edison Biotechnology Institute, Ohio University, Athens, Ohio.,Molecular and Cellular Biology Program, Ohio University, Athens, Ohio.,Department of Biomedical Sciences, Ohio University, Athens, Ohio
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
32
|
Tuli HS, Tuorkey MJ, Thakral F, Sak K, Kumar M, Sharma AK, Sharma U, Jain A, Aggarwal V, Bishayee A. Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Front Pharmacol 2019; 10:1336. [PMID: 31866857 PMCID: PMC6910185 DOI: 10.3389/fphar.2019.01336] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Genistein is one among the several other known isoflavones that is found in different soybeans and soy products. The chemical name of genistein is 4′,5,7-trihydroxyisoflavone. Genistein has drawn attention of scientific community because of its potential beneficial effects on human grave diseases, such as cancer. Mechanistic insight of genistein reveals its potential for apoptotic induction, cell cycle arrest, as well as antiangiogenic, antimetastatic, and anti-inflammatory effects. Objective: The purpose of this review is to unravel and analyze various molecular mechanisms of genistein in diverse cancer models. Data sources: English language literature was searched using various databases, such as PubMed, ScienceDirect, EBOSCOhost, Scopus, Web of Science, and Cochrane Library. Key words used in various combinations included genistein, cancer, anticancer, molecular mechanisms prevention, treatment, in vivo, in vitro, and clinical studies. Study selection: Study selection was carried out strictly in accordance with the statement of Preferred Reporting Items for Systematic Reviews and Meta-analyses. Data extraction: Four authors independently carried out the extraction of articles. Data synthesis: One hundred one papers were found suitable for use in this review. Conclusion: This review covers various molecular interactions of genistein with various cellular targets in cancer models. It will help the scientific community understand genistein and cancer biology and will provoke them to design novel therapeutic strategies.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Muobarak Jaber Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Uttam Sharma
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
33
|
Carpenter RL, Ray H. Safety and Tolerability of Sonic Hedgehog Pathway Inhibitors in Cancer. Drug Saf 2019; 42:263-279. [PMID: 30649745 DOI: 10.1007/s40264-018-0777-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hedgehog pathway, for which sonic hedgehog (Shh) is the most prominent ligand, is highly conserved and is tightly associated with embryonic development in a number of species. This pathway is also tightly associated with the development of several types of cancer, including basal cell carcinoma (BCC) and acute promyelocytic leukemia, among many others. Inactivating mutations in Patched-1 (PTCH1), leading to ligand-independent pathway activation, are frequent in several cancer types, but most prominent in BCC. This has led to the development of several compounds targeting this pathway as a cancer therapeutic. These compounds target the inducers of this pathway in Smoothened (SMO) and the GLI transcription factors, although targeting SMO has had the most success. Despite the many attempts at targeting this pathway, only three US FDA-approved drugs for cancers affect the Shh pathway. Two of these compounds, vismodegib and sonidegib, target SMO to suppress signaling from either PTCH1 or SMO mutations that lead to upregulation of the pathway. The other approved compound is arsenic trioxide, which can suppress this pathway at the level of the GLI proteins, although current evidence suggests it also has other targets. This review focuses on the safety and tolerability of these clinically approved drugs targeting the Shh pathway, along with a discussion on other Shh pathway inhibitors being developed.
Collapse
Affiliation(s)
- Richard L Carpenter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr., Indianapolis, IN, 46202, USA.
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA
| |
Collapse
|
34
|
Liskova A, Kubatka P, Samec M, Zubor P, Mlyncek M, Bielik T, Samuel SM, Zulli A, Kwon TK, Büsselberg D. Dietary Phytochemicals Targeting Cancer Stem Cells. Molecules 2019; 24:molecules24050899. [PMID: 30836718 PMCID: PMC6429493 DOI: 10.3390/molecules24050899] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
There is an increasing awareness of the importance of a diet rich in fruits and vegetables for human health. Cancer stem cells (CSCs) are characterized as a subpopulation of cancer cells with aberrant regulation of self-renewal, proliferation or apoptosis leading to cancer progression, invasiveness, metastasis formation, and therapy resistance. Anticancer effects of phytochemicals are also directed to target CSCs. Here we provide a comprehensive review of dietary phytochemicals targeting CSCs. Moreover, we evaluate and summarize studies dealing with effects of dietary phytochemicals on CSCs of various malignancies in preclinical and clinical research. Dietary phytochemicals have a significant impact on CSCs which may be applied in cancer prevention and treatment. However, anticancer effects of plant derived compounds have not yet been fully investigated in clinical research.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Pavol Zubor
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Milos Mlyncek
- Department of Obstetrics and Gynecology Faculty Hospital Nitra Constantine the Philosopher University, 949 01 Nitra, Slovakia.
| | - Tibor Bielik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha 24144, Qatar.
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia.
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu 426 01, Korea.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha 24144, Qatar.
| |
Collapse
|
35
|
Joseph JV, Brasacchio R, Fung C, Reeder J, Bylund K, Sahasrabudhe D, Yeh SY, Ghazi A, Fultz P, Rubens D, Wu G, Singer E, Schwarz E, Mohile S, Mohler J, Theodorescu D, Lee YF, Okunieff P, McConkey D, Rashid H, Chang C, Fradet Y, Guru K, Kukreja J, Sufrin G, Lotan Y, Bailey H, Noyes K, Schwartz S, Rideout K, Bratslavsky G, Campbell SC, Derweesh I, Abrahamsson PA, Soloway M, Gomella L, Golijanin D, Svatek R, Frye T, Lerner S, Palapattu G, Wilding G, Droller M, Trump D. A Festschrift in Honor of Edward M. Messing, MD, FACS. Bladder Cancer 2018; 4:S1-S43. [PMID: 30443561 PMCID: PMC6226303 DOI: 10.3233/blc-189037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 12/02/2022]
Affiliation(s)
- Jean V. Joseph
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Chunkit Fung
- University of Rochester Medical Center, Rochester, NY, USA
| | - Jay Reeder
- University of Rochester Medical Center, Rochester, NY, USA
| | - Kevin Bylund
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Shu Yuan Yeh
- University of Rochester Medical Center, Rochester, NY, USA
| | - Ahmed Ghazi
- University of Rochester Medical Center, Rochester, NY, USA
| | - Patrick Fultz
- University of Rochester Medical Center, Rochester, NY, USA
| | - Deborah Rubens
- University of Rochester Medical Center, Rochester, NY, USA
| | - Guan Wu
- University of Rochester Medical Center, Rochester, NY, USA
| | - Eric Singer
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Edward Schwarz
- University of Rochester Medical Center, Rochester, NY, USA
| | - Supriya Mohile
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | - Yi Fen Lee
- University of Rochester Medical Center, Rochester, NY, USA
| | - Paul Okunieff
- UF Health Proton Therapy Institute, Gainesville, FL, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, USA
| | - Hani Rashid
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Yves Fradet
- CHU de Quebec-Hotel-Dieu de Quebec, Quebec, QC, Canada
| | | | | | - Gerald Sufrin
- State University of New York at Buffalo, Buffalo, NY, USA
| | - Yair Lotan
- UT Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Howard Bailey
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | - Kathy Rideout
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Steven C. Campbell
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Leonard Gomella
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Robert Svatek
- UT Health Science Center San Antonio, San Antonio, TX, USA
| | - Thomas Frye
- University of Rochester Medical Center, Rochester, NY, USA
| | - Seth Lerner
- Baylor College of Medicine Medical Center, Houston, TX, USA
| | | | | | | | - Donald Trump
- Virginia Commonwealth University, Fairfax, VA, USA
| |
Collapse
|
36
|
Wada K, Tsuji M, Tamura T, Konishi K, Goto Y, Mizuta F, Koda S, Uji T, Hori A, Tanabashi S, Matsushita S, Tokimitsu N, Nagata C. Soy Isoflavone Intake and Bladder Cancer Risk in Japan: From the Takayama Study. Cancer Epidemiol Biomarkers Prev 2018; 27:1371-1375. [PMID: 30131436 DOI: 10.1158/1055-9965.epi-18-0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/23/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022] Open
Abstract
Background: There is growing evidence suggesting that soy isoflavones play a protective role in the development of cancer. However, few epidemiological studies have investigated the association between soy isoflavone intake and bladder cancer.Methods: We evaluated the associations of soy and isoflavone intakes with bladder cancer incidence in a population-based prospective study in Japan. Subjects were 14,233 men and 16,584 women age 35 years or older in September 1992. Soy and isoflavone intakes were assessed via a validated food-frequency questionnaire, while controlling for total energy intake. Cancer incidence was mainly confirmed through regional population-based cancer registries. Bladder cancer was defined as code C67 according to the International Classification of Diseases and Health Related Problems, 10th Revision.Results: During mean follow-up of 13.6 years, 120 men and 41 women had developed bladder cancer. After adjustments for multiple confounders, compared with the lowest quartile of soy food intake, the estimated hazard ratios for the second, third, and highest quartiles of soy food intake were 0.74, 0.52, and 0.55, respectively, in men (P-trend: 0.023). The corresponding values were 0.60, 0.75, and 0.64, respectively, in women (P-trend: 0.43). Similar inverse associations were observed between isoflavone intake and bladder cancer risk.Conclusions: A significant decreased risk of bladder cancer was observed among men who had higher intakes of total soy and isoflavones.Impact: Our finding on the potential benefit of consuming soy foods against bladder cancer is promising and warrants further studies. Cancer Epidemiol Biomarkers Prev; 27(11); 1371-5. ©2018 AACR.
Collapse
Affiliation(s)
- Keiko Wada
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Michiko Tsuji
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Food Science and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Takashi Tamura
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kie Konishi
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuko Goto
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Fumi Mizuta
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Sachi Koda
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahiro Uji
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Shinobu Tanabashi
- Department of Internal Medicine, Takayama Red Cross Hospital, Gifu, Japan
| | | | - Naoki Tokimitsu
- Department of Internal Medicine, Takayama Red Cross Hospital, Gifu, Japan
| | - Chisato Nagata
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
37
|
Nabavi SF, Atanasov AG, Khan H, Barreca D, Trombetta D, Testai L, Sureda A, Tejada S, Vacca RA, Pittalà V, Gulei D, Berindan-Neagoe I, Shirooie S, Nabavi SM. Targeting ubiquitin-proteasome pathway by natural, in particular polyphenols, anticancer agents: Lessons learned from clinical trials. Cancer Lett 2018; 434:101-113. [PMID: 30030139 DOI: 10.1016/j.canlet.2018.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is the main non-lysosomal proteolytic system responsible for degradation of most intracellular proteins, specifically damaged and regulatory proteins. The UPP is implicated in all aspects of the cellular metabolic networks including physiological or pathological conditions. Alterations in the components of the UPP can lead to stabilization of oncoproteins or augmented degradation of tumour suppressor favouring cancer appearance and progression. Polyphenols are natural compounds that can modulate proteasome activity or the expression of proteasome subunits. All together and due to the pleiotropic functions of UPP, there is a great interest in this proteasome system as a promising therapeutic target for the development of novel anti-cancer drugs. In the present review, the main features of the UPP and its implication in cancer development and progression are described, highlighting the importance of bioactive polyphenols that target the UPP as potential anti-cancer agents.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552, Magdalenka, Poland; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Center of Nutrafood, University of Pisa, Pisa, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands, Ctra. Valldemossa, Km 7,5, Ed, Guillem Colom, 07122, Balearic Islands, Spain
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Italian National Council of Research, Bari, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34 Street, 400015, Cluj-Napoca, Romania
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Salehi B, Zucca P, Sharifi-Rad M, Pezzani R, Rajabi S, Setzer WN, Varoni EM, Iriti M, Kobarfard F, Sharifi-Rad J. Phytotherapeutics in cancer invasion and metastasis. Phytother Res 2018; 32:1425-1449. [DOI: 10.1002/ptr.6087] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Paolo Zucca
- Department of Biomedical Sciences; University of Cagliari; Cagliari Italy
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology; Zabol University of Medical Sciences; Zabol 61663-335 Iran
| | - Raffaele Pezzani
- OU Endocrinology, Dept. Medicine (DIMED); University of Padova; via Ospedale 105 Padova 35128 Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base; Padova Italy
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - William N. Setzer
- Department of Chemistry; University of Alabama in Huntsville; Huntsville AL 35899 USA
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences; Milan State University; Milan Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences; Milan State University; Milan Italy
| | - Farzad Kobarfard
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex; The University of Winnipeg; Winnipeg MB Canada
| |
Collapse
|
39
|
Leone A, Diorio G, Sexton W, Schell M, Alexandrow M, Fahey JW, Kumar NB. Sulforaphane for the chemoprevention of bladder cancer: molecular mechanism targeted approach. Oncotarget 2018; 8:35412-35424. [PMID: 28423681 PMCID: PMC5471065 DOI: 10.18632/oncotarget.16015] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
The clinical course for both early and late stage Bladder Cancer (BC) continues to be characterized by significant patient burden due to numerous occurrences and recurrences requiring frequent surveillance strategies, intravesical drug therapies, and even more aggressive treatments in patients with locally advanced or metastatic disease. For these reasons, BC is also the most expensive cancer to treat. Fortunately, BC offers an excellent platform for chemoprevention interventions with potential to optimize the systemic and local exposure of promising agents to the bladder mucosa. However, other than smoking cessation, there is a paucity of research that systematically examines agents for chemoprevention of bladder cancers. Adopting a systematic, molecular-mechanism based approach, the goal of this review is to summarize epidemiological, in vitro, and preclinical studies, including data regarding the safety, bioavailability, and efficacy of agents evaluated for bladder cancer chemoprevention. Based on the available studies, phytochemicals, specifically isothiocyanates such as sulforaphane, present in Brassicaceae or “cruciferous” vegetables in the precursor form of glucoraphanin are: (a) available in standardized formulations; (b) bioavailable- both systemically and in the bladder; (c) observed to be potent inhibitors of BC carcinogenesis through multiple mechanisms; and (d) without toxicities at these doses. Based on available evidence from epidemiological, in vitro, preclinical, and early phase trials, phytochemicals, specifically isothiocyanates (ITCs) such as sulforaphane (SFN) represent a promising potential chemopreventitive agent in bladder cancer.
Collapse
Affiliation(s)
- Andrew Leone
- Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| | - Gregory Diorio
- Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| | - Wade Sexton
- Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| | - Michael Schell
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| | - Mark Alexandrow
- Cancer Biology and Evolution, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| | - Jed W Fahey
- Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nagi B Kumar
- Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| |
Collapse
|
40
|
Natural Products for the Management and Prevention of Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8324696. [PMID: 29681985 PMCID: PMC5846366 DOI: 10.1155/2018/8324696] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Among all types of cancer, breast cancer is one of the most challenging diseases, which is responsible for a large number of cancer related deaths. Hormonal therapy, surgery, chemotherapy, and radiotherapy have been used as treatment of breast cancer, for a very long time. Due to severe side effects and multidrug resistance, these treatment approaches become increasingly ineffective. However, adoption of complementary treatment approach can be a big solution for this situation, as it is evident that compounds derived from natural source have a great deal of anticancer activity. Natural compounds can fight against aggressiveness of breast cancer, inhibit cancerous cell proliferation, and modulate cancer related pathways. A large number of research works are now focusing on the natural and dietary compounds and trying to find out new and more effective treatment strategies for the breast cancer patients. In this review, we discussed some significant natural chemical compounds with their mechanisms of actions, which can be very effective against the breast cancer and can be more potent by their proper modifications and further clinical research. Future research focusing on the natural anti-breast-cancer agents can open a new horizon in breast cancer treatment, which will play a great role in enhancing the survival rate of breast cancer patients.
Collapse
|
41
|
Joshi P, Sonawane VR, Williams IS, McCann GJP, Gatchie L, Sharma R, Satti N, Chaudhuri B, Bharate SB. Identification of karanjin isolated from the Indian beech tree as a potent CYP1 enzyme inhibitor with cellular efficacy via screening of a natural product repository. MEDCHEMCOMM 2018; 9:371-382. [PMID: 30108931 PMCID: PMC6083783 DOI: 10.1039/c7md00388a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
CYP1A1 is thought to mediate carcinogenesis in oral, lung and epithelial cancers. In order to identify a CYP1A1 inhibitor from an edible plant, 394 natural products in the IIIM's natural product repository were screened, at 10 μM concentration, using CYP1A1-Sacchrosomes™ (i.e. microsomal enzyme isolated from recombinant baker's yeast). Twenty-seven natural products were identified that inhibited 40-97% of CYP1A1's 7-ethoxyresorufin-O-deethylase activity. The IC50 values of the 'hits', belonging to different chemical scaffolds, were determined. Their selectivity was studied against a panel of 8 CYP-Sacchrosomes™. In order to assess cellular efficacy, the 'hits' were screened for their capability to inhibit CYP enzymes expressed within live recombinant human embryonic kidney (HEK293) cells from plasmids encoding specific CYP genes (1A2, 1B1, 2C9, 2C19, 2D6, 3A4). Isopimpinellin (IN-475; IC50, 20 nM) and karanjin (IN-195; IC50, 30 nM) showed the most potent inhibition of CYP1A1 in human cells. Isopimpinellin is found in celery, parsnip, fruits and in the rind and pulp of limes whereas different parts of the Indian beech tree, which contain karanjin, have been used in traditional medicine. Both isopimpinellin and karanjin negate the cellular toxicity of CYP1A1-mediated benzo[a]pyrene. Molecular docking and molecular dynamic simulations with CYP isoforms rationalize the observed trends in the potency and selectivity of isopimpinellin and karanjin.
Collapse
Affiliation(s)
- Prashant Joshi
- Medicinal Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India . ; ; Tel: +91 191 2569111
- Academy of Scientific & Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| | - Vinay R Sonawane
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
| | - Ibidapo S Williams
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
- CYP Design Limited, Innovation Centre , 49 Oxford Street , Leicester , LE1 5XY , UK
| | - Glen J P McCann
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
| | - Linda Gatchie
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
- CYP Design Limited, Innovation Centre , 49 Oxford Street , Leicester , LE1 5XY , UK
| | - Rajni Sharma
- Academy of Scientific & Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
- Natural Product Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| | - Naresh Satti
- Natural Product Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
| | - Sandip B Bharate
- Medicinal Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India . ; ; Tel: +91 191 2569111
- Academy of Scientific & Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| |
Collapse
|
42
|
Horley NJ, Beresford KJ, Kaduskar S, Joshi P, McCann GJ, Ruparelia KC, Williams IS, Gatchie L, Sonawane VR, Bharate SB, Chaudhuri B. ( E )-3-(3,4,5-Trimethoxyphenyl)-1-(pyridin-4-yl)prop-2-en-1-one, a heterocyclic chalcone is a potent and selective CYP1A1 inhibitor and cancer chemopreventive agent. Bioorg Med Chem Lett 2017; 27:5409-5414. [DOI: 10.1016/j.bmcl.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/13/2022]
|
43
|
Wang F, Liu L, Cui S, Tian F, Fan Z, Geng C, Cao X, Yang Z, Wang X, Liang H, Wang S, Jiang H, Duan X, Wang H, Li G, Wang Q, Zhang J, Jin F, Tang J, Li L, Zhu S, Zuo W, Ma Z, Zhou F, Yu L, Xiang Y, Li L, Shen S, Yu Z. Distinct Effects of Body Mass Index and Waist/Hip Ratio on Risk of Breast Cancer by Joint Estrogen and Progestogen Receptor Status: Results from a Case-Control Study in Northern and Eastern China and Implications for Chemoprevention. Oncologist 2017; 22:1431-1443. [PMID: 28912152 PMCID: PMC5728030 DOI: 10.1634/theoncologist.2017-0148] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/30/2017] [Indexed: 12/27/2022] Open
Abstract
Obesity is a consideration in the pharmacologic intervention for estrogen receptor‐positive breast cancer risk. This case‐control study among women in Northern and Eastern China was conducted to clarify the possible associations between both general and central obesity and breast cancer risk. Background. Obesity is a consideration in the pharmacologic intervention for estrogen receptor (ER) positive (ER+) breast cancer risk. Body mass index (BMI) and waist/hip ratio (WHR) have demonstrated different effects on breast cancer risk in relation to estrogen receptor (ER) status, but the results have been inconsistent. Furthermore, the situation in Chinese women remains unclear. Materials and Methods. We conducted a case‐control study including 1,439 breast cancer cases in Northern and Eastern China. Both ER and progesterone receptor (PR) statuses were available for 1,316 cases. Associations between body size‐related factors and breast cancer risk defined by receptor status were assessed by multiple polytomous unconditional logistic regression analysis. Results. Body mass index and WHR were positively associated with overall breast cancer risk. Body mass index was positively associated with both ER+/PR positive (PR+) and ER negative (ER−)/PR negative(PR−) subtype risks, although only significantly for ER+/PR+ subtype. Waist–hip ratio was only positively correlated with ER−/PR− subtype risk, although independent of BMI. Body mass index was positively associated with risk of ER+/PR+ and ER−/PR− subtypes in premenopausal women, whereas WHR was inversely correlated with ER+/PR− and positively with ER−/PR− subtype risks. Among postmenopausal women, WHR >0.85 was associated with increased risk of ER−/PR− subtype. Conclusion. Both general and central obesity contribute to breast cancer risk, with different effects on specific subtypes. General obesity, indicated by BMI, is more strongly associated with ER+/PR+ subtype, especially among premenopausal women, whereas central obesity, indicated by WHR, is more specific for ER−/PR− subtype, independent of menopausal status. These results suggest that different chemoprevention strategies may be appropriate in selected individuals. Implications for Practice. The results of this study suggest that general and central obesity may play different roles in different breast cancer subtypes, supporting the hypothesis that obesity affects breast carcinogenesis via complex molecular interconnections, beyond the impact of estrogens. The results also imply that different chemoprevention strategies may be appropriate for selected individuals, highlighting the need to be particularly aware of women with a high waist/hip ratio but normal body mass index. Given the lack of any proven pharmacologic intervention for estrogen receptor negative breast cancer, stricter weight‐control measures may be advised in these individuals.
Collapse
Affiliation(s)
- Fei Wang
- Department of Breast Surgery, the Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Liyuan Liu
- Department of Breast Surgery, the Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Shude Cui
- Department of Breast Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Fuguo Tian
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi Province, People's Republic of China
| | - Zhimin Fan
- Department of Breast Surgery, the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Cuizhi Geng
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Xuchen Cao
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, People's Republic of China
| | - Xiang Wang
- Department of Breast Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hong Liang
- Department of General Surgery, Linyi People's Hospital, Linyi, Shandong Province, People's Republic of China
| | - Shu Wang
- Breast Disease Center, Peking University People's Hospital, Beijing, People's Republic of China
| | - Hongchuan Jiang
- Department of General Surgery, Beijing Chaoyang Hospital, Beijing, People's Republic of China
| | - Xuening Duan
- Breast Disease Center, Peking University First Hospital, Beijing, People's Republic of China
| | - Haibo Wang
- Breast Center, Qingdao University Affiliated Hospital, Qingdao, Shandong Province, People's Republic of China
| | - Guolou Li
- Department of Breast and Thyroid Surgery, Weifang Traditional Chinese Hospital, Weifang, Shandong Province, People's Republic of China
| | - Qitang Wang
- Department of Breast Surgery, the Second Affiliated Hospital of Qingdao Medical College, Qingdao Central Hospital, Qingdao, Shandong Province, People's Republic of China
| | - Jianguo Zhang
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Feng Jin
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Jinhai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu Province, People's Republic of China
| | - Liang Li
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, Zibo, Shandong Province, People's Republic of China
| | - Shiguang Zhu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, People's Republic of China
| | - Wenshu Zuo
- Breast Cancer Center, Shandong Cancer Hospital, Jinan, Shandong Province, People's Republic of China
| | - Zhongbing Ma
- Department of Breast Surgery, the Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Fei Zhou
- Department of Breast Surgery, the Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Lixiang Yu
- Department of Breast Surgery, the Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Yujuan Xiang
- Department of Breast Surgery, the Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Liang Li
- Department of Breast Surgery, the Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Shuohao Shen
- Department of Breast Surgery, the Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Zhigang Yu
- Department of Breast Surgery, the Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
- Suzhou Institute of Shandong University, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
44
|
The expression of keratin 6 is regulated by the activation of the ERK1/2 pathway in arsenite transformed human urothelial cells. Toxicol Appl Pharmacol 2017; 331:41-53. [PMID: 28501331 DOI: 10.1016/j.taap.2017.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 11/22/2022]
Abstract
Urothelial cancers have an environmental etiological component, and previous studies from our laboratory have shown that arsenite (As+3) can cause the malignant transformation of the immortalized urothelial cells (UROtsa), leading to the expression of keratin 6 (KRT6). The expression of KRT6 in the parent UROtsa cells can be induced by the addition of epidermal growth factor (EGF). Tumors formed by these transformed cells have focal areas of squamous differentiation that express KRT6. The goal of this study was to investigate the mechanism involved in the upregulation of KRT6 in urothelial cancers and to validate that the As+3-transformed UROtsa cells are a model of urothelial cancer. The results obtained showed that the parent and the As+3-transformed UROtsa cells express EGFR which is phosphorylated with the addition of epidermal growth factor (EGF) resulting in an increased expression of KRT6. Inhibition of the extracellular-signal regulated kinases (ERK1/2) pathway by the addition of the mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 kinase inhibitor U0126 resulted in a decrease in the phosphorylation of ERK1/2 and a reduced expression of KRT6. Immuno-histochemical analysis of the tumors generated by the As+3-transformed isolates expressed EGFR and tumors formed by two of the transformed isolates expressed the phosphorylated form of EGFR. These results show that the expression of KRT6 is regulated at least in part by the ERK1/2 pathway and that the As+3-transformed human urothelial cells have the potential to serve as a valid model to study urothelial carcinomas.
Collapse
|
45
|
|
46
|
Abstract
Cancer remains one of the leading causes of death around the world. Initially it is recognized as a genetic disease, but now it is known to involve epigenetic abnormalities along with genetic alterations. Epigenetics refers to heritable changes that are not encoded in the DNA sequence itself, but play an important role in the control of gene expression. It includes changes in DNA methylation, histone modifications, and RNA interference. Although it is heritable, environmental factors such as diet could directly influence epigenetic mechanisms in humans. This article will focus on the role of dietary patterns and phytochemicals that have been demonstrated to influence the epigenome and more precisely histone and non-histone proteins modulation by acetylation that helps to induce apoptosis and phosphorylation inhibition, which counteracts with cells proliferation. Recent developments discussed here enhance our understanding of how dietary intervention could be beneficial in preventing or treating cancer and improving health outcomes.
Collapse
Affiliation(s)
- Wissam Zam
- a Department of Analytical and Food Chemistry , Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Al-Quadmous , Tartous , Syrian Arab Republic
| | - Aziz Khadour
- b Department of Microbiology , Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Al-Quadmous , Tartous , Syrian Arab Republic
| |
Collapse
|
47
|
Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, Dowluru KSVGK, Chintala R, Duddukuri GR. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 2016; 40-41:48-81. [PMID: 26853158 DOI: 10.1016/j.semcancer.2016.02.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/23/2016] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A2s (PLA2s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA2s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed.
Collapse
Affiliation(s)
- Nagendra Sastry Yarla
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India; Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bhadrapura Lakkappa Dhananjaya
- Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain Global Campus, Jain University, Kanakapura Taluk, Ramanagara 562 112, Karnataka, India
| | - Kaladhar S V G K Dowluru
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India; Department of Microbiology and Bioinformatics, Bilaspur University, Bilaspur 495 001, Chhattisgarh, India
| | - Ramakrishna Chintala
- Department of Environmental Sciences, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Govinda Rao Duddukuri
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India.
| |
Collapse
|
48
|
Genetic and epigenetic cancer chemoprevention on molecular targets during multistage carcinogenesis. Arch Toxicol 2016; 90:2389-404. [PMID: 27538406 DOI: 10.1007/s00204-016-1813-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
|
49
|
Evaluation of the Isoflavone Genistein as Reversible Human Monoamine Oxidase-A and -B Inhibitor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1423052. [PMID: 27118978 PMCID: PMC4826920 DOI: 10.1155/2016/1423052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 11/29/2022]
Abstract
Monoamine oxidases inhibitors (MAOIs) are effective therapeutic drugs for managing Parkinson's disease (PD) and depression. However, their irreversibility may lead to rare but serious side effects. As finding safer and reversible MAOIs is our target, we characterized the recombinant human (h) MAO-A and MAO-B inhibition potentials of two common natural isoflavones, genistein (GST) and daidzein (DZ) using luminescence assay. The results obtained showed that DZ exhibits partial to no inhibition of the isozymes examined while GST inhibited hMAO-B (IC50 of 6.81 μM), and its hMAO-A inhibition was more potent than the standard deprenyl. Furthermore, the reversibility, mode of inhibition kinetics, and tyramine oxidation of GST were examined. GST was a time-independent reversible and competitive hMAO-A and hMAO-B inhibitor with a lower Ki of hMAO-B (1.45 μM) than hMAO-A (4.31 μM). GST also inhibited hMAO-B tyramine oxidation and hydrogen peroxide production more than hMAO-A. Docking studies conducted indicated that the GST reversibility and hMAO-B selectivity of inhibition may relate to C5-OH effects on its orientation and its interactions with the threonine 201 residue of the active site. It was concluded from this study that the natural product GST has competitive and reversible MAOs inhibitions and may be recommended for further investigations as a useful therapeutic agent for Parkinson's disease.
Collapse
|
50
|
Maru GB, Hudlikar RR, Kumar G, Gandhi K, Mahimkar MB. Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials. World J Biol Chem 2016; 7:88-99. [PMID: 26981198 PMCID: PMC4768127 DOI: 10.4331/wjbc.v7.i1.88] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/04/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
Chemoprevention is one of the cancer prevention approaches wherein natural/synthetic agent(s) are prescribed with the aim to delay or disrupt multiple pathways and processes involved at multiple steps, i.e., initiation, promotion, and progression of cancer. Amongst environmental chemopreventive compounds, diet/beverage-derived components are under evaluation, because of their long history of exposure to humans, high tolerability, low toxicity, and reported biological activities. This compilation briefly covers and compares the available evidence on chemopreventive efficacy and probable mechanism of chemoprevention by selected dietary phytochemicals (capsaicin, curcumin, diallyl sulphide, genistein, green/black tea polyphenols, indoles, lycopene, phenethyl isocyanate, resveratrol, retinoids and tocopherols) in experimental systems and clinical trials. All the dietary phytochemicals covered in this review have demonstrated chemopreventive efficacy against spontaneous or carcinogen-induced experimental tumors and/or associated biomarkers and processes in rodents at several organ sites. The observed anti-initiating, anti-promoting and anti-progression activity of dietary phytochemicals in carcinogen-induced experimental models involve phytochemical-mediated redox changes, modulation of enzymes and signaling kinases resulting to effects on multiple genes and cell signaling pathways. Results from clinical trials using these compounds have not shown them to be chemopreventive. This may be due to our: (1) inability to reproduce the exposure conditions, i.e., levels, complexity, other host and lifestyle factors; and (2) lack of understanding about the mechanisms of action and agent-mediated toxicity in several organs and physiological processes in the host. Current research efforts in addressing the issues of exposure conditions, bioavailability, toxicity and the mode of action of dietary phytochemicals may help address the reason for observed mismatch that may ultimately lead to identification of new chemopreventive agents for protection against broad spectrum of exposures.
Collapse
|