1
|
Hsieh MCW, Wang WT, Yeh JL, Lin CY, Kuo YR, Lee SS, Hou MF, Wu YC. The Potential Application and Promising Role of Targeted Therapy in Pulmonary Arterial Hypertension. Biomedicines 2022; 10:biomedicines10061415. [PMID: 35740436 PMCID: PMC9220101 DOI: 10.3390/biomedicines10061415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare yet serious progressive disorder that is currently incurable. This female-predominant disease unfolds as a pan-vasculopathy that affects all layers of the vessel wall. Five classes of pharmacological agents currently exist to target the three major cellular signaling pathways identified in PAH but are incapable of effectively reversing the disease progression. While several targets have been identified for therapy, none of the current PAH specific therapies are curative and cost-effective as they fail to reverse vascular remodeling and do not address the cancer-like features of PAH. Our purpose is to review the current literature on the therapeutic management of PAH, as well as the molecular targets under consideration for therapy so as to shed light on the potential role and future promise of novel strategies in treating this high-mortality disease. This review study summarizes and discusses the potential therapeutic targets to be employed against PAH. In addition to the three major conventional pathways already used in PAH therapy, targeting PDGF/PDGFR signaling, regulators in glycolytic metabolism, PI3K/AKT pathways, mitochondrial heat shock protein 90 (HSP90), high-mobility group box-1 (HMGB1), and bromodomain and extra-terminal (BET) proteins by using their specific inhibitors, or a pharmacological induction of the p53 expression, could be attractive strategies for treating PAH.
Collapse
Affiliation(s)
- Meng-Chien Willie Hsieh
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Wei-Ting Wang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
| | - Jwu-Lai Yeh
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chuang-Yu Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yur-Ren Kuo
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Shin Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Chia Wu
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 7675)
| |
Collapse
|
2
|
Kochhar A, Kopelovich L, Sue E, Guttenplan JB, Herbert BS, Dannenberg AJ, Subbaramaiah K. Retraction: p53 Modulates Hsp90 ATPase Activity and Regulates Aryl Hydrocarbon Receptor Signaling. Cancer Prev Res (Phila) 2022; 15:408. [PMID: 35652230 DOI: 10.1158/1940-6207.capr-22-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Quaresma MC, Botelho HM, Pankonien I, Rodrigues CS, Pinto MC, Costa PR, Duarte A, Amaral MD. Exploring YAP1-centered networks linking dysfunctional CFTR to epithelial-mesenchymal transition. Life Sci Alliance 2022; 5:5/9/e202101326. [PMID: 35500936 PMCID: PMC9060002 DOI: 10.26508/lsa.202101326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022] Open
Abstract
In this work, a systems biology approach identifies potentially dysregulated EMT signaling in CF (including the Hippo, Wnt, TGF-β, p53, and MYC pathways), integrated by YAP1 and TEAD4. Mutations in the CFTR anion channel cause cystic fibrosis (CF) and have also been related to higher cancer incidence. Previously we proposed that this is linked to an emerging role of functional CFTR in protecting against epithelial–mesenchymal transition (EMT). However, the pathways bridging dysfunctional CFTR to EMT remain elusive. Here, we applied systems biology to address this question. Our data show that YAP1 is aberrantly active in the presence of mutant CFTR, interacting with F508del, but not with wt-CFTR, and that YAP1 knockdown rescues F508del-CFTR processing and function. Subsequent analysis of YAP1 interactors and roles in cells expressing either wt- or F508del-CFTR reveal that YAP1 is an important mediator of the fibrotic/EMT processes in CF. Alongside, five main pathways emerge here as key in linking mutant CFTR to EMT, namely, (1) the Hippo pathway; (2) the Wnt pathway; (3) the TGFβ pathway; (4) the p53 pathway; and (5) MYC signaling. Several potential hub proteins which mediate the crosstalk among these pathways were also identified, appearing as potential therapeutic targets for both CF and cancer.
Collapse
Affiliation(s)
- Margarida C Quaresma
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Hugo M Botelho
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Ines Pankonien
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Cláudia S Rodrigues
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Madalena C Pinto
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Pau R Costa
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Aires Duarte
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Margarida D Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Šimečková P, Marvanová S, Kulich P, Králiková L, Neča J, Procházková J, Machala M. Screening of Cellular Stress Responses Induced by Ambient Aerosol Ultrafine Particle Fraction PM0.5 in A549 Cells. Int J Mol Sci 2019; 20:E6310. [PMID: 31847237 PMCID: PMC6940800 DOI: 10.3390/ijms20246310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Effects of airborne particles on the expression status of markers of cellular toxic stress and on the release of eicosanoids, linked with inflammation and oxidative damage, remain poorly characterized. Therefore, we proposed a set of various methodological approaches in order to address complexity of PM0.5-induced toxicity. For this purpose, we used a well-characterized model of A549 pulmonary epithelial cells exposed to a non-cytotoxic concentration of ambient aerosol particle fraction PM0.5 for 24 h. Electron microscopy confirmed accumulation of PM0.5 within A549 cells, yet, autophagy was not induced. Expression profiles of various cellular stress response genes that have been previously shown to be involved in early stress responses, namely unfolded protein response, DNA damage response, and in aryl hydrocarbon receptor (AhR) and p53 signaling, were analyzed. This analysis revealed induction of GREM1, EGR1, CYP1A1, CDK1A, PUMA, NOXA and GDF15 and suppression of SOX9 in response to PM0.5 exposure. Analysis of eicosanoids showed no oxidative damage and only a weak anti-inflammatory response. In conclusion, this study helps to identify novel gene markers, GREM1, EGR1, GDF15 and SOX9, that may represent a valuable tool for routine testing of PM0.5-induced in vitro toxicity in lung epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miroslav Machala
- Veterinary Research Institute, Department of Chemistry and Toxicology, Hudcova 296/70, 62100 Brno, Czech Republic; (P.Š.); (S.M.); (P.K.); (L.K.); (J.N.); (J.P.)
| |
Collapse
|
5
|
Guttenplan JB, Chen KM, Sun YW, Shalaby NAE, Kosinska W, Desai D, Gowda K, Amin S, El-Bayoumy K. Effects of the Tobacco Carcinogens N'-Nitrosonornicotine and Dibenzo[ a, l]pyrene Individually and in Combination on DNA Damage in Human Oral Leukoplakia and on Mutagenicity and Mutation Profiles in lacI Mouse Tongue. Chem Res Toxicol 2019; 32:1893-1899. [PMID: 31433626 DOI: 10.1021/acs.chemrestox.9b00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In previous studies, we showed that the topical application of dibenzo[a,l]pyrene (DB[a,l]P), also known as dibenzo[def,p]chrysene, to the oral cavity of mice induced oral squamous cell carcinoma. We also showed that dA and dG adducts likely account for most of the mutagenic activity of DB[a,l]P in the oral tissues in vivo. Here we report for the first time that the oral treatment of lacI mice with a combination of tobacco smoke carcinogens, DB[a,l]P and N'-nitrosonornicotine (NNN), induces a higher fraction of mutations than expected from a simple sum of their induced individual mutation fractions, and a change in the mutational profile compared with that expected from the sum of the individual agents. The mutational profile of the combination of agents resembled that of the P53 gene in human head and neck cancers more than that of either of the individual agents, in that the percentage of the major class of mutations (GC > AT transitions) is similar to that seen in the P53 gene. A preliminary study was performed to understand the origin of the unexpected mutagenesis observations by measuring specific DNA adducts produced by both NNN and DB[a,l]P in human oral leukoplakia cells. No significant differences in the expected and observed major adduct levels from either agent were observed between individual or combined treatments, suggesting that additional adducts are important in mutagenesis induced by the mixture. Taken together, the above observations support the use of this animal model not only to investigate tobacco smoke-induced oral cancer but also to study chemoprevention.
Collapse
Affiliation(s)
- Joseph B Guttenplan
- Department of Basic Science, College of Dentistry , New York University , New York , New York 10010 , United States.,Department of Environmental Medicine, School of Medicine , New York University , New York , New York 10019 , United States
| | | | | | - Nora A E Shalaby
- Department of Basic Science, College of Dentistry , New York University , New York , New York 10010 , United States
| | - Wieslawa Kosinska
- Department of Basic Science, College of Dentistry , New York University , New York , New York 10010 , United States
| | | | | | | | | |
Collapse
|
6
|
E-cigarette Aerosol Condensate Enhances Metabolism of Benzo(a)pyrene to Genotoxic Products, and Induces CYP1A1 and CYP1B1, Likely by Activation of the Aryl Hydrocarbon Receptor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142468. [PMID: 31373329 PMCID: PMC6678103 DOI: 10.3390/ijerph16142468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 01/13/2023]
Abstract
E-cigarette aerosol contains lower levels of most known carcinogens than tobacco smoke, but many users of e-cigarettes are also smokers, and these individuals may be vulnerable to possible promoting and/or cocarcinogenic effects of e-cigarettes. We investigated the possibility that a condensate of e-cigarette aerosol (EAC) enhances the metabolism of the tobacco carcinogen, benzo(a)pyrene (BaP), to genotoxic products in a human oral keratinocyte cell line. Cells were pretreated with EAC from two popular e-cigs and then with BaP. Metabolism to its ultimate carcinogenic metabolite, anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro B[a]P (BPDE), was assayed by measuring isomers of its spontaneous hydrolysis products, BaP tetrols. The pretreatment of cells with EAC enhanced the rate of BaP tetrol formation several fold. Pretreatment with the e-liquid resulted in a smaller enhancement. The treatment of cells with EAC induced CYP1A1/1B1 mRNA and protein. The enhancement of BaP tetrol formation was inhibited by the aryl hydrocarbon receptor (AhR) inhibitor, α-napthoflavone, indicating EAC likely induces CYP1A1/1B1 and enhances BaP metabolism by activating the AhR. To our knowledge, this is first report demonstrating that e-cigarettes can potentiate the genotoxic effects of a tobacco smoke carcinogen.
Collapse
|
7
|
Yamaguchi M, Hankinson O. 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin suppresses the growth of human colorectal cancer cells in vitro: Implication of the aryl hydrocarbon receptor signaling. Int J Oncol 2019; 54:1422-1432. [PMID: 30720065 PMCID: PMC6411353 DOI: 10.3892/ijo.2019.4703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Human colorectal cancer is the third most common cancer disease with a 5‑year survival rate of 55% in USA in 2016. The investigation to identify novel biomarker factors with molecular classification may provide notable clinical information to prolong the survival of patients with colorectal cancer. The aryl hydrocarbon receptor (AHR) binds the AHR nuclear translocator in the cytoplasm of various types of cells, including liver cells, and then binds to the xenobiotic responsive element on various genes. AHR was initially discovered via its ligand, the polychlorinated hydrocarbon, 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (TCDD). The present study was undertaken to determine whether TCDD, an agonist of AHR signaling, impacts the growth of RKO human colorectal cancer cells in vitro. Treatment with TCDD (0.1‑100 nM) revealed suppressive effects on colony formation and proliferation of RKO cells, and stimulated death of these cells with subconfluence. These effects of TCDD were abolished by pretreatment with CH223191, an inhibitor of AHR signaling. Western blot analysis demonstrated that TCDD treatment decreased AHR levels and elevated cytochrome P450 family 1 subfamily A member 1 (CYP1A1) levels, indicating a stimulation of AHR signaling. TCDD treatment caused an increase in nuclear factor‑κB p65 and β‑catenin levels, although it did not have an effect on Ras levels. Notably, TCDD treatment increased the levels of p53, retinoblastoma, p21 and regucalcin, which are depressors of carcinogenesis. Additionally, action of TCDD on cell proliferation and death were not revealed in regucalcin‑overexpressing RKO cells, and regucalcin overexpression depressed AHR signaling associated with CYP1A1 expression. Thus, AHR signaling suppresses the growth of colorectal cancer cells, indicating a role as a significant targeting molecule for colorectal cancer.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), 700 Tiverton Avenue, Los Angeles, CA 90095‑1732, USA
| | - Oliver Hankinson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), 700 Tiverton Avenue, Los Angeles, CA 90095‑1732, USA
| |
Collapse
|
8
|
Zhang Z, Liu L, Gomez-Casal R, Wang X, Hayashi R, Appella E, Kopelovich L, DeLeo AB. Targeting cancer stem cells with p53 modulators. Oncotarget 2018; 7:45079-45093. [PMID: 27074569 PMCID: PMC5216707 DOI: 10.18632/oncotarget.8650] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSC) typically over-express aldehyde dehydrogenase (ALDH). Thus, ALDHbright tumor cells represent targets for developing novel cancer prevention/treatment interventions. Loss of p53 function is a common genetic event during cancer development wherein small molecular weight compounds (SMWC) that restore p53 function and reverse tumor growth have been identified. Here, we focused on two widely studied p53 SMWC, CP-31398 and PRIMA-1, to target ALDHbright CSC in human breast, endometrial and pancreas carcinoma cell lines expressing mutant or wild type (WT) p53. CP-31398 and PRIMA-1 significantly reduced CSC content and sphere formation by these cell lines in vitro. In addition, these agents were more effective in vitro against CSC compared to cisplatin and gemcitabine, two often-used chemotherapeutic agents. We also tested a combinatorial treatment in methylcholantrene (MCA)-treated mice consisting of p53 SMWC and p53-based vaccines. Yet using survival end-point analysis, no increased efficacy in the presence of either p53 SMWC alone or with vaccine compared to vaccine alone was observed. These results may be due, in part, to the presence of immune cells, such as activated lymphocytes expressing WT p53 at levels comparable to some tumor cells, wherein further increase of p53 expression by p53 SMWC may alter survival of these immune cells and negatively impact an effective immune response. Continuous exposure of mice to MCA may have also interfered with the action of these p53 SMWC, including potential direct interaction with MCA. Nonetheless, the effect of p53 SMWC on CSC and cancer treatment remains of great interest.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Surgery, Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberto Gomez-Casal
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinhui Wang
- Department of Surgery, Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryo Hayashi
- National Cancer Institute, Bethesda, MD, USA
| | | | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Albert B DeLeo
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Regulation of the Tumor-Suppressor BECLIN 1 by Distinct Ubiquitination Cascades. Int J Mol Sci 2017; 18:ijms18122541. [PMID: 29186924 PMCID: PMC5751144 DOI: 10.3390/ijms18122541] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
Autophagy contributes to cellular homeostasis through the degradation of various intracellular targets such as proteins, organelles and microbes. This relates autophagy to various diseases such as infections, neurodegenerative diseases and cancer. A central component of the autophagy machinery is the class III phosphatidylinositol 3-kinase (PI3K-III) complex, which generates the signaling lipid phosphatidylinositol 3-phosphate (PtdIns3P). The catalytic subunit of this complex is the lipid-kinase VPS34, which associates with the membrane-targeting factor VPS15 as well as the multivalent adaptor protein BECLIN 1. A growing list of regulatory proteins binds to BECLIN 1 and modulates the activity of the PI3K-III complex. Here we discuss the regulation of BECLIN 1 by several different types of ubiquitination, resulting in distinct polyubiquitin chain linkages catalyzed by a set of E3 ligases. This contribution is part of the Special Issue “Ubiquitin System”.
Collapse
|
10
|
Guttenplan JB, Chen KM, Sun YW, Lajara B, Shalaby NAE, Kosinska W, Benitez G, Gowda K, Amin S, Stoner G, El-Bayoumy K. Effects of Black Raspberry Extract and Berry Compounds on Repair of DNA Damage and Mutagenesis Induced by Chemical and Physical Agents in Human Oral Leukoplakia and Rat Oral Fibroblasts. Chem Res Toxicol 2017; 30:2159-2164. [PMID: 29068672 DOI: 10.1021/acs.chemrestox.7b00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Black raspberries (BRB) have been shown to inhibit carcinogenesis in a number of systems, with most studies focusing on progression. Previously we reported that an anthocyanin-enriched black raspberry extract (BE) enhanced repair of dibenzo-[a,l]-pyrene dihydrodiol (DBP-diol)-induced DNA adducts and inhibited DBP-diol and DBP-diolepoxide (DBPDE)-induced mutagenesis in a lacI rat oral fibroblast cell line, suggesting a role for BRB in the inhibition of initiation of carcinogenesis. Here we extend this work to protection by BE against DNA adduct formation induced by dibenzo-[a,l]-pyrene (DBP) in a human oral leukoplakia cell line (MSK) and to a second carcinogen, UV light. Treatment of MSK cells with DBP and DBPDE led to a dose-dependent increase in DBP-DNA adducts. Treatment of MSK cells with BE after addition of DBP reduced levels of adducts relative to cells treated with DBP alone, and treatment of rat oral fibroblasts with BE after addition of DBPDE inhibited mutagenesis. These observations showed that BE affected repair of DNA adducts and not metabolism of DBP. As a proof of principle we also tested aglycones of two anthocyanins commonly found in berries, delphinidin chloride and pelargonidin chloride. Delphinidin chloride reduced DBP-DNA adduct levels in MSK cells, while PGA did not. These results suggested that certain anthocyanins can enhance repair of bulky DNA adducts. As DBP and its metabolites induced formation of bulky DNA adducts, we investigated the effects of BE on genotoxic effects of a second carcinogen that induces bulky DNA damage, UV light. UV irradiation produced a dose-dependent increase in cyclobutanepyrimidine dimer levels in MSK cells, and post-UV treatment with BE resulted in lower cyclobutanepyrimidine dimer levels. Post-UV treatment of the rat lacI cells with BE reduced UV-induced mutagenesis. Taken together, the results demonstrate that BE extract reduces bulky DNA damage and mutagenesis and support a role for BRB in the inhibition of initiation of carcinogenesis.
Collapse
Affiliation(s)
- Joseph B Guttenplan
- Department of Basic Science, New York University College of Dentistry , New York, New York 10010, United States.,Department of Environmental Medicine, New York University School of Medicine , New York, New York 10019, United States
| | | | | | - Braulio Lajara
- Department of Basic Science, New York University College of Dentistry , New York, New York 10010, United States
| | - Nora A E Shalaby
- Department of Basic Science, New York University College of Dentistry , New York, New York 10010, United States
| | - Wieslawa Kosinska
- Department of Basic Science, New York University College of Dentistry , New York, New York 10010, United States
| | | | | | | | - Gary Stoner
- Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | | |
Collapse
|
11
|
Calò M, Licata P, Bitto A, Lo Cascio P, Giarratana F, Altavilla D. Effects of PCB-126 on aryl hydrocarbon receptor, ubiquitin and p53 expression levels in Sparus aurata. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2017:S0940-2993(16)30221-4. [PMID: 28552628 DOI: 10.1016/j.etp.2017.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study is to determine if Ahr ligands as PCB-126, a dioxin-like, might contribute to inhibition of the tumor suppressor p53 by promoting its degradation through proteasome-ubiquitin system (UPS). The findings show, in the presence of PCB-126, a significant increase of p53 immunoreactivity in fish compared to the control. Subsequently, there is a decrease of p53 immunoreactivity at 24h which is maintained even at 72h. At the same time there is a slight decrease of ubiquitin immunoreactivity to 12h compared to the control and a marked decrease to 24 and 72h. The induction of ubiquitin expression is resulted very marked in the control and preserved at 12h. It's very important to underline as in our study we demonstrate a marked decrease of ubiquitin and p53 immunoreactivity at 24h and 72h. AHR activation, by ligands as PCB-126, increases p53 ubiquitation inhibiting its expression, in addition it decreases the free ubiquitin promoting disruption of Ub homeostasis; this is the first report that establishes a relationship between AhR, increases p53 ubiquitation, and reduction of free ubiquitin. Our result emphasize the need to deeply the role of this receptor in UPS regulation as potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- M Calò
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy.
| | - P Licata
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - A Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Torre Biologica, 5th Floor, AOU Policlinico "G. Martino", Via C. Valeria Gazzi, 98125, Messina, Italy
| | - P Lo Cascio
- Department of Biological and Environmental Sciences, University of Messina, Salita Sperone 31, S. Agata, Messina, 98166, Italy
| | - F Giarratana
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - D Altavilla
- Department of Clinical and Experimental Medicine, University of Messina, Torre Biologica, 5th Floor, AOU Policlinico "G. Martino", Via C. Valeria Gazzi, 98125, Messina, Italy
| |
Collapse
|
12
|
Calò M, Bitto A, Lo Cascio P, Giarratana F, Altavilla D, Gervasi T, Campone L, Cicero N, Licata P. PCB-126 effects on aryl hydrocarbon receptor, ubiquitin and p53 expression levels in a fish product (Sparus aurata L.). Nat Prod Res 2017; 32:1136-1144. [DOI: 10.1080/14786419.2017.1320794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Margherita Calò
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Luca Campone
- Department of Pharmacy, University of Salerno, Fisciano SA, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
| | - Patrizia Licata
- Department of Veterinary Science, University of Messina, Messina, Italy
| |
Collapse
|
13
|
Hardonnière K, Huc L, Sergent O, Holme JA, Lagadic-Gossmann D. Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism. Semin Cancer Biol 2017; 43:49-65. [PMID: 28088583 DOI: 10.1016/j.semcancer.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization, around 20% of all cancers would be due to environmental factors. Among these factors, several chemicals are indeed well recognized carcinogens. The widespread contaminant benzo[a]pyrene (B[a]P), an often used model carcinogen of the polycyclic aromatic hydrocarbons' family, has been suggested to target most, if not all, cancer hallmarks described by Hanahan and Weinberg. It is classified as a group I carcinogen by the International Agency for Research on Cancer; however, the precise intracellular mechanisms underlying its carcinogenic properties remain yet to be thoroughly defined. Recently, the pH homeostasis, a well known regulator of carcinogenic processes, was suggested to be a key actor in both cell death and Warburg-like metabolic reprogramming induced upon B[a]P exposure. The present review will highlight those data with the aim of favoring research on the role of H+ dynamics in environmental carcinogenesis.
Collapse
Affiliation(s)
- Kévin Hardonnière
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Laurence Huc
- INRA UMR 1331 ToxAlim (Research Center in Food Toxicology), University of Toulouse ENVT, INP, UPS, 180 Chemin de Tournefeuille, F-31027, France
| | - Odile Sergent
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Jørn A Holme
- Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dominique Lagadic-Gossmann
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France.
| |
Collapse
|
14
|
Subbaramaiah K, Brown KA, Zahid H, Balmus G, Weiss RS, Herbert BS, Dannenberg AJ. Hsp90 and PKM2 Drive the Expression of Aromatase in Li-Fraumeni Syndrome Breast Adipose Stromal Cells. J Biol Chem 2016; 291:16011-23. [PMID: 27467582 PMCID: PMC4965552 DOI: 10.1074/jbc.m115.698902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/23/2016] [Indexed: 11/06/2022] Open
Abstract
Li-Fraumeni syndrome (LFS) patients harbor germ line mutations in the TP53 gene and are at increased risk of hormone receptor-positive breast cancers. Recently, elevated levels of aromatase, the rate-limiting enzyme for estrogen biosynthesis, were found in the breast tissue of LFS patients. Although p53 down-regulates aromatase expression, the underlying mechanisms are incompletely understood. In the present study, we found that LFS stromal cells expressed higher levels of Hsp90 ATPase activity and aromatase compared with wild-type stromal cells. Inhibition of Hsp90 ATPase suppressed aromatase expression. Silencing Aha1 (activator of Hsp90 ATPase 1), a co-chaperone of Hsp90 required for its ATPase activity, led to both inhibition of Hsp90 ATPase activity and reduced aromatase expression. In comparison with wild-type stromal cells, increased levels of the Hsp90 client proteins, HIF-1α, and PKM2 were found in LFS stromal cells. A complex comprised of HIF-1α and PKM2 was recruited to the aromatase promoter II in LFS stromal cells. Silencing either HIF-1α or PKM2 suppressed aromatase expression in LFS stromal cells. CP-31398, a p53 rescue compound, suppressed levels of Aha1, Hsp90 ATPase activity, levels of PKM2 and HIF-1α, and aromatase expression in LFS stromal cells. Consistent with these in vitro findings, levels of Hsp90 ATPase activity, Aha1, HIF-1α, PKM2, and aromatase were increased in the mammary glands of p53 null versus wild-type mice. PKM2 and HIF-1α were shown to co-localize in the nucleus of stromal cells of LFS breast tissue. Taken together, our results show that the Aha1-Hsp90-PKM2/HIF-1α axis mediates the induction of aromatase in LFS.
Collapse
Affiliation(s)
- Kotha Subbaramaiah
- From the Department of Medicine, Weill Cornell Medical College, New York, New York 10065,
| | - Kristy A Brown
- the Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Heba Zahid
- the Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, Monash University, Clayton, Victoria 3800, Australia, the Faculty of Applied Medical Science, Taibah University, Medina, Saudi Arabia
| | - Gabriel Balmus
- the Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, and
| | - Robert S Weiss
- the Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, and
| | - Brittney-Shea Herbert
- the Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Andrew J Dannenberg
- From the Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
15
|
Guttenplan JB, Chen KM, Sun YW, Kosinska W, Zhou Y, Kim SA, Sung Y, Gowda K, Amin S, Stoner GD, El-Bayoumy K. Effects of Black Raspberry Extract and Protocatechuic Acid on Carcinogen-DNA Adducts and Mutagenesis, and Oxidative Stress in Rat and Human Oral Cells. Cancer Prev Res (Phila) 2016; 9:704-12. [PMID: 27267891 DOI: 10.1158/1940-6207.capr-16-0003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022]
Abstract
Effects of black raspberry (BRB) extract and protocatechuic acid (PCA) on DNA adduct formation and mutagenesis induced by metabolites of dibenzo[a,l]pyrene (DBP) were investigated in rat oral fibroblasts. The DBP metabolites, (±)-anti-11,12-dihydroxy-11,12,-dihydrodibenzo[a,l]pyrene (DBP-diol) and 11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) induced dose-dependent DNA adducts and mutations. DBPDE was considerably more potent, whereas the parent compound had no significant effect. Treatment with BRB extract (BRBE) and PCA resulted in reduced DBP-derived DNA adduct levels and reduced mutagenesis induced by DBP-diol, but only BRBE was similarly effective against (DBPDE). BRBE did not directly inactivate DBPDE, but rather induced a cellular response-enhanced DNA repair. When BRBE was added to cells 1 day after the DBP-diol, the BRBE greatly enhanced removal of DBP-derived DNA adducts. As oxidative stress can contribute to several stages of carcinogenesis, BRBE and PCA were investigated for their abilities to reduce oxidative stress in a human leukoplakia cell line by monitoring the redox indicator, 2',7'-dichlorodihydrofluorescein diacetate (H2DCF) in cellular and acellular systems. BRBE effectively inhibited the oxidation, but PCA was only minimally effective against H2DCF. These results taken together provide evidence that BRBE and PCA can inhibit initiation of carcinogenesis by polycyclic aromatic hydrocarbons; and in addition, BRBE reduces oxidative stress. Cancer Prev Res; 9(8); 704-12. ©2016 AACR.
Collapse
Affiliation(s)
- Joseph B Guttenplan
- Department of Basic Science, New York University College of Dentistry, New York, New York. Department of Environmental Medicine, New York University School of Medicine, New York, New York.
| | - Kun-Ming Chen
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Wieslawa Kosinska
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Ying Zhou
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Seungjin Agatha Kim
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Youngjae Sung
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Gary D Stoner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
16
|
Biotin-mediated epigenetic modifications: Potential defense against the carcinogenicity of benzo[a]pyrene. Toxicol Lett 2016; 241:216-24. [DOI: 10.1016/j.toxlet.2015.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022]
|
17
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
18
|
Reidick C, El Magraoui F, Meyer HE, Stenmark H, Platta HW. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO. Cancers (Basel) 2014; 7:1-29. [PMID: 25545884 PMCID: PMC4381249 DOI: 10.3390/cancers7010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022] Open
Abstract
The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.
Collapse
Affiliation(s)
- Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801, Germany.
| | - Fouzi El Magraoui
- Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139, Germany.
| | - Helmut E Meyer
- Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139, Germany.
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo 0310, Norway.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801, Germany.
| |
Collapse
|