1
|
Zheng S, Huang Z, Dong L, Li D, Hu X, Chen F, Ma C. Sustainable Extraction Technology of Fruit and Vegetable Residues as Novel Food Ingredients. Foods 2025; 14:331. [PMID: 39856997 PMCID: PMC11765362 DOI: 10.3390/foods14020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Fruit and vegetable waste (FVW) is a global waste issue with environmental impacts. It contains valuable compounds such as polysaccharides, polyphenols, proteins, vitamins, pigments, and fatty acids, which can be extracted for food applications. This study aims to review sustainable extraction methods for FVW and its potential in the food industry. METHODS This paper provides an overview of the sources and sustainable methods of high value-added compounds extracted from FVW. Sustainable techniques, including supercritical fluid extraction and ultrasound-assisted extraction, are compared with traditional methods, for their efficiency in extracting high-value compounds from FVW while minimizing environmental impact. DISCUSSIONS Sustainable extraction of FVW compounds is sustainable and beneficial for novel food ingredients. However, challenges in scalability and cost need to be addressed for wider adoption in the food sector. CONCLUSIONS Sustainable extraction techniques effectively extract phytochemicals from FVW, preserving bioactivity and reducing environmental load. These methods show promise for sustainable food ingredient development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chen Ma
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Z.); (Z.H.); (L.D.); (D.L.); (X.H.); (F.C.)
| |
Collapse
|
2
|
Wright HH, Walker MA, Broadbent S, Linton C, Keech JJ, Rune KT, Davis CL, Morris M, Zhang A, Newton RU, Marshall S. The effect of dietary interventions or patterns on the cardiometabolic health of individuals treated with androgen deprivation therapy for prostate cancer: A systematic review. Maturitas 2024; 184:107940. [PMID: 38430616 DOI: 10.1016/j.maturitas.2024.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Prostate cancer survivors treated with androgen deprivation therapy may be at increased risk of cardiovascular disease. Dietary recommendations for the prevention and/or management of cardiovascular disease for these individuals are lacking. This review synthesizes the evidence on the effect of dietary interventions on cardiometabolic biomarkers and cardiovascular disease risk in prostate cancer survivors receiving androgen deprivation therapy. A systematic review was conducted across PubMed, CINAHL, Embase, and Cochrane CENTRAL. Intervention or observational cohort studies evaluating diets, nutrients, or nutraceuticals with or without concurrent exercise interventions on cardiovascular disease, cardiovascular events, or cardiovascular disease biomarkers in those treated with androgen deprivation therapy were included. Confidence in the body of evidence was appraised using Grading of Recommendations, Assessment, Development and Evaluations. Twelve studies reported across fifteen papers were included. Interventions were heterogenous, with most studies including an exercise co-intervention (n = 8). Few significant findings for the effects of diet on cardiometabolic markers were likely due to weak methodology and sample sizes. Strongest evidence was for the effect of a healthy Western dietary pattern with exercise on improved blood pressure (Confidence: moderate). The healthy Western dietary pattern with exercise may improve high-density lipoprotein cholesterol (Confidence: Low) and flow-mediated dilation. Soy may improve total cholesterol (Confidence: Very low). A low-carbohydrate diet with physical activity may improve high-density lipoprotein cholesterol, incidence of metabolic syndrome, and Framingham cardiovascular disease risk score. Evidence of the effect of dietary interventions on cardiometabolic biomarkers and cardiovascular disease risk of prostate cancer survivors receiving androgen deprivation therapy is insufficient to inform practice. Well-designed dietary interventions aimed at improving cardiometabolic outcomes of this population are warranted to inform future dietary recommendations.
Collapse
Affiliation(s)
- Hattie Hester Wright
- Nutrition and Dietetics, School of Health, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, QLD, Australia; Sunshine Coast Health Institute, 60 Doherty Street, Birtinya 4575, QLD, Australia.
| | - Meegan Anne Walker
- Exercise Science, School of Health, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, QLD, Australia.
| | - Suzanne Broadbent
- Exercise Science, School of Health, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, QLD, Australia.
| | - Corey Linton
- Nutrition and Dietetics, School of Health, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, QLD, Australia.
| | - Jacob Joseph Keech
- School of Applied Psychology, Griffith University, Mt Gravatt Campus, 4122, QLD, Australia.
| | - Karina Tirsvad Rune
- Psychology, School of Health, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, QLD, Australia.
| | - Cindy Lynne Davis
- School of Law and Social Sciences, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, QLD, Australia.
| | - Michelle Morris
- Sunshine Coast University Private Hospital, 3 Doherty Street, Birtinya 4556, QLD, Australia.
| | - Anao Zhang
- School of Social work, University of Michigan, 1080 S. University Ave, Ann Arbor, MI 48105, United States of America.
| | - Robert Usher Newton
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane 4072, Queensland, Australia.
| | - Skye Marshall
- Research Institute for Future Health, PO Box 5033, Q Super Centre, Mermaid Waters, QLD 4218, Australia; The Centre for Health Services Research, The University of Queensland, Brisbane 4072, QLD, Australia; Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina 4226, QLD, Australia.
| |
Collapse
|
3
|
Sayyaf A, Ghaedi E, Haidari F, Rajaei E, Ahmadi-engali K, Helli B. Effects of Soy Bread on Cardiovascular Risk Factor, Inflammation and Oxidative Stress in Women With Active Rheumatoid Arthritis: A Randomized Double-Blind Controlled Trial. Clin Nutr Res 2024; 13:22-32. [PMID: 38362131 PMCID: PMC10866678 DOI: 10.7762/cnr.2024.13.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disorder with widespread synovitis. Isoflavones, the main active component of soy, have been reported to have potent anti-inflammatory effects; the previous RA animal models showed the promising effect of soy supplementation. We aimed to evaluate the effect of soy bread on inflammatory markers and lipid profiles in RA patients. The present study was designed as a randomized controlled trial. RA patients were randomly allocated to obtain soy bread (n = 22) or placebo bread (n = 22) for 8 weeks. Fasting serum levels of lipid profile, total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), and DAS28 were checked. Findings showed that there were no significant differences between the two groups in physical activity and dietary intake at the beginning of the study and the end of the study. There were no significant differences between the two groups in measured lipid profile markers, including high-density lipoprotein, low-density lipoprotein, total cholesterol, triglyceride, and very low-density lipoprotein, at the end of the trial. In addition, TAC and CRP also were not significant at the end of the trial between the 2 groups (0.66 and 0.12, respectively). However, the serum levels of TNF-α reduced significantly in the soy bread group at the end of the intervention (p < 0.000) and compared with the control group (p < 0.019). Soy bread consumption only decreased circulating TNF-α serum concentration. Other outcome measures were not changed following supplementation. Future long-term, well-designed studies are needed to confirm these findings. Trial Registration Iranian Registry of Clinical Trials Identifier: IRCT20181021041396N1.
Collapse
Affiliation(s)
- Afsaneh Sayyaf
- Department of Nutritional Sciences, Faculty of Paramedical, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715753, Iran
| | - Ehsan Ghaedi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Fatemeh Haidari
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715753, Iran
| | - Elham Rajaei
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715753, Iran
- Department of Rheumatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715753, Iran
| | - Kambiz Ahmadi-engali
- Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715753, Iran
| | - Bijan Helli
- Nutrition and Metabolic Diseases Research Center, Department of Nutrition Sciences, School of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715753, Iran
| |
Collapse
|
4
|
Ariyani W, Amano I, Koibuchi N. Isoflavones Mediate Dendritogenesis Mainly through Estrogen Receptor α. Int J Mol Sci 2023; 24:ijms24109011. [PMID: 37240356 DOI: 10.3390/ijms24109011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERβ or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., Bdnf, Camk2b, Rbfox3, Tubb3, Syn1, Dlg4, and Syp). Furthermore, isoflavones increased ERα levels, but not ERβ or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte-neuron communication, which may lead to isoflavone-induced neuritogenesis.
Collapse
Affiliation(s)
- Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| |
Collapse
|
5
|
Ahn-Jarvis JH, Sosh D, Lombardo E, Lesinski GB, Conwell DL, Hart PA, Vodovotz Y. Short-Term Soy Bread Intervention Leads to a Dose-Response Increase in Urinary Isoflavone Metabolites and Satiety in Chronic Pancreatitis. Foods 2023; 12:foods12091762. [PMID: 37174299 PMCID: PMC10178207 DOI: 10.3390/foods12091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Patients with chronic pancreatitis (CP) are particularly vulnerable to nutrient malabsorption and undernutrition caused by the underlying pathology of their disease. Dietary intervention trials involving soy isoflavones in patients with CP are limited and isoflavone metabolites have not yet been reported. We hypothesized soy bread containing plant-based protein, dietary fiber, and isoflavones would be well-tolerated and restore gut functional capacity which would lead to isoflavone metabolites profiles like those of healthy populations. Participants (n = 9) received 1 week of soy bread in a dose-escalation design (1 to 3 slices/day) or a 4-week maximally tolerated dose (n = 1). Dietary adherence, satiety, and palatability were measured. Isoflavone metabolites from 24 h urine collections were quantified using high-performance liquid chromatography. A maximum dose of three slices (99 mg of isoflavones) of soy bread per day was achieved. Short-term exposure to soy bread showed a significant dose-response increase (p = 0.007) of total isoflavones and their metabolites in urine. With increasing slices of soy bread, dietary animal protein intake (p = 0.009) and perceived thirst (p < 0.001) significantly decreased with prolonged satiety (p < 0.001). In this study, adherence to short-term intervention with soy bread in CP patients was excellent. Soy isoflavones were reliably delivered. These findings provide the foundation for evaluating a well-characterized soy bread in supporting healthy nutrition and gut function in CP.
Collapse
Affiliation(s)
- Jennifer H Ahn-Jarvis
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Sosh
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Erin Lombardo
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory B Lesinski
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yael Vodovotz
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Flavonoids regulate tumor-associated macrophages - From structure-activity relationship to clinical potential (Review). Pharmacol Res 2022; 184:106419. [PMID: 36041653 DOI: 10.1016/j.phrs.2022.106419] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
In recent years, the strategy for tumor therapy has changed from focusing on the direct killing effect of different types of therapeutic agents on cancer cells to the new mainstream of multi-mode and -pathway combined interventions in the microenvironment of the developing tumor. Flavonoids, with unique tricyclic structures, have diverse and extensive immunomodulatory and anti-cancer activities in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant immunosuppressive cells in the TME. The regulation of macrophages to fight cancer is a promising immunotherapeutic strategy. This study covers the most comprehensive cognition of flavonoids in regulating TAMs so far. Far more than a simple list of studies, we try to dig out evidence of crosstalk at the molecular level between flavonoids and TAMs from literature, in order to discuss the most relevant chemical structure and its possible relationship with the multimodal pharmacological activity, as well as systematically build a structure-activity relationship between flavonoids and TAMs. Additionally, we point out the advantages of the macro-control of flavonoids in the TME and discuss the potential clinical implications as well as areas for future research of flavonoids in regulating TAMs. These results will provide hopeful directions for the research of antitumor drugs, while providing new ideas for the pharmaceutical industry to develop more effective forms of flavonoids.
Collapse
|
7
|
Anti-prostate cancer protection and therapy in the framework of predictive, preventive and personalised medicine — comprehensive effects of phytochemicals in primary, secondary and tertiary care. EPMA J 2022; 13:461-486. [PMID: 35821883 PMCID: PMC9263437 DOI: 10.1007/s13167-022-00288-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/08/2022]
Abstract
According to the GLOBOCAN 2020, prostate cancer (PCa) is the most often diagnosed male cancer in 112 countries and the leading cancer-related death in 48 countries. Moreover, PCa incidence permanently increases in adolescents and young adults. Also, the rates of metastasising PCa continuously grow up in young populations. Corresponding socio-economic burden is enormous: PCa treatment costs increase more rapidly than for any other cancer. In order to reverse current trends in exploding PCa cases and treatment costs, pragmatic decisions should be made, in favour of advanced populational screening programmes and effective anti-PCa protection at the level of the health-to-disease transition (sub-optimal health conditions) demonstrating the highest cost-efficacy of treatments. For doing this, the paradigm change from reactive treatments of the clinically manifested PCa to the predictive approach and personalised prevention is essential. Phytochemicals are associated with potent anti-cancer activity targeting each stage of carcinogenesis including cell apoptosis and proliferation, cancer invasiveness and metastatic disease. For example, their positive effects are demonstrated for stabilising and restoring mitochondrial health quality, which if compromised is strongly associated with sub-optimal health conditions and strong predisposition to aggressive PCa sub-types. Further, phytochemicals significantly enhance response of cancer cells to anti-cancer therapies including radio- and chemotherapy. Evident plant-based mitigation of negative side-effects frequently observed for conventional anti-cancer therapies has been reported. Finally, dual anti-cancer and anti-viral effects of phytochemicals such as these of silibinin have been demonstrated as being highly relevant for improved PCa management at the level of secondary and tertiary care, for example, under pandemic conditions, since PCa-affected individuals per evidence are highly vulnerable towards COVID-19 infection. Here, we present a comprehensive data analysis towards clinically relevant anti-cancer effects of phytochemicals to be considered for personalised anti-PCa protection in primary care as well as for an advanced disease management at the level of secondary and tertiary care in the framework of predictive, preventive and personalised medicine.
Collapse
|
8
|
Robles LA, Shingler E, McGeagh L, Rowe E, Koupparis A, Bahl A, Shiridzinomwa C, Persad R, Martin RM, Lane JA. Attitudes and adherence to changes in nutrition and physical activity following surgery for prostate cancer: a qualitative study. BMJ Open 2022; 12:e055566. [PMID: 35768108 PMCID: PMC9244678 DOI: 10.1136/bmjopen-2021-055566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Interventions designed to improve men's diet and physical activity (PA) have been recommended as methods of cancer prevention. However, little is known about specific factors that support men's adherence to these health behaviour changes, which could inform theory-led diet and PA interventions. We aimed to explore these factors in men following prostatectomy for prostate cancer (PCa). DESIGN, SETTING AND PARTICIPANTS A qualitative study using semistructured interviews with men, who made changes to their diet and/or PA as part of a factorial randomised controlled trial conducted at a single hospital in South West England. Participants were 17 men aged 66 years, diagnosed with localised PCa and underwent prostatectomy. Interview transcripts underwent thematic analysis. RESULTS Men were ambivalent about the relationship of nutrition and PA with PCa risk. They believed their diet and level of PA were reasonable before being randomised to their interventions. Men identified several barriers and facilitators to performing these new behaviours. Barriers included tolerance to dietary changes, PA limitations and external obstacles. Facilitators included partner involvement in diet, habit formation and brisk walking as an individual activity. Men discussed positive effects associated with brisk walking, such as feeling healthier, but not with nutrition interventions. CONCLUSIONS The facilitators to behaviour change suggest that adherence to trial interventions can be supported using well-established behaviour change models. Future studies may benefit from theory-based interventions to support adherence to diet and PA behaviour changes in men diagnosed with PCa.
Collapse
Affiliation(s)
- Luke A Robles
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Ellie Shingler
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Lucy McGeagh
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
- Supportive Cancer Care Research Group, Faculty of Health and Life Sciences, Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes University, Oxford, UK
| | - Edward Rowe
- Bristol Urology Institute, Department of Urology, North Bristol NHS Trust, Bristol, UK
| | - Anthony Koupparis
- Bristol Urology Institute, Department of Urology, North Bristol NHS Trust, Bristol, UK
| | - Amit Bahl
- Bristol Haematology and Oncology Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Raj Persad
- Bristol Urology Institute, Department of Urology, North Bristol NHS Trust, Bristol, UK
| | - Richard M Martin
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - J Athene Lane
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Bosland MC, Huang J, Schlicht MJ, Enk E, Xie H, Kato I. Impact of 18-Month Soy Protein Supplementation on Steroid Hormones and Serum Biomarkers of Angiogenesis, Apoptosis, and the Growth Hormone/IGF-1 Axis: Results of a Randomized, Placebo-Controlled Trial in Males Following Prostatectomy. Nutr Cancer 2022; 74:110-121. [PMID: 33432829 PMCID: PMC8996680 DOI: 10.1080/01635581.2020.1870706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many studies have addressed the effects of dietary supplementation with soy protein on cancer risk and mortality, but there are only few randomized studies with soy in males. We used serum samples from a two-year trial of soy protein isolate supplementation in middle-aged to older males at risk of recurrence of prostate cancer after radical prostatectomy to determine soy effects on steroid hormones involved in prostate cancer (testosterone, SHBG, and estradiol) and explore the effects on biomarkers of the growth hormone/IGF-1 axis, apoptosis, and angiogenesis. Compared with a casein-based placebo, 18 mo, of consumption of 19.2 g/day of whole soy protein isolate containing 24 mg genistein-reduced circulating testosterone and SHBG, but not free testosterone, and did not affect serum concentrations of estradiol, VEGF, IGF-1, IGFBP-3, IGF-1/IGFBP-3 ratio, soluble Fas, Fas-ligand, and sFas/Fas-ligand ratio. Thus, soy protein supplementation for 18 mo, affected the androgen axis, but the effects on other cancer biomarkers remain to be more definitively determined. The study was registered at clinicaltrials.gov (NCT00765479).
Collapse
Affiliation(s)
- Maarten C. Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jonathan Huang
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Current affiliation: Rush Copley Medical Center, Aurora, IL, USA
| | - Michael J. Schlicht
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Erika Enk
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Hui Xie
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Ikuko Kato
- Departments of Oncology and Pathology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
10
|
Hill EB, Kennedy AJ, Roberts KM, Riedl KM, Grainger EM, Clinton SK. Considerations for Use of the Phenol-Explorer Database to Estimate Dietary (Poly)phenol Intake. J Acad Nutr Diet 2021; 121:833-834. [PMID: 33744235 DOI: 10.1016/j.jand.2021.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Emily B Hill
- School of Health and Rehabilitation SciencesThe Ohio State University College of Medicine
| | - Ashley J Kennedy
- Department of Human SciencesThe Ohio State University College of Education and Human Ecology
| | - Kristen M Roberts
- School of Health and Rehabilitation Sciences, Division of Medical Dietetics The Ohio State University College of Medicine
| | - Ken M Riedl
- Comprehensive Cancer CenterThe Ohio State University, Columbus, OH
| | - Elizabeth M Grainger
- Department of Internal Medicine, Division of Medical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Steven K Clinton
- Department of Internal Medicine, Division of Medical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| |
Collapse
|
11
|
Mukherjee D, DiVincenzo MJ, Torok M, Choueiry F, Kumar RJ, Deems A, Miller JL, Hinton A, Geraghty C, Maranon JA, Kulp SK, Coss C, Carson WE, Conwell DL, Hart PA, Cooperstone JL, Mace TA. Soy-tomato enriched diet reduces inflammation and disease severity in a pre-clinical model of chronic pancreatitis. Sci Rep 2020; 10:21824. [PMID: 33311549 PMCID: PMC7733503 DOI: 10.1038/s41598-020-78762-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic pancreatitis (CP) is a fibro-inflammatory syndrome in individuals who develop persistent pathological responses to parenchymal injury or stress. Novel therapeutic or dietary interventions that could lessen inflammation in this disease could significantly improve quality of life in patients with CP. Complex dietary foods like soy and tomatoes are composed of active metabolites with anti-inflammatory effects. Data from our group reports that bioactive agents in soy and tomatoes can reduce pro-inflammatory cytokines and suppressive immune populations. Additionally, our team has developed a novel soy-tomato juice currently being studied in healthy individuals with no toxicities, and good compliance and bioavailability. Thus, we hypothesize that administration of a soy-tomato enriched diet can reduce inflammation and severity of CP. C57BL/6 mice were injected intraperitoneally with 50 μg/kg caeurlein (7 hourly injections, twice weekly) for 6 weeks to induce CP. After 4 weeks of caerulein injections, mice were administered a control or a soy-tomato enriched diet for 2 weeks. Disease severity was measured via immunohistochemical analysis of pancreata measuring loss of acini, fibrosis, inflammation, and necrosis. Serum lipase and amylase levels were analyzed at the end of the study. Inflammatory factors in the serum and pancreas, and immune populations in the spleen of mice were analyzed by cytokine multiplex detection, qRT-PCR, and flow cytometry respectively. Infra-red (IR) sensing of mice was used to monitor spontaneous activity and distress of mice. Mice fed a soy-tomato enriched diet had a significantly reduced level of inflammation and severity of CP (p = 0.032) compared to mice administered a control diet with restored serum lipase and amylase levels (p < 0.05). Mice with CP fed a soy-tomato diet had a reduction in inflammatory factors (TNF-α, IL-1β, IL-5) and suppressive immune populations (myeloid-derived suppressor cells; MDSC) compared to control diet fed mice (p < 0.05). Infra-red sensing to monitor spontaneous activity of mice showed that soy-tomato enriched diet improved total activity and overall health of mice with CP (p = 0.055) and CP mice on a control diet were determined to spend more time at rest (p = 0.053). These pre-clinical results indicate that a soy-tomato enriched diet may be a novel treatment approach to reduce inflammation and pain in patients with CP.
Collapse
Affiliation(s)
| | - Mallory J DiVincenzo
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, USA
| | - Molly Torok
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Fouad Choueiry
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Rahul J Kumar
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Anna Deems
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Jenna L Miller
- Department of Food Science and Technology, The Ohio State University, Columbus, USA
| | - Alice Hinton
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, USA
| | - Connor Geraghty
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - Samuel K Kulp
- College of Pharmacy, The Ohio State University, Columbus, USA
| | | | | | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W 12th Ave., Columbus, OH, 43210, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W 12th Ave., Columbus, OH, 43210, USA
| | - Jessica L Cooperstone
- Department of Food Science and Technology, The Ohio State University, Columbus, USA
- Departments of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Thomas A Mace
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA.
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W 12th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Jang HH, Noh H, Kim HW, Cho SY, Kim HJ, Lee SH, Lee SH, Gunter MJ, Ferrari P, Scalbert A, Freisling H, Kim JB, Choe JS, Kwon O. Metabolic tracking of isoflavones in soybean products and biosamples from healthy adults after fermented soybean consumption. Food Chem 2020; 330:127317. [PMID: 32569934 DOI: 10.1016/j.foodchem.2020.127317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Fermentation may enhance the nutritional properties of foods by increasing metabolite bioactivity or bioavailability. This study explored the effect of fermentation on isoflavone bioavailability and metabolism. Isoflavone metabolites were tracked in foods and biospecimens of healthy adults after fermented soybean (FS) or non-fermented soybean (NFS) consumption in a randomized, controlled, crossover intervention study. The change in soybean isoflavones caused by fermentation resulted in faster absorption and higher bioavailability after consumption of FS. Although the urinary level of total isoflavone metabolites was similar after the consumption of the two diets, urinary genistein 7-O-sulfate was derived as a discriminant metabolite for the FS diet by partial least squares discriminant analysis. This study suggests that an isoflavone conjugate profile might be a more appropriate marker than total isoflavone levels for discriminating between the consumption of FS and NFS diets.
Collapse
Affiliation(s)
- Hwan-Hee Jang
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea; Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea
| | - Hwayoung Noh
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Heon-Woong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Su-Yeon Cho
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Hyeon-Jeong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Seon-Hye Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Sung-Hyen Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Pietro Ferrari
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Augustin Scalbert
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Heinz Freisling
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Jung-Bong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jeong-Sook Choe
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea.
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
13
|
Marmitt DJ, Bitencourt S, Silva GRD, Rempel C, Goettert MI. RENISUS Plants and Their Potential Antitumor Effects in Clinical Trials and Registered Patents. Nutr Cancer 2020; 73:1821-1848. [PMID: 32835511 DOI: 10.1080/01635581.2020.1810290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
Cancer is a significant cause of morbidity and mortality. Scientific advances, coupled with potential flaws in current treatments, are driving research into the discovery of new bioactive molecules. This systematic review focused on scientific studies with clinical trials and patents registered on the National Relation of Medicinal Plants of Interest to the Unified Health System (RENISUS) plants (or derivative compounds) with antitumor potential. Studies with 19 different forms of cancer were found, the prostate being the organ with the highest research incidence and the species Glycine max, Curcuma longa, and Zingiber officinale, beside the phytochemicals curcumin and soy isoflavone were the most tested in clinical trials/patents.
Collapse
Affiliation(s)
- Diorge Jônatas Marmitt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Shanna Bitencourt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Gustavo Rodrigo da Silva
- Centro de Ciências Biológicas e da Saúde, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Claudete Rempel
- Programa de Pós-graduação em Ambiente e Desenvolvimento/Programa de Pós-graduação em Sistemas Ambientais Sustentáveis, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Márcia Inês Goettert
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| |
Collapse
|
14
|
Ahn-Jarvis J, Lombardo E, Cruz-Monserrate Z, Badi N, Crowe O, Kaul S, Komar H, Krishna SG, Lesinski GB, Mace TA, Ramsey ML, Roberts K, Stinehart K, Traczek M, Conwell DL, Vodovotz Y, Hart PA. Reduction of inflammation in chronic pancreatitis using a soy bread intervention: A feasibility study. Pancreatology 2020; 20:852-859. [PMID: 32595109 PMCID: PMC7780088 DOI: 10.1016/j.pan.2020.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chronic pancreatitis is a chronic inflammatory disease, which progresses to fibrosis. Currently there are no interventions to delay or stop the progression to irreversible organ damage. In this study, we assessed the tolerability and feasibility of administering soy bread to reduce circulating inflammatory mediators. METHODS Subjects with chronic pancreatitis diagnosed using the American Pancreatic Association diagnostic guidelines were enrolled. During the dose escalation (DE) phase, subjects received one week of soy bread based using a 3 + 3 dose-escalation design, which was then followed by a maximally tolerated dose (MTD) phase with four weeks of intervention. Dose-limiting toxicities (DLTs) were monitored. Plasma cytokine levels were measured using a Meso Scale Discovery multiplex assay kit. Isoflavonoid excretion in 24-h urine collection was used to measure soy bread compliance. RESULTS Nine subjects completed the DE phase, and one subject completed the MTD phase without any DLTs at a maximum dosage of three slices (99 mg of isoflavones) per day. Reported compliance to soy bread intervention was 98%, and this was confirmed with urinary isoflavones and their metabolites detected in all subjects. There was a significant decline in the TNF-α level during the DE phase (2.667 vs 2.382 pg/mL, p = 0.039); other levels were similar. CONCLUSIONS In this feasibility study, there was excellent compliance with a short-term intervention using soy bread in chronic pancreatitis. Reduction was seen in at least one pro-inflammatory cytokine with short-term intervention. Larger cohorts and longer interventions with soy are warranted to assess the efficacy of reducing pro-inflammatory mediators of disease.
Collapse
Affiliation(s)
- Jennifer Ahn-Jarvis
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Erin Lombardo
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Niharika Badi
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Olivia Crowe
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sabrina Kaul
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hannah Komar
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Gregory B Lesinski
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Thomas A Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mitchell L Ramsey
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kristen Roberts
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Medical Dietetics, The Ohio State University, Columbus, OH, USA
| | - Kyle Stinehart
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Madelyn Traczek
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
15
|
Ratha P, Neumann T, Schmidt CA, Schneidewind L. Can Isoflavones Influence Prostate Specific Antigen Serum Levels in Localized Prostate Cancer? A Systematic Review. Nutr Cancer 2020; 73:361-368. [PMID: 32347121 DOI: 10.1080/01635581.2020.1759660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
Low risk prostate cancer does not always necessitate aggressive or invasive intervention and is best monitored through active surveillance, but in daily practice a majority of men seek a more proactive approach. Therefore, tertiary chemoprevention is an attractive option for men seeking a way to slow disease progression. Several natural anti-carcinogens have been identified in soy beans, especially isoflavones. Case series have been published, demonstrating a positive influence of isoflavones on PSA serum levels in prostate cancer. Consequently, we decided to perform a systematic review about the effect of isoflavones compared to placebo on PSA levels in localized prostate cancer following the recommendations provided in the Cochrane Handbook of systematic Reviews. On the whole, the primary aim of this review is to summarize the evidence for the use of isoflavones in localized prostate cancer in terms of PSA response. As a result, in all randomized controlled trials identified for this review, isoflavones seem to have no influence on PSA levels in localized prostate cancer. The influence of isoflavones on overall survival in localized prostate cancer remains unclear. Furthermore, isoflavones are interesting substances for further research, for example in lipid metabolism and cholesterol.
Collapse
Affiliation(s)
- Prasan Ratha
- Department of Haematology/Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Neumann
- Department of Haematology/Oncology, University Medicine Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
16
|
Ahn-Jarvis JH, Parihar A, Doseff AI. Dietary Flavonoids for Immunoregulation and Cancer: Food Design for Targeting Disease. Antioxidants (Basel) 2019; 8:E202. [PMID: 31261915 PMCID: PMC6680729 DOI: 10.3390/antiox8070202] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Flavonoids, one of the most abundant phytochemicals in a diet rich in fruits and vegetables, have been recognized as possessing anti-proliferative, antioxidant, anti-inflammatory, and estrogenic activities. Numerous cellular and animal-based studies show that flavonoids can function as antioxidants by preventing DNA damage and scavenging reactive oxygen radicals, inhibiting formation of DNA adducts, enhancing DNA repair, interfering with chemical damage by induction of Phase II enzymes, and modifying signaling pathways. Recent evidence also shows their ability to regulate the immune system. However, findings from clinical trials have been mixed with no clear consensus on dose, frequency, or type of flavonoids best suited to elicit many of the beneficial effects. Delivery of these bioactive compounds to their biological targets through "targeted designed" food processing strategies is critical to reach effective concentration in vivo. Thus, the identification of novel approaches that optimize flavonoid bioavailability is essential for their successful clinical application. In this review, we discuss the relevance of increasing flavonoid bioavailability, by agricultural engineering and "targeted food design" in the context of the immune system and cancer.
Collapse
Affiliation(s)
| | - Arti Parihar
- Department of Science, Bellingham Technical College, WA, 98225, USA
| | - Andrea I Doseff
- Department of Physiology and Department of Pharmacology & Toxicology, Michigan State University, MI, 48864, USA.
| |
Collapse
|
17
|
Mace TA, Ware MB, King SA, Loftus S, Farren MR, McMichael E, Scoville S, Geraghty C, Young G, Carson WE, Clinton SK, Lesinski GB. Soy isoflavones and their metabolites modulate cytokine-induced natural killer cell function. Sci Rep 2019; 9:5068. [PMID: 30911044 PMCID: PMC6433892 DOI: 10.1038/s41598-019-41687-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
Soybeans are a rich source of isoflavones that have been linked with anti-inflammatory processes and various health benefits. However, specific mechanisms whereby soy bioactives impact immune cell subsets are unclear. Isoflavones, such as genistein and daidzein, are metabolized by microbes to bioactive metabolites as O-desmethylangolensin (O-DMA) and equol, whose presence has been linked to health benefits. We examined how soy isoflavones and metabolites impact natural killer (NK) cell signaling and function. We observe no impact of isoflavones on viability of healthy donor peripheral blood mononuclear cells (PBMCs) or NK cells, even at high (25 µM) concentrations. However, pre-treatment of PBMCs with physiologically-relevant concentrations of genistein (p = 0.0023) and equol (p = 0.006) decreases interleukin (IL)-12/IL-18-induced interferon-gamma (IFN-γ) production versus controls. Detailed cellular analyses indicate genistein and equol decrease IL-12/IL-18-induced IFN-γ production by human NK cell subsets, but do not consistently alter cytotoxicity. At the level of signal transduction, genistein decreases IL-12/IL-18-induced total phosphorylated tyrosine, and phosphorylation MAPK pathway components. Further, genistein limits IL-12/IL-18-mediated upregulation of IL-18Rα expression on NK cells (p = 0.0109). Finally, in vivo studies revealed that C57BL/6 mice fed a soy-enriched diet produce less plasma IFN-γ following administration of IL-12/IL-18 versus control-fed animals (p < 0.0001). This study provides insight into how dietary soy modulates NK cell functions.
Collapse
Affiliation(s)
- Thomas A Mace
- Division of Gastroenterology Hepatology Nutrition, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael B Ware
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, USA
| | - Samantha A King
- Department of Internal Medicine, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shannon Loftus
- Department of Internal Medicine, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew R Farren
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, USA
| | - Elizabeth McMichael
- Division of Surgical Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven Scoville
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Connor Geraghty
- Department of Internal Medicine, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Medical Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gregory Young
- Center for Biostatistics, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - William E Carson
- Division of Surgical Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven K Clinton
- Department of Internal Medicine, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Medical Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, USA.
| |
Collapse
|
18
|
Grainger EM, Moran NE, Francis DM, Schwartz SJ, Wan L, Thomas-Ahner J, Kopec RE, Riedl KM, Young GS, Abaza R, Bahnson RR, Clinton SK. A Novel Tomato-Soy Juice Induces a Dose-Response Increase in Urinary and Plasma Phytochemical Biomarkers in Men with Prostate Cancer. J Nutr 2019; 149:26-35. [PMID: 30476157 PMCID: PMC6351139 DOI: 10.1093/jn/nxy232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
Background Tomato and soy intake is associated with reduced prostate cancer risk or severity in epidemiologic and experimental studies. Objective On the basis of the principle that multiple bioactives in tomato and soy may act on diverse anticancer pathways, we developed and characterized a tomato-soy juice for clinical trials. In this phase 2 dose-escalating study, we examined plasma, prostate, and urine biomarkers of carotenoid and isoflavone exposure. Methods Men scheduled for prostatectomy were recruited to consume 0, 1, or 2 cans of tomato-soy juice/d before surgery (mean ± SD duration: 24 ± 4.6 d). The juice provided 20.6 mg lycopene and 66 mg isoflavone aglycone equivalents/177-mL can. Plasma carotenoids and urinary isoflavone metabolites were quantified by HPLC-photometric diode array and prostate carotenoids and isoflavones by HPLC-tandem mass spectrometry. Results We documented significant dose-response increases (P < 0.05) in plasma concentrations of tomato carotenoids. Plasma concentrations were 1.86-, 1.69-, 1.73-, and 1.69-fold higher for lycopene, β-carotene, phytoene, and phytofluene, respectively, for the 1-can/d group and 2.34-, 3.43-, 2.54-, and 2.29-fold higher, respectively, for the 2-cans/d group compared with 0 cans/d. Urinary isoflavones daidzein, genistein, and glycitein increased in a dose-dependent manner. Prostate carotenoid and isoflavone concentrations were not dose-dependent in this short intervention; yet, correlations between plasma carotenoid and urinary isoflavones with respective prostate concentrations were documented (R2 = 0.78 for lycopene, P < 0.001; R2 = 0.59 for dihydrodaidzein, P < 0.001). Secondary clustering analyses showed urinary isoflavone metabolite phenotypes. To our knowledge, this is the first demonstration of the phytoene and phytofluene in prostate tissue after a dietary intervention. Secondary analysis showed that the 2-cans/d group experienced a nonsignificant decrease in prostate-specific antigen slope compared with 0 cans/d (P = 0.078). Conclusion These findings provide the foundation for evaluating a well-characterized tomato-soy juice in human clinical trials to define the impact on human prostate carcinogenesis. This trial is registered at clinicaltrials.gov as NCT01009736.
Collapse
Affiliation(s)
- Elizabeth M Grainger
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Nancy E Moran
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210,USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - David M Francis
- Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Steven J Schwartz
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University, Columbus, OH 43210
| | - Lei Wan
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Jennifer Thomas-Ahner
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Rachel E Kopec
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University, Columbus, OH 43210
| | - Ken M Riedl
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210,Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University, Columbus, OH 43210
| | - Gregory S Young
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210,Center for Biostatistics College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Ronney Abaza
- Department of Urology College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Robert R Bahnson
- Department of Urology College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210,Division of Medical Oncology, College of Medicine The Ohio State University, Columbus, OH 43210,Address correspondence to SKC (e-mail: )
| |
Collapse
|
19
|
Bellamri M, Turesky RJ. Dietary Carcinogens and DNA Adducts in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:29-55. [PMID: 31900903 DOI: 10.1007/978-3-030-32656-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PC) is the most commonly diagnosed non-cutaneous cancer and the second leading cause of cancer-related to death in men. The major risk factors for PC are age, family history, and African American ethnicity. Epidemiological studies have reported large geographical variations in PC incidence and mortality, and thus lifestyle and dietary factors influence PC risk. High fat diet, dairy products, alcohol and red meats, are considered as risk factors for PC. This book chapter provides a comprehensive, literature-based review on dietary factors and their molecular mechanisms of prostate carcinogenesis. A large portion of our knowledge is based on epidemiological studies where dietary factors such as cancer promoting agents, including high-fat, dairy products, alcohol, and cancer-initiating genotoxicants formed in cooked meats have been evaluated for PC risk. However, the precise mechanisms in the etiology of PC development remain uncertain. Additional animal and human cell-based studies are required to further our understandings of risk factors involved in PC etiology. Specific biomarkers of chemical exposures and DNA damage in the prostate can provide evidence of cancer-causing agents in the prostate. Collectively, these studies can improve public health research, nutritional education and chemoprevention strategies.
Collapse
Affiliation(s)
- Medjda Bellamri
- Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Turesky
- Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, Minneapolis, MN, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
20
|
Lambert MNT, Jeppesen PB. Isoflavones and bone health in perimenopausal and postmenopausal women. Curr Opin Clin Nutr Metab Care 2018; 21:475-480. [PMID: 30239339 DOI: 10.1097/mco.0000000000000513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Isoflavones exert estrogenic activity distinct from estrogen, they have the potential to treat diseases and symptoms related to estrogen deficiency with minimal side effects and risks. Isoflavone supplementation, in general, is shown to exert beneficial effects against estrogen-deficient bone loss in women, however, some clinical trials still produce conflicting findings. The purpose of this review is to highlight and summarize the most recent and up-to-date research in the field and to bring attention to factors that play a major role in the outcomes of clinical trials that investigate phytoestrogens. Here, we also discuss the latest and most relevant data regarding the clinical safety of these substances. RECENT FINDINGS Isoflavones are naturally occurring secondary metabolites found in the Fabacaea plant family. Clinical data from isoflavone interventions support that aglycones (abundant in fermented products) exert enhanced beneficial effects against estrogen-deficient bone loss in women compared with isoflavone glycosides. Studies that employ methods to determine isoflavone content and form of treatments are more likely detect beneficial effects on bone. EFSA have confirmed the safety of isoflavones for women in the most comprehensive report to date. SUMMARY Isoflavone aglycones exert greater effects against bone loss than glycosides. Isoflavones show promise as a first-line prophylactic/treatment for bone loss in women.
Collapse
|
21
|
Hosseini A, Razavi BM, Hosseinzadeh H. Pharmacokinetic Properties of Saffron and its Active Components. Eur J Drug Metab Pharmacokinet 2018; 43:383-390. [PMID: 29134501 DOI: 10.1007/s13318-017-0449-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Saffron as a medicinal plant has many therapeutic effects. Phytochemical studies have reported that saffron is composed of at least four active ingredients which include crocin, crocetin, picrocrocin and safranal. The carotenoids of saffron are sensitive to oxygen, light, heat and enzymatic oxidization. However, regulation of these factors is required for saffron quality. Some pharmacologic effects of saffron and its active compounds include cardioprotective, neuroprotective, memory enhancer, antidepressant and anxiolytic. Among more than 150 chemicals of saffron, the most biologically active components are two carotenoids including crocin and crocetin. Most of the pharmacokinetic studies are related to these compounds. The pharmacokinetic studies have shown that crocin is not available after oral administration in blood circulation. Crocin is converted to crocetin in intestine but after intravenous injection, the level of crocetin in plasma is low. Crocetin can distribute in different tissues because of weak interaction between crocetin and albumin. Also it can penetrate blood-brain barrier and reach CNS by passive transcellular diffusion; thus it can be effective in neurodegenerative disorders. The large portion of crocin is eliminated via feces.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Reed D, Raina K, Agarwal R. Nutraceuticals in prostate cancer therapeutic strategies and their neo-adjuvant use in diverse populations. NPJ Precis Oncol 2018; 2:15. [PMID: 30062144 PMCID: PMC6060229 DOI: 10.1038/s41698-018-0058-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed malignancy and second leading cause of cancer mortality in American males. Notably, men of African descent in the United States and Caribbean have the highest PCa mortality rates compared to men with European ancestry. Although current therapeutics are quite potent and effective, disease resistance, progression to metastasis, therapy-associated toxicities and efficacy-related issues in diverse populations develop over time. Thus, non-toxic and efficacious therapeutic strategies are needed to address these major obstacles for the clinical treatment and management of PCa. In this regard, preclinical and population-based efficacy studies have shown the potential of natural non-toxic nutraceuticals as potent anti-PCa agents. Accordingly, the implementation of nutraceutical intervention and genetic testing in diverse populations might aid in the development and design of precision medicine strategies to reduce the burden of chemotherapy-associated toxicities, suppress disease resistance, and treat both localized and advanced PCa. Consequently, additional large-scale and inclusive clinical studies are required to fully assess efficacy and therapeutic limitations of these agents in PCa. This review discusses the most current clinical research on selected nutraceutical agents and their efficacy in the context of clinico-pathological outcomes and disease susceptibility in diverse PCa clinical and epidemiological studies.
Collapse
Affiliation(s)
- Dominique Reed
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
23
|
Ariyani W, Iwasaki T, Miyazaki W, Yu L, Takeda S, Koibuchi N. A Possible Novel Mechanism of Action of Genistein and Daidzein for Activating Thyroid Hormone Receptor-Mediated Transcription. Toxicol Sci 2018; 164:417-427. [DOI: 10.1093/toxsci/kfy097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Winda Ariyani
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Toshiharu Iwasaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Department of Liberal Arts and Human Development, Kanagawa University of Human Service, Yokosuka, Kanagawa 238-8522, Japan
| | - Wataru Miyazaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Lu Yu
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shigeki Takeda
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
24
|
Salehi B, Zucca P, Sharifi-Rad M, Pezzani R, Rajabi S, Setzer WN, Varoni EM, Iriti M, Kobarfard F, Sharifi-Rad J. Phytotherapeutics in cancer invasion and metastasis. Phytother Res 2018; 32:1425-1449. [DOI: 10.1002/ptr.6087] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Paolo Zucca
- Department of Biomedical Sciences; University of Cagliari; Cagliari Italy
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology; Zabol University of Medical Sciences; Zabol 61663-335 Iran
| | - Raffaele Pezzani
- OU Endocrinology, Dept. Medicine (DIMED); University of Padova; via Ospedale 105 Padova 35128 Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base; Padova Italy
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - William N. Setzer
- Department of Chemistry; University of Alabama in Huntsville; Huntsville AL 35899 USA
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences; Milan State University; Milan Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences; Milan State University; Milan Italy
| | - Farzad Kobarfard
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex; The University of Winnipeg; Winnipeg MB Canada
| |
Collapse
|
25
|
Hussain SS, Kumar AP, Ghosh R. Food-based natural products for cancer management: Is the whole greater than the sum of the parts? Semin Cancer Biol 2016; 40-41:233-246. [PMID: 27397504 PMCID: PMC5067244 DOI: 10.1016/j.semcancer.2016.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 02/08/2023]
Abstract
The rise in cancer incidence and mortality in developing countries together with the human and financial cost of current cancer therapy mandates a closer look at alternative ways to overcome this burgeoning global healthcare problem. Epidemiological evidence for the association between cancer and diet and the long latency of most cancer progression have led to active exploration of whole and isolated natural chemicals from different naturally occurring substances in various preclinical and clinical settings. In general the lack of systemic toxicities of most 'whole' and 'isolated' natural compounds, their potential to reduce toxic doses and potential to delay the development of drug-resistance makes them promising candidates for cancer management. This review article examines the suggested molecular mechanisms affected by these substances focusing to a large extent on prostate cancer and deliberates on the disparate results obtained from cell culture, preclinical and clinical studies in an effort to highlight the use of whole extracts and isolated constituents for intervention. As such these studies underscore the importance of factors such as treatment duration, bioavailability, route of administration, selection criteria, standardized formulation and clinical end points in clinical trial design with both entities. Overall lack of parallel comparison studies between the whole natural products and their isolated compounds limits decisive conclusions regarding the superior utility of one over the other. We suggest the critical need for rigorous comparative research to identify which one of the two or both entities from nature would be best qualified to take on the mantle of cancer management.
Collapse
Affiliation(s)
- Suleman S Hussain
- Department of Urology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Pharmacology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Addanki P Kumar
- Department of Urology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Pharmacology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| | - Rita Ghosh
- Department of Urology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Pharmacology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
26
|
Lesinski GB, Reville PK, Mace TA, Young GS, Ahn-Jarvis J, Thomas-Ahner J, Vodovotz Y, Ameen Z, Grainger E, Riedl K, Schwartz S, Clinton SK. Consumption of soy isoflavone enriched bread in men with prostate cancer is associated with reduced proinflammatory cytokines and immunosuppressive cells. Cancer Prev Res (Phila) 2015; 8:1036-44. [PMID: 26276751 PMCID: PMC4633400 DOI: 10.1158/1940-6207.capr-14-0464] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 07/21/2015] [Indexed: 01/13/2023]
Abstract
We hypothesized that soy phytochemicals may have immunomodulatory properties that may affect prostate carcinogenesis and progression. A randomized, phase II trial was conducted in 32 patients with prostate cancer with asymptomatic biochemical recurrence but no measurable disease on standard staging studies. Patients were randomized to two slices of soy bread (34 mg isoflavones/slice) or soy bread containing almond powder daily as a source of β-glucosidase. Flow cytometry and bioplex assays were used to measure cytokines or immune cell phenotype in blood at baseline (day 0) and following intervention (day 56). Adequate blood samples were available at enrollment and day 56 and evaluated. Multiple plasma cytokines and chemokines were significantly decreased on day 56 versus baseline. Subgroup analysis indicated reduced TH1 (P = 0.028) and myeloid-derived suppressor cell (MDSC)-associated cytokines (P = 0.035). TH2 and TH17 cytokines were not significantly altered. Phenotypic analysis revealed no change in CD8(+) or CD4(+) T cells but showed increased CD56(+) natural killer (NK) cells (P = 0.038). The percentage of cells with a T regulatory cell phenotype (CD4(+)CD25(+)FoxP3(+)) was significantly decreased after 56 days of soy bread (P = 0.0136). Significantly decreased monocytic (CD33(+)HLADR(neg)CD14(+)) MDSC were observed in patients consuming soy bread (P = 0.0056). These data suggest that soy bread modulates systemic soluble and cellular biomarkers consistent with limiting inflammation and suppression of MDSCs. Additional studies to elucidate impact on the carcinogenic process or as a complement to immune-based therapy are required.
Collapse
Affiliation(s)
- Gregory B Lesinski
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio. The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Patrick K Reville
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio
| | - Thomas A Mace
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio
| | - Gregory S Young
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Jennifer Ahn-Jarvis
- College of Food, Agricultural and Environmental Science, Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| | - Jennifer Thomas-Ahner
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio
| | - Yael Vodovotz
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio. College of Food, Agricultural and Environmental Science, Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| | - Zeenath Ameen
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio
| | - Elizabeth Grainger
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio
| | - Kenneth Riedl
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio. College of Food, Agricultural and Environmental Science, Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| | - Steven Schwartz
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio. College of Food, Agricultural and Environmental Science, Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| | - Steven K Clinton
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio. The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| |
Collapse
|