1
|
Lin YC, Ku CC, Wuputra K, Wu DC, Yokoyama KK. Vulnerability of Antioxidant Drug Therapies on Targeting the Nrf2-Trp53-Jdp2 Axis in Controlling Tumorigenesis. Cells 2024; 13:1648. [PMID: 39404411 PMCID: PMC11475825 DOI: 10.3390/cells13191648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Control of oxidation/antioxidation homeostasis is important for cellular protective functions, and disruption of the antioxidation balance by exogenous and endogenous ligands can lead to profound pathological consequences of cancerous commitment within cells. Although cancers are sensitive to antioxidation drugs, these drugs are sometimes associated with problems including tumor resistance or dose-limiting toxicity in host animals and patients. These problems are often caused by the imbalance between the levels of oxidative stress-induced reactive oxygen species (ROS) and the redox efficacy of antioxidants. Increased ROS levels, because of abnormal function, including metabolic abnormality and signaling aberrations, can promote tumorigenesis and the progression of malignancy, which are generated by genome mutations and activation of proto-oncogene signaling. This hypothesis is supported by various experiments showing that the balance of oxidative stress and redox control is important for cancer therapy. Although many antioxidant drugs exhibit therapeutic potential, there is a heterogeneity of antioxidation functions, including cell growth, cell survival, invasion abilities, and tumor formation, as well as the expression of marker genes including tumor suppressor proteins, cell cycle regulators, nuclear factor erythroid 2-related factor 2, and Jun dimerization protein 2; their effectiveness in cancer remains unproven. Here, we summarize the rationale for the use of antioxidative drugs in preclinical and clinical antioxidant therapy of cancer, and recent advances in this area using cancer cells and their organoids, including the targeting of ROS homeostasis.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Feng Q, Xu X, Zhang S. Nrf2 protein in melanoma progression, as a new means of treatment. Pigment Cell Melanoma Res 2024; 37:247-258. [PMID: 37777339 DOI: 10.1111/pcmr.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Melanoma is a potentially lethal form of skin cancer resulting from the unlimited proliferation of melanocytes. Melanocytic lineage appears to have a greater rate of reactive oxygen species (ROS) production, possibly as a result of exposure to ultraviolet (UV) light and the production of melanin. It has been established that nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a master regulator of the cellular response to oxidative stresses. Recent research has shown that the Nrf2 and its critical negative regulator Kelch-like ECH-associated protein 1 (Keap1) are misregulated in melanoma, and the Keap1-Nrf2 pathway has emerged as a promising new target for treating and preventing melanoma. In melanoma, Nrf2 may either limit tumor growth or promote its development. This review covers a wide range of topics, including the dual functions played by the Keap1-Nrf2 signaling pathway in melanoma and the most recent targeting techniques of the Nrf2.
Collapse
Affiliation(s)
- Qun Feng
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Xiaolin Xu
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Shoulin Zhang
- Nephrology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| |
Collapse
|
3
|
Kline CD, Anderson M, Bassett JW, Kent G, Berryman R, Honeggar M, Ito S, Wakamatsu K, Indra AK, Moos PJ, Leachman SA, Cassidy PB. MITF Is Regulated by Redox Signals Controlled by the Selenoprotein Thioredoxin Reductase 1. Cancers (Basel) 2022; 14:5011. [PMID: 36291795 PMCID: PMC9600194 DOI: 10.3390/cancers14205011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
TR1 and other selenoproteins have paradoxical effects in melanocytes and melanomas. Increasing selenoprotein activity with supplemental selenium in a mouse model of UV-induced melanoma prevents oxidative damage to melanocytes and delays melanoma tumor formation. However, TR1 itself is positively associated with progression in human melanomas and facilitates metastasis in melanoma xenografts. Here, we report that melanocytes expressing a microRNA directed against TR1 (TR1low) grow more slowly than control cell lines and contain significantly less melanin. This phenotype is associated with lower tyrosinase (TYR) activity and reduced transcription of tyrosinase-like protein-1 (TYRP1). Melanoma cells in which the TR1 gene (TXNRD1) was disrupted using Crispr/Cas9 showed more dramatic effects including the complete loss of the melanocyte-specific isoform of MITF; other MITF isoforms were unaffected. We provide evidence that TR1 depletion results in oxidation of MITF itself. This newly discovered mechanism for redox modification of MITF has profound implications for controlling both pigmentation and tumorigenesis in cells of the melanocyte lineage.
Collapse
Affiliation(s)
- Chelsey D. Kline
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Madeleine Anderson
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - John W. Bassett
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gail Kent
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rachel Berryman
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Matthew Honeggar
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Philip J. Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sancy A. Leachman
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pamela B. Cassidy
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Carpenter EL, Wyant MB, Indra A, Ito S, Wakamatsu K, Merrill GF, Moos PJ, Cassidy PB, Leachman SA, Ganguli-Indra G, Indra AK. Thioredoxin Reductase 1 Modulates Pigmentation and Photobiology of Murine Melanocytes in vivo. J Invest Dermatol 2022; 142:1903-1911.e5. [PMID: 35031135 PMCID: PMC10771865 DOI: 10.1016/j.jid.2021.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
Pigment-producing melanocytes overcome frequent oxidative stress in their physiological role of protecting the skin against the deleterious effects of solar UV irradiation. This is accomplished by the activity of several endogenous antioxidant systems, including the thioredoxin antioxidant system, in which thioredoxin reductase 1 (TR1) plays an important part. To determine whether TR1 contributes to the redox regulation of melanocyte homeostasis, we have generated a selective melanocytic Txnrd1-knockout mouse model (Txnrd1mel‒/‒), which exhibits a depigmentation phenotype consisting of variable amelanotic ventral spotting and reduced pigmentation on the extremities (tail tip, ears, and paws). The antioxidant role of TR1 was further probed in the presence of acute neonatal UVB irradiation, which stimulates melanocyte activation and introduces a spike in oxidative stress in the skin microenvironment. Interestingly, we observed a significant reduction in overall melanocyte count and proliferation in the absence of TR1. Furthermore, melanocytes exhibited an elevated level of UV-induced DNA damage in the form of 8-oxo-2'-deoxyguanosine after acute UVB treatment. We also saw an engagement of compensatory antioxidant mechanisms through increased nuclear localization of transcription factor NRF2. Altogether, these data indicate that melanocytic TR1 positively regulates melanocyte homeostasis and pigmentation during development and protects against UVB-induced DNA damage and oxidative stress.
Collapse
Affiliation(s)
- Evan L Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Mark B Wyant
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Aaryan Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Corvallis High School, Corvallis, Oregon, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Gary F Merrill
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Philip J Moos
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Pamela B Cassidy
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Sancy A Leachman
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon, USA; Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA; Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
5
|
Carpenter EL, Becker AL, Indra AK. NRF2 and Key Transcriptional Targets in Melanoma Redox Manipulation. Cancers (Basel) 2022; 14:cancers14061531. [PMID: 35326683 PMCID: PMC8946769 DOI: 10.3390/cancers14061531] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Melanocytes are dendritic, pigment-producing cells located in the skin and are responsible for its protection against the deleterious effects of solar ultraviolet radiation (UVR), which include DNA damage and elevated reactive oxygen species (ROS). They do so by synthesizing photoprotective melanin pigments and distributing them to adjacent skin cells (e.g., keratinocytes). However, melanocytes encounter a large burden of oxidative stress during this process, due to both exogenous and endogenous sources. Therefore, melanocytes employ numerous antioxidant defenses to protect themselves; these are largely regulated by the master stress response transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2). Key effector transcriptional targets of NRF2 include the components of the glutathione and thioredoxin antioxidant systems. Despite these defenses, melanocyte DNA often is subject to mutations that result in the dysregulation of the proliferative mitogen-activated protein kinase (MAPK) pathway and the cell cycle. Following tumor initiation, endogenous antioxidant systems are co-opted, a consequence of elevated oxidative stress caused by metabolic reprogramming, to establish an altered redox homeostasis. This altered redox homeostasis contributes to tumor progression and metastasis, while also complicating the application of exogenous antioxidant treatments. Further understanding of melanocyte redox homeostasis, in the presence or absence of disease, would contribute to the development of novel therapies to aid in the prevention and treatment of melanomas and other skin diseases.
Collapse
Affiliation(s)
- Evan L. Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
| | - Alyssa L. Becker
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
6
|
Okwundu N, Rahman H, Liu T, Florell SR, Boucher KM, Grossman D. A Randomized Double-blind Placebo-controlled Trial of Oral Aspirin for Protection of Melanocytic Nevi Against UV-induced DNA Damage. Cancer Prev Res (Phila) 2022; 15:129-138. [PMID: 34750146 PMCID: PMC8828675 DOI: 10.1158/1940-6207.capr-21-0399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
DNA damage plays a role in ultraviolet (UV)-induced melanoma. We previously showed that aspirin (ASA) can suppress prostaglandin-E2 (PGE2) and protect melanocytes from UV-induced DNA damage in mice, and suggested that taking ASA before acute sun exposure may reduce melanoma risk. We conducted a prospective randomized placebo-controlled trial to determine if orally administered ASA could suppress PGE2 in plasma and nevi and protect nevi from UV-induced DNA damage. After obtaining plasma and determining the minimal erythemal dose (MED) in 95 subjects at increased risk for melanoma, they were randomized to receive a daily dose of placebo, 81 mg ASA, or 325 mg ASA, in double-blind fashion for one month. After this intervention, one nevus was irradiated (dose = 1 or 2 MED) using a solar simulator. One day later, MED was re-determined, a second plasma sample was obtained, and the UV-irradiated nevus and an unirradiated nevus were removed. ASA metabolites were detected in the second plasma sample in subjects in the ASA arms. There were no significant differences in the pre- and post-intervention MED between those patients receiving ASA and placebo. Significantly reduced PGE2 levels were detected in plasma (second vs. first samples) and in nevi (both unirradiated and UV-treated) in subjects receiving ASA compared to placebo. Comparing UV-treated nevi from the ASA and placebo cohorts, however, did not reveal significant reductions in CD3-cell infiltration or 8-oxoguanine and cyclobutane pyrimidine dimers. Thus ASA did not effectively protect nevi from solar-simulated UV-induced inflammation and DNA damage under the conditions examined. PREVENTION RELEVANCE: Despite promising rationale, ASA at conventional dosing was not able to protect nevi against UV-induced DNA damage under the conditions examined.See related Spotlight, p. 71.
Collapse
Affiliation(s)
- Nwanneka Okwundu
- From the Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Hafeez Rahman
- From the Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Tong Liu
- From the Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Scott R Florell
- Departments of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Kenneth M Boucher
- From the Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Douglas Grossman
- From the Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah.
- Departments of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah
- Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
7
|
Implications of Oxidative Stress in the Pathogenesis and Treatment of Hyperpigmentation Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7881717. [PMID: 35087618 PMCID: PMC8789419 DOI: 10.1155/2022/7881717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 01/19/2023]
Abstract
Oxidative stress represents an imbalance between the generation of reactive oxygen and nitrogen species and the ability of antioxidant systems to decompose those products. Oxidative stress is implicated in the pathogenesis of hyperpigmentation, hypopigmentation, melanoma, and other skin diseases. Regulatory networks involving oxidative stress and related pathways are widely represented in hypopigmentation diseases, particularly vitiligo. However, there is no complete review into the role of oxidative stress in the pathogenesis of hyperpigmentation disorders, especially regarding associations involving oxidative stress and cellular signaling pathways. Here, we review oxidative and antioxidant systems, oxidative stress-induced signal transduction mechanisms, and effects of antioxidant drugs used in preclinical and clinical settings in hyperpigmentation disorders.
Collapse
|
8
|
Kim MJ, Ha SJ, So BR, Kim CK, Kim KM, Jung SK. NADPH Oxidase and Epidermal Growth Factor Receptor Are Promising Targets of Phytochemicals for Ultraviolet-Induced Skin Carcinogenesis. Antioxidants (Basel) 2021; 10:antiox10121909. [PMID: 34943012 PMCID: PMC8750051 DOI: 10.3390/antiox10121909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
The skin acts as the primary defense organ that protects the body from the external environment. Skin cancer is one of the most common cancers in the world. Skin carcinogenesis is usually caused by cell degeneration due to exposure to ultraviolet (UV) radiation, which causes changes in various signaling networks, disrupting the homeostasis of single skin cells. In this review, we summarize the roles of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and epidermal growth factor receptor (EGFR) in UV-induced skin carcinogenesis. Furthermore, we describe the crosstalk that exists between NOX, EGFR, and protein tyrosine phosphatase κ and its oncogenic downstream signaling pathways. Chemoprevention is the use of chemical compounds to recover the healthy status of the skin or delay cancer development. Current evidence from in vitro and in vivo studies on chemopreventive phytochemicals that target NOX, EGFR, or both, as major regulators of skin carcinogenesis will also be discussed.
Collapse
Affiliation(s)
- Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (M.J.K.); (B.R.S.)
| | - Su Jeong Ha
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea;
| | - Bo Ram So
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (M.J.K.); (B.R.S.)
| | - Chang-Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea;
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (K.-M.K.); (S.K.J.); Tel.: +82-53-950-5711 (K.-M.K.); +82-53-950-7764 (S.K.J.)
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (M.J.K.); (B.R.S.)
- Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (K.-M.K.); (S.K.J.); Tel.: +82-53-950-5711 (K.-M.K.); +82-53-950-7764 (S.K.J.)
| |
Collapse
|
9
|
Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence. Cancers (Basel) 2021; 13:cancers13194914. [PMID: 34638397 PMCID: PMC8508267 DOI: 10.3390/cancers13194914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Melanoma constitutes a major public health risk, with the rates of diagnosis increasing on a yearly basis. Monitoring for risk factors and preventing dangerous behaviors that increase melanoma risk, such as tanning, are important measures for melanoma prevention. Additionally, assessing the effectiveness of various methods to prevent sun exposure and sunburns—which can lead to melanoma—is important to help identify ways to reduce the development of melanoma. We summarize the recent evidence regarding the heritable and behavioral risks underlying melanoma, as well as the current methods used to reduce the risk of developing melanoma and to improve the diagnosis of this disease. Abstract (1) Melanoma is the most aggressive dermatologic malignancy, with an estimated 106,110 new cases to be diagnosed in 2021. The annual incidence rates continue to climb, which underscores the critical importance of improving the methods to prevent this disease. The interventions to assist with melanoma prevention vary and typically include measures such as UV avoidance and the use of protective clothing, sunscreen, and other chemopreventive agents. However, the evidence is mixed surrounding the use of these and other interventions. This review discusses the heritable etiologies underlying melanoma development before delving into the data surrounding the preventive methods highlighted above. (2) A comprehensive literature review was performed to identify the clinical trials, observational studies, and meta-analyses pertinent to melanoma prevention and incidence. Online resources were queried to identify epidemiologic and clinical trial information. (3) Evidence exists to support population-wide screening programs, the proper use of sunscreen, and community-targeted measures in the prevention of melanoma. Clinical evidence for the majority of the proposed preventive chemotherapeutics is presently minimal but continues to evolve. (4) Further study of these chemotherapeutics, as well as improvement of techniques in artificial intelligence and imaging techniques for melanoma screening, is warranted for continued improvement of melanoma prevention.
Collapse
|
10
|
Targeted germline sequencing of patients with three or more primary melanomas reveals high rate of pathogenic variants. Melanoma Res 2021; 30:247-251. [PMID: 31567591 DOI: 10.1097/cmr.0000000000000645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Individuals with multiple primary melanomas have rates of germline CDKN2A pathogenic variants of 3%-18%, and are also frequent carriers of variants in the melanocortin-1 receptor. Few patients with numerous (≥3) primary melanomas have been studied with respect to these or other potential germline pathogenic variants. We investigated 46 patients with ≥3 primary melanomas (3, n = 17; 4, n = 14; 5-14, n = 15) to determine if higher rates of germline pathogenic variants of CDKN2A, MC1R, or other cancer genes could explain their extreme melanoma phenotype. Most (43/46, 93%) patients had variants in MC1R and 11/46 (24%) had CDKN2A pathogenic variants, but only male sex and having two variants in MC1R correlated with increasing number of melanomas. Panel screening of 56 other cancer predisposition genes did not reveal other germline pathogenic variants associated with melanoma (CDK4, BAP1, POT1), although pathogenic variants in TP53, CHEK2, and BRCA2 were present in three separate patients and some patients had variants of uncertain significance. In summary, targeted germline sequencing of patients with ≥3 primary melanomas revealed a high rate of pathogenic variants in CDKN2A and other known cancer genes. Although further investigation of these pathogenic variants and variants of uncertain significance is needed, these results support cancer gene panel testing in individuals diagnosed with ≥3 melanomas.
Collapse
|
11
|
Nagelhout ES, Lensink R, Zhu A, Parsons BG, Haaland B, Hashibe M, Grossman D, VanDerslice J, Gren LH, Jensen JD, Wu YP. Higher Ultraviolet Radiation Exposure Among Rural-Dwelling Versus Urban-Dwelling Adults and Children: Implications for Skin Cancer Prevention. J Community Health 2020; 46:147-155. [PMID: 32542551 DOI: 10.1007/s10900-020-00860-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ultraviolet radiation (UVR) exposure is a primary risk factor for the development of melanoma. However, adults and adolescents often do not engage in preventive behaviors to reduce UVR exposure. Rural residents may be at higher risk for melanoma due to lower use of sun protection strategies, which increases their overall UVR exposure compared to those who live in urban areas. The purpose of this study was to evaluate differences in UVR exposure between rural and urban residents in a geographic area with high incidence of melanoma. Children (aged 8-17 years) and adults (≥ 18 years) from rural and urban areas of Utah were asked to wear a UVR monitoring device for 14 days. The sample included 97 children and 97 adults. Data was collected from June to October 2018. Non-parametric Mann-Whitney tests and quantile regression were used to compare UVR exposure levels between urban and rural participants, separately for adults and children. For adults, rural residence significantly increased total UVR dose ( β: 24.6; 95% CI 3.75, 42.74) and the UVR dose during peak UVR hours among participants with the highest UVR doses (β: 16.3; 95% CI 17.4, 24.63). Rural children exhibited significantly higher UVR doses for peak UVR hours for the entire study period (β: 4.14; 95% CI 0.83, 7.46) and on weekdays (β: 0.39; 95% CI 0.05, 0.73). The findings from this study indicate that rural residents may receive higher levels of UVR exposure than urban residents, and that prevention efforts could be tailored to address these geographical differences.
Collapse
Affiliation(s)
- Elizabeth S Nagelhout
- Division of Public Health, Department of Family & Preventive Medicine, University of Utah, 375 Chipeta Way, Suite A, Salt Lake City, UT, 84108, USA
| | - Riley Lensink
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Angela Zhu
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Bridget G Parsons
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Benjamin Haaland
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
- Division of Biostatistics, Department of Population Health Sciences, University of Utah, 295 Chipeta Way, Salt Lake City, UT, 84108, USA
| | - Mia Hashibe
- Division of Public Health, Department of Family & Preventive Medicine, University of Utah, 375 Chipeta Way, Suite A, Salt Lake City, UT, 84108, USA
| | - Douglas Grossman
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah, 201 Presidents Circle, Salt Lake City, UT, 84112, USA
- Department of Dermatology, University of Utah, 30 North 1900 East, Salt Lake City, UT, 84132, USA
| | - James VanDerslice
- Division of Public Health, Department of Family & Preventive Medicine, University of Utah, 375 Chipeta Way, Suite A, Salt Lake City, UT, 84108, USA
| | - Lisa H Gren
- Division of Public Health, Department of Family & Preventive Medicine, University of Utah, 375 Chipeta Way, Suite A, Salt Lake City, UT, 84108, USA
| | - Jakob D Jensen
- Department of Communication, University of Utah, 255 Central Campus Dr #2400, Salt Lake City, UT, 84112, USA
| | - Yelena P Wu
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA.
- Department of Dermatology, University of Utah, 30 North 1900 East, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
12
|
Varedi A, Rahman H, Kumar D, Catrow JL, Cox JE, Liu T, Florell SR, Boucher KM, Okwundu N, Burnett WJ, VanBrocklin MW, Grossman D. ASA Suppresses PGE 2 in Plasma and Melanocytic Nevi of Human Subjects at Increased Risk for Melanoma. Pharmaceuticals (Basel) 2020; 13:E7. [PMID: 31906519 PMCID: PMC7168893 DOI: 10.3390/ph13010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Potential anti-inflammatory and anticarcinogenic effects of aspirin (ASA) may be suitable for melanoma chemoprevention, but defining biomarkers in relevant target tissues is prerequisite to performing randomized controlled chemoprevention trials. We conducted open-label studies with ASA in 53 human subjects with melanocytic nevi at increased risk for melanoma. In a pilot study, 12 subjects received a single dose (325 mg) of ASA; metabolites salicylate, salicylurate, and gentisic acid were detected in plasma after 4-8 h, and prostaglandin E2 (PGE2) was suppressed in both plasma and nevi for up to 24 h. Subsequently, 41 subjects received either 325 or 81 mg ASA (nonrandomized) daily for one week. ASA metabolites were consistently detected in plasma and nevi, and PGE2 levels were significantly reduced in both plasma and nevi. Subchronic ASA dosing did not affect 5" adenosine monophosphate-activated protein kinase (AMPK) activation in nevi or leukocyte subsets in peripheral blood, although metabolomic and cytokine profiling of plasma revealed significant decreases in various (non-ASA-derived) metabolites and inflammatory cytokines. In summary, short courses of daily ASA reduce plasma and nevus PGE2 and some metabolites and cytokines in plasma of human subjects at increased risk for melanoma. PGE2 may be a useful biomarker in blood and nevi for prospective melanoma chemoprevention studies with ASA.
Collapse
Affiliation(s)
- Amir Varedi
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; (A.V.); (H.R.); (D.K.); (T.L.); (K.M.B.); (N.O.); (W.J.B.); (M.W.V.)
| | - Hafeez Rahman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; (A.V.); (H.R.); (D.K.); (T.L.); (K.M.B.); (N.O.); (W.J.B.); (M.W.V.)
| | - Dileep Kumar
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; (A.V.); (H.R.); (D.K.); (T.L.); (K.M.B.); (N.O.); (W.J.B.); (M.W.V.)
| | - Jonathan L. Catrow
- Health Science Center Cores, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; (J.L.C.); (J.E.C.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - James E. Cox
- Health Science Center Cores, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; (J.L.C.); (J.E.C.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Tong Liu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; (A.V.); (H.R.); (D.K.); (T.L.); (K.M.B.); (N.O.); (W.J.B.); (M.W.V.)
| | - Scott R. Florell
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA;
| | - Kenneth M. Boucher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; (A.V.); (H.R.); (D.K.); (T.L.); (K.M.B.); (N.O.); (W.J.B.); (M.W.V.)
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Nwanneka Okwundu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; (A.V.); (H.R.); (D.K.); (T.L.); (K.M.B.); (N.O.); (W.J.B.); (M.W.V.)
| | - William J. Burnett
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; (A.V.); (H.R.); (D.K.); (T.L.); (K.M.B.); (N.O.); (W.J.B.); (M.W.V.)
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew W. VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; (A.V.); (H.R.); (D.K.); (T.L.); (K.M.B.); (N.O.); (W.J.B.); (M.W.V.)
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Douglas Grossman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; (A.V.); (H.R.); (D.K.); (T.L.); (K.M.B.); (N.O.); (W.J.B.); (M.W.V.)
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA;
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
13
|
Wu YP, Boucher K, Hu N, Hay J, Kohlmann W, Aspinwall LG, Bowen DJ, Parsons BG, Nagelhout ES, Grossman D, Mooney K, Leachman SA, Tercyak KP. A pilot study of a telehealth family-focused melanoma preventive intervention for children with a family history of melanoma. Psychooncology 2020; 29:148-155. [PMID: 31520429 PMCID: PMC6980884 DOI: 10.1002/pon.5232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/23/2019] [Accepted: 09/11/2019] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Melanoma preventive interventions for children with familial risk are critically needed because ultraviolet radiation (UVR) exposure and sunburn occurrence early in life are the primary modifiable risk factors for melanoma. The current study examined the feasibility and acceptability of a new, family-focused telehealth intervention for children with familial risk for melanoma and their parents. The study also explored changes in child sun protection and risk behaviors, sunburn occurrence, and objectively measured UVR exposure. METHODS This was a prospective study with a single-group design (n = 21 parent-child dyads, children ages 8-17). Dyads were asked to participate in three in-person assessments and three live video teleconference intervention sessions. RESULTS The intervention was feasibly delivered, and the intervention content was acceptable to parents and children. The intervention was associated with improvements in child use of certain sun protection strategies over time and declines in child UVR exposure. CONCLUSIONS A telehealth-delivered,family-focused melanoma preventive intervention was feasibly delivered and was acceptable to parent-child dyads. Future melanoma preventive interventions for this at-risk population could incorporate eHealth technologies to facilitate improvements in use of sun protection and monitoring of UVR exposure. This trial was registered with Clinicaltrials.gov, number NCT02846714.
Collapse
Affiliation(s)
- Yelena P Wu
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Kenneth Boucher
- Huntsman Cancer Institute, Salt Lake City, Utah
- Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Nan Hu
- Huntsman Cancer Institute, Salt Lake City, Utah
- Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jennifer Hay
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Lisa G Aspinwall
- Department of Psychology, University of Utah, Salt Lake City, Utah
| | - Deborah J Bowen
- Department of Bioethics and Humanities, University of Washington, Seattle, Washington
| | | | - Elizabeth S Nagelhout
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah
| | - Douglas Grossman
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Kathi Mooney
- Huntsman Cancer Institute, Salt Lake City, Utah
- College of Nursing, University of Utah, Salt Lake City, Utah
| | - Sancy A Leachman
- Department of Dermatology & Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Kenneth P Tercyak
- Cancer Control Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, D.C
| |
Collapse
|
14
|
Li C, Liu T, Liu B, Hernandez R, Facelli JC, Grossman D. A novel CDKN2A variant (p16 L117P ) in a patient with familial and multiple primary melanomas. Pigment Cell Melanoma Res 2019; 32:734-738. [PMID: 31001908 PMCID: PMC6751567 DOI: 10.1111/pcmr.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/18/2019] [Accepted: 04/09/2019] [Indexed: 12/29/2022]
Abstract
Germline mutations in CDKN2A (p16) are commonly found in patients with family history of melanoma or personal history of multiple primary melanomas. The p16 tumor suppressor gene regulates cell cycle progression and senescence through binding of cyclin-dependent kinases (CDK) and also regulates cellular oxidative stress independently of cell cycle control. We identified a germline missense (c.350T>C, p.Leu117Pro) CDKN2A mutation in a patient who had history of four primary melanomas, numerous nevi, and self-reported family history of melanoma. This particular CDKN2A mutation has not been previously reported in prior large studies of melanoma kindreds or patients with multiple primary melanomas. Compared with wild-type p16, the p16L117P mutant largely retained binding capacity for CDK4 and CDK6 but exhibited impaired capacity for repressing cell cycle progression and inducing senescence, while retaining its ability to reduce mitochondrial reactive oxygen species. Structural modeling predicted that the Leu117Pro mutation disrupts a putative adenosine monophosphate (AMP) binding pocket involving residue 117 in the fourth ankyrin domain. Identification of this new likely pathogenic variant extends our understanding of CDKN2A in melanoma susceptibility and implicates AMP as a potential regulator of p16.
Collapse
Affiliation(s)
- Christopher Li
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Tong Liu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Bin Liu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Rolando Hernandez
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah
| | - Julio C. Facelli
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah
| | - Douglas Grossman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
15
|
Kontoghiorghes GJ, Kontoghiorghe CN. Prospects for the introduction of targeted antioxidant drugs for the prevention and treatment of diseases related to free radical pathology. Expert Opin Investig Drugs 2019; 28:593-603. [DOI: 10.1080/13543784.2019.1631284] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science Technology, Environment and Medicine, Limassol, Cyprus
| | | |
Collapse
|
16
|
Jeter JM, Bowles TL, Curiel-Lewandrowski C, Swetter SM, Filipp FV, Abdel-Malek ZA, Geskin LJ, Brewer JD, Arbiser JL, Gershenwald JE, Chu EY, Kirkwood JM, Box NF, Funchain P, Fisher DE, Kendra KL, Marghoob AA, Chen SC, Ming ME, Albertini MR, Vetto JT, Margolin KA, Pagoto SL, Hay JL, Grossman D, Ellis DL, Kashani-Sabet M, Mangold AR, Markovic SN, Meyskens FL, Nelson KC, Powers JG, Robinson JK, Sahni D, Sekulic A, Sondak VK, Wei ML, Zager JS, Dellavalle RP, Thompson JA, Weinstock MA, Leachman SA, Cassidy PB. Chemoprevention agents for melanoma: A path forward into phase 3 clinical trials. Cancer 2019; 125:18-44. [PMID: 30281145 PMCID: PMC6860362 DOI: 10.1002/cncr.31719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/10/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
Recent progress in the treatment of advanced melanoma has led to unprecedented improvements in overall survival and, as these new melanoma treatments have been developed and deployed in the clinic, much has been learned about the natural history of the disease. Now is the time to apply that knowledge toward the design and clinical evaluation of new chemoprevention agents. Melanoma chemoprevention has the potential to reduce dramatically both the morbidity and the high costs associated with treating patients who have metastatic disease. In this work, scientific and clinical melanoma experts from the national Melanoma Prevention Working Group, composed of National Cancer Trials Network investigators, discuss research aimed at discovering and developing (or repurposing) drugs and natural products for the prevention of melanoma and propose an updated pipeline for translating the most promising agents into the clinic. The mechanism of action, preclinical data, epidemiological evidence, and results from available clinical trials are discussed for each class of compounds. Selected keratinocyte carcinoma chemoprevention studies also are considered, and a rationale for their inclusion is presented. These data are summarized in a table that lists the type and level of evidence available for each class of agents. Also included in the discussion is an assessment of additional research necessary and the likelihood that a given compound may be a suitable candidate for a phase 3 clinical trial within the next 5 years.
Collapse
Affiliation(s)
- Joanne M Jeter
- Department of Medicine, Divisions of Genetics and Oncology, The Ohio State University, Columbus, Ohio
| | - Tawnya L Bowles
- Department of Surgery, Intermountain Health Care, Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | | | - Susan M Swetter
- Department of Dermatology, Pigmented Lesion and Melanoma Program, Stanford University Medical Center Cancer Institute, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Fabian V Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, Merced, California
| | | | - Larisa J Geskin
- Department of Dermatology, Cutaneous Oncology Center, Columbia University Medical Center, New York, New York
| | - Jerry D Brewer
- Department of Dermatologic Surgery, Mayo Clinic Minnesota, Rochester, Minnesota
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
- Division of Dermatology, Veterans Affairs Medical Center, Atlanta, Georgia
| | - Jeffrey E Gershenwald
- Departments of Surgical Oncology and Cancer Biology, Melanoma and Skin Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emily Y Chu
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M Kirkwood
- Melanoma and Skin Cancer Program, Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Neil F Box
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Dermatology Service, U.S. Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kari L Kendra
- Department of Internal Medicine, Medical Oncology Division, The Ohio State University, Columbus, Ohio
| | - Ashfaq A Marghoob
- Memorial Sloan Kettering Skin Cancer Center and Department of Dermatology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Suephy C Chen
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
- Division of Dermatology, Veterans Affairs Medical Center, Atlanta, Georgia
| | - Michael E Ming
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark R Albertini
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - John T Vetto
- Division of Surgical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Kim A Margolin
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Sherry L Pagoto
- Department of Allied Health Sciences, UConn Institute for Collaboration in Health, Interventions, and Policy, University of Connecticut, Storrs, Connecticut
| | - Jennifer L Hay
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Douglas Grossman
- Departments of Dermatology and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Darrel L Ellis
- Department of Dermatology, Vanderbilt University Medical Center and Division of Dermatology, Vanderbilt Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Tennessee Valley Healthcare System, Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California
| | | | | | | | - Kelly C Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - June K Robinson
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Debjani Sahni
- Department of Dermatology, Boston Medical Center, Boston, Massachusetts
| | | | - Vernon K Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Departments of Oncologic Sciences and Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Maria L Wei
- Department of Dermatology, University of California, San Francisco, San Francisco, California
- Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Jonathan S Zager
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Sarcoma, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Dermatology Service, U.S. Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John A Thompson
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Martin A Weinstock
- Center for Dermatoepidemiology, Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Dermatology, Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown University, Providence, Rhode Island
- Department of Dermatology, Rhode Island Hospital, Providence, Rhode Island
| | - Sancy A Leachman
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Pamela B Cassidy
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
17
|
Abstract
Skin aging is continuously influenced by various internal and external factors such as the biologic progression of cells, ultraviolet (UV) radiation, tobacco, nutritional deficiencies, and hormonal imbalances that lead to the degradation of skin cells. Through the degradation of skin cells, free radicals and inflammation weaken repair mechanisms and result in collagen and elastic fiber breakdown. The appearance of aging skin is highlighted by skin roughness, wrinkling, pigmentation change, telangiectasias, loss of elasticity, and decreased firmness, all of which are accelerated by these internal and external factors. Throughout the years, nutraceuticals have been studied to delay and fight against these internal and external factors, many of which are found in foods and byproducts consumed naturally. The aim of this review is to aid dermatologists in understanding the mechanism of action of popular nutraceuticals and their possible efficacy in antiaging and skin health.
Collapse
Affiliation(s)
- Skylar A Souyoul
- Lupo Center for Aesthetic and General Dermatology, New Orleans, LA, USA.
| | - Katharine P Saussy
- Department of Internal Medicine, Tulane University, New Orleans, LA, USA
| | - Mary P Lupo
- Lupo Center for Aesthetic and General Dermatology, New Orleans, LA, USA
| |
Collapse
|