3
|
Isom CA, Shrubsole MJ, Cai Q, Smalley WE, Ness RM, Zheng W, Murff HJ. Arachidonic acid and colorectal adenoma risk: a Mendelian randomization study. Clin Epidemiol 2018; 11:17-22. [PMID: 30588120 PMCID: PMC6302799 DOI: 10.2147/clep.s186883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Previous studies have shown a link between increased dietary intake of arachidonic acid (ARA) and colorectal neoplasms. It has been shown that erythrocyte phospholipid membrane concentrations of ARA are strongly determined by genetic variation. Fatty acid desaturase (FADS) controls the rate limiting step in ARA production, and FADS variant rs174537 has been shown to be responsible for up to 18.6% of the variation seen. To determine if a causal association exists between erythrocyte membrane ARA concentrations and colorectal adenomas, we conducted a Mendelian randomization (MR) analysis using rs174537 as an instrumental variable (IV). MR analysis was chosen because it is less susceptible to bias and confounding. PATIENTS AND METHODS A case-control study was performed using the Tennessee Colorectal Polyps Study. Patients were matched on age, gender, race, facility site, and year of colonoscopy. Cases were defined as any colorectal adenoma on colonoscopy (n=909) and controls were polyp free (n=855). A two-stage logistic regression was conducted using rs174537 as the IV with the dependent variable being the presence of a colorectal adenoma on colonoscopy. RESULTS Cases were older (59 vs 57 years of age, P<0.0001), and more likely to use alcohol (47.4% vs 19.8%, P=0.001) and to smoke (77.0% vs 66.9%, P<0.0001). There was no statistically significant difference in: age, sex, alcohol use, body mass index (BMI), or NSAID use when stratified by the rs174537 alleles. Genotype was strongly associated with erythrocyte membrane ARA concentrations (P<0.0001). We found no evidence of an association between our IV (rs174537) and colorectal adenomas (P=0.41). CONCLUSION In our MR study increased erythrocyte ARA concentrations were not associated with the risk of colorectal adenomas.
Collapse
Affiliation(s)
- Chelsea A Isom
- Department of General Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA,
| | - Qiuyin Cai
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Walter E Smalley
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Reid M Ness
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA,
| | - Harvey J Murff
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA,
- Division of General Internal Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA,
| |
Collapse
|
5
|
Gromovsky AD, Schugar RC, Brown AL, Helsley RN, Burrows AC, Ferguson D, Zhang R, Sansbury BE, Lee RG, Morton RE, Allende DS, Parks JS, Spite M, Brown JM. Δ-5 Fatty Acid Desaturase FADS1 Impacts Metabolic Disease by Balancing Proinflammatory and Proresolving Lipid Mediators. Arterioscler Thromb Vasc Biol 2018; 38:218-231. [PMID: 29074585 PMCID: PMC5746431 DOI: 10.1161/atvbaha.117.309660] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/08/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Human genetic variants near the FADS (fatty acid desaturase) gene cluster (FADS1-2-3) are strongly associated with cardiometabolic traits including dyslipidemia, fatty liver, type 2 diabetes mellitus, and coronary artery disease. However, mechanisms underlying these genetic associations are unclear. APPROACH AND RESULTS Here, we specifically investigated the physiological role of the Δ-5 desaturase FADS1 in regulating diet-induced cardiometabolic phenotypes by treating hyperlipidemic LDLR (low-density lipoprotein receptor)-null mice with antisense oligonucleotides targeting the selective knockdown of Fads1. Fads1 knockdown resulted in striking reorganization of both ω-6 and ω-3 polyunsaturated fatty acid levels and their associated proinflammatory and proresolving lipid mediators in a highly diet-specific manner. Loss of Fads1 activity promoted hepatic inflammation and atherosclerosis, yet was associated with suppression of hepatic lipogenesis. Fads1 knockdown in isolated macrophages promoted classic M1 activation, whereas suppressing alternative M2 activation programs, and also altered systemic and tissue inflammatory responses in vivo. Finally, the ability of Fads1 to reciprocally regulate lipogenesis and inflammation may rely in part on its role as an effector of liver X receptor signaling. CONCLUSIONS These results position Fads1 as an underappreciated regulator of inflammation initiation and resolution, and suggest that endogenously synthesized arachidonic acid and eicosapentaenoic acid are key determinates of inflammatory disease progression and liver X receptor signaling.
Collapse
MESH Headings
- Animals
- Aorta/enzymology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Arachidonic Acid/metabolism
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cells, Cultured
- Delta-5 Fatty Acid Desaturase
- Disease Models, Animal
- Dyslipidemias/enzymology
- Dyslipidemias/genetics
- Dyslipidemias/pathology
- Eicosapentaenoic Acid/metabolism
- Fatty Acid Desaturases/genetics
- Fatty Acid Desaturases/metabolism
- Inflammation/enzymology
- Inflammation/genetics
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Lipogenesis
- Liver/metabolism
- Liver X Receptors/metabolism
- Macrophage Activation
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
Collapse
Affiliation(s)
- Anthony D Gromovsky
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Rebecca C Schugar
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Amanda L Brown
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Robert N Helsley
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Amy C Burrows
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Daniel Ferguson
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Renliang Zhang
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Brian E Sansbury
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Richard G Lee
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Richard E Morton
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Daniela S Allende
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - John S Parks
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Matthew Spite
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - J Mark Brown
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute (A.D.G., R.C.S., A.L.B., R.N.H., A.C.B., D.F., R.Z., R.E.M., J.M.B.) and Department of Anatomical Pathology (D.S.A.), Cleveland Clinic, OH; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.E.S., M.S.); Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (R.G.L.); and Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.).
| |
Collapse
|